1
|
Yan C, Liu L, Zhang T, Hu Y, Pan H, Cui C. A comprehensive review on human enteric viruses in water: Detection methods, occurrence, and microbial risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136373. [PMID: 39531817 DOI: 10.1016/j.jhazmat.2024.136373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 09/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Human enteric viruses, such as norovirus, adenovirus, rotavirus, and enterovirus, are crucial targets in controlling biological contamination in water systems worldwide. Due to their small size and low concentrations in water, effective virus concentration and detection methods are essential for ensuring microbial safety. This paper reviews the typical and innovative methods for concentrating and detecting human enteric viruses, highlights viral contamination levels across different water bodies, and discusses the removal efficiencies of virus through various treatment technologies. The application and current gaps of quantitative microbial risk assessment (QMRA) for evaluating the risks of human enteric viruses is also explored. Innovative methods such as digital polymerase chain reaction and isothermal amplification show promise in sensitivity and convenience, however, distinguishing between infectious and non-infectious viruses should be a key focus of future detection techniques. The highest concentrations of human enteric viruses were detected in wastewater, ranging from 103 to 106 copies/L, while drinking water showed significantly lower concentrations, often below 102 copies/L. QMRA studies suggest that exposure to human enteric viruses, whether through contaminated drinking water, occupational contact, or accidental wastewater discharge, could result in a life expectancy of 1.96 × 10-4 to 4.53 × 10-1 days/year.
Collapse
Affiliation(s)
- Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lingli Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tingyuan Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hongchen Pan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Wang Y, Li H, Fang W, Wang R, Wang X, Wang X, Zheng G, Zhou L. Persistence evaluation of fecal pollution indicators in dewatered sludge and dewatering filtrate of municipal sewage sludge: The impacts of ambient temperature and conditioning treatments. WATER RESEARCH 2024; 268:122641. [PMID: 39442430 DOI: 10.1016/j.watres.2024.122641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Sludge resource utilization is one of the important routines for transmitting fecal pollution to water and soil, and sludge dewatering is a crucial step for sludge resource utilization. However, it remains unclear the decay characteristics and persistence of fecal pollution indicators after sludge dewatering. In this study, the persistence of six fecal pollution indicators, namely E. coli (EC), human-specific HF183 Bacteroides (HF183), human adenovirus (HAdV), human JC and BK polyomavirus (JCPyV and BKPyV), and crAssphage, in dewatered sludge cake and dewatering filtrate deriving from raw sewage sludge, as well as three types of sludge conditioned with polyacrylamide (PAM), Fenton's reagent, or Fe[III] and CaO were analyzed. The quantitative polymerase chain reaction (qPCR) and viability-qPCR methods were used to analyze the variation in abundances and infectivity of fecal pollution indicators in dewatered sludge cake or dewatering filtrate over the storage time, respectively. Decay predications of fecal pollution indicators over time were modeled using either the first-order or the biphasic decay model. The qPCR results revealed that fecal pollution indicators in dewatered sludge cake persisted longer than those in dewatering filtrate at the same temperature. Increasing temperature can accelerate the decay of fecal pollution indicators in both dewatered sludge cake and dewatering filtrate. Notably, sludge conditioning treatment may prolong the persistence of fecal pollution indicators in both dewatered sludge cake and dewatering filtrate. Viability-qPCR results indicated that the fecal pollution indicators (except HAdV) in dewatered sludge cakes deriving from both raw sewage sludge and conditioned sludges remained infectious for up to 30 days. After a storage period of 40 days, the abundances of fecal pollution indicators (except for EC) in sludge conditioned with Fenton's reagent were effectively decreased and meanwhile the infectivity of EC was reduced, exhibiting the lowest levels of fecal pollution. Therefore, both ambient temperature and conditioning treatment greatly impacted the decay characteristics and persistence of fecal pollution indicators in dewatered sludge cake and dewatering filtrate, and selecting suitable conditioning method can minimize environmental risks associated with fecal pollution in sewage sludge.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China
| | - Hua Li
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenhao Fang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ru Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinxin Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomeng Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
3
|
Shan G, Li W, Liu J, Bao S, Li Z, Wang S, Zhu L, Xi B, Tan W. Co-hydrothermal carbonization of municipal sludge and agricultural waste to reduce plant growth inhibition by aqueous phase products: Molecular level analysis of organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173073. [PMID: 38734103 DOI: 10.1016/j.scitotenv.2024.173073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
The organic matter molecular mechanism by which combined hydrothermal carbonization (co-HTC) of municipal sludge (MS) and agricultural wastes (rice husk, spent mushroom substrate, and wheat straw) reduces the inhibitory effects of aqueous phase (AP) products on pak choi (Brassica campestris L.) growth compared to HTC of MS alone is not clear. Fourier-transform ion cyclotron resonance mass spectrometry was used to characterize the differences in organic matter at the molecular level between AP from MS HTC alone (AP-MS) and AP from co-HTC of MS and agricultural waste (co-Aps). The results showed that N-bearing molecules of AP-MS and co-Aps account for 70.6 % and 54.2 %-64.1 % of all molecules, respectively. Lignins were present in the highest proportion (56.3 %-78.5 %) in all APs, followed by proteins and lipids. The dry weight of co-APs hydroponically grown pak choi was 31.6 %-47.6 % higher than that of the AP-MS. Molecules that were poorly saturated and with low aromaticity were preferentially consumed during hydroponic treatment. Molecules present before and after hydroponics were defined as resistant molecules; molecules present before hydroponics but absent after hydroponics were defined as removed molecules; and molecules absent before hydroponics but present after hydroponics were defined as produced molecules. Large lignin molecules were broken down into more unsaturated molecules, but lignins were the most commonly resistant, removed, and produced molecules. Correlation analysis revealed that N- or S-bearing molecules were phytotoxic in the AP. Tannins positively influenced the growth of pak choi. These results provide new insights into potential implementation strategies for liquid fertilizers produced from AP arising from HTC of MS and agricultural wastes.
Collapse
Affiliation(s)
- Guangchun Shan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jie Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shanshan Bao
- Key Laboratory of Water Management and Water Security for Yellow River Basin, Ministry of Water Resources, Yellow River Engineering Consulting Co. Ltd., Zhengzhou 450003, China
| | - Zhenling Li
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Shuncai Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
4
|
Cui J, Tang Z, Lin Q, Yang L, Deng Y. Interactions of ferrate(VI) and aquatic humic substances in water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170919. [PMID: 38354807 DOI: 10.1016/j.scitotenv.2024.170919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Aquatic humic substances, encompassing humic acid (HA) and fulvic acid (FA), can influence the treatment of ferrate(VI), an emerging water treatment agent, by scavenging Fe(VI) to accelerate its decomposition and hinder the elimination of target micro-pollutants. Meanwhile, HA and FA degrade the water quality through the transformation to disinfection byproducts over disinfection, contribution to water color, and enhanced mobility of toxic metals. However, the interplay with ferrate(VI) and humic substances is not well understood. This study aims to elucidate the interactions of ferrate(VI) with HA and FA for harnessing ferrate(VI) in water treatment. Laboratory investigations revealed distinctive biphasic kinetic profiles of ferrate(VI) decomposition in the presence of HA or FA, involving a 2nd order kinetic reaction followed by a 1st-order kinetic reaction. Both self-decay and reactions with the humic substances governed the ferrate(VI) decomposition in the initial phase. With increasing dissolved organic carbon (DOC), the contribution of self-decomposition to ferrate(VI) decay declined, while humic substance-induced ferrate(VI) consumption increased. To assess relative contributions of the two factors, DOC50% was first introduced to represent the level at which the two factors equally contribute to the ferrate(VI) loss. Notably, DOC50% (11.90 mg/L for HA and 13.10 mg/L for FA) exceeded typical DOC in raw water, implying that self-decay predominantly governs ferrate(VI) consumption. Meanwhile, ferrate(VI) could degrade and remove HA and FA across different molecular weight (MW) ranges, exhibiting treatment capabilities that are either better or, at least, equivalent to ozone. The ferrate(VI) treatment attacked high MW, hydrophobic organic molecules, accompanied by the production of low MW, more hydrophilic compounds. Particularly, FA was more effectively removed due to its smaller molecular sizes, higher solubility, and lower carbon contents. This study provides valuable insights into the effective utilization of ferrate(VI) in water treatment in presence of humic substances.
Collapse
Affiliation(s)
- Junkui Cui
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Zepei Tang
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Qiufeng Lin
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Lisitai Yang
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Yang Deng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States.
| |
Collapse
|
5
|
Dong T, Ai J, Zong Y, Zhang Y, Li L, Zhou H, Peng S, He H, Zhang Z, Wang Q. Novel multiplexed alkali enzyme lysis coupled with EDTA pretreatment for RNA virus extraction from wastewater sludge: Optimization, recovery, and detection. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120102. [PMID: 38228046 DOI: 10.1016/j.jenvman.2024.120102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
RNA viruses are readily enriched in wastewater sludge owing to adsorption by extracellular polymeric substances (EPS) during wastewater treatment, causing pathogenicity. However, conventional wastewater extraction methods often fail to fully extract these viruses from sludge. In this study, three methods: enzymatic (ENP), alkaline (ALP), and ethylenediaminetetraacetic acid (EDTA) pretreatments were applied to sludges and promote the RNA virus extraction from sludge. Our results show that the total recovery rate of RNA viruses increased by 87.73% after ENP pretreatment, whereas ALP pretreatment inhibited virus extraction. The highest recovery rate of viruses from sludge, reaching 296.80%, was achieved with EDTA pretreatment (EDP) coupled with ENP. Notably, the most significant increase was observed in the abundance of Astroviruses, which increased from 7.60 × 107 to 7.86 × 108 copies/g TSS after EDP + ENP treatment. Our investigations revealed that virus extraction was affected by a class of short-wavelength protein substances, as opposed to tryptophan or tyrosine, which were eluted by proteins with beef paste buffer by substitution after EDP + ENP treatment. The results of this study provide essential insights for sludge-based epidemiology with the required sensitivity for managing the extraction of RNA epidemic viruses to control viral transmission.
Collapse
Affiliation(s)
- Tianyi Dong
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jing Ai
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Yuxi Zong
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lanfeng Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Hao Zhou
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Sainan Peng
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Hang He
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Zhengxuan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|