1
|
Jiang C, Hu L, He N, Liu Y, Zhao H, Jiang Z. Different calcium sources affect the products and sites of mineralized Cr(VI) by microbially induced carbonate precipitation. CHEMOSPHERE 2024; 363:142977. [PMID: 39084306 DOI: 10.1016/j.chemosphere.2024.142977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Microbially induced carbonate precipitation (MICP) is a common biomineralization method, which is often used for remediation of heavy metal pollution such as hexavalent chromium (Cr(VI)) in recent years. Calcium sources are essential for the MICP process. This study investigated the potential of MICP technology for Cr(VI) remediation under the influence of three calcium sources (CaCl2, Ca(CH3COO)2, Ca(C6H11O7)2). The results indicated that CaCl2 was the most efficient in the mineralization of Cr(VI), and Ca(C6H11O7)2 could significantly promote Cr(VI) reduction. The addition of different calcium sources all promoted the urease activity of Sporosarcina saromensis W5, in which the CaCl2 group showed higher urease activity at the same Ca2+ concentration. Besides, with CaCl2, Ca(CH3COO)2 and Ca(C6H11O7)2 treatments, the final fraction of Cr species (Cr(VI), reduced Cr(III) and organic Cr(III)-complexes) were mainly converted to the carbonate-bound, cytoplasm and cell membrane state, respectively. Furthermore, the characterization results revealed that three calcium sources could co-precipitate with Cr species to produce Ca10Cr6O24(CO3), and calcite and vaterite were present in the CaCl2 and Ca(CH3COO)2 groups, while only calcite was present in the Ca(C6H11O7)2 group. Overall, this study contributes to the optimization of MICP-mediated remediation of heavy metal contaminated soil. CaCl2 was the more suitable calcium source than the other two for the application of MICP technology in the Cr(VI) reduction and mineralization.
Collapse
Affiliation(s)
- Chunyangzi Jiang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Ni He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yayuan Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hongbo Zhao
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Zuopei Jiang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| |
Collapse
|
2
|
Yue J, Li T, Tian J, Ge F, Li F, Liu Y, Zhang D, Li J. Penicillium oxalicum induced phosphate precipitation enhanced cadmium (Cd) immobilization by simultaneously accelerating Cd biosorption and biomineralization. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134306. [PMID: 38626684 DOI: 10.1016/j.jhazmat.2024.134306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
Soil cadmium (Cd) is immobilized by the progressing biomineralization process as microbial induced phosphate precipitation (MIPP), which is regulated by phosphate (P) solubilizing microorganisms and P sources. However, little attention has been paid to the implications of Cd biosorption during MIPP. In this study, the newly isolated Penicillium oxalicum could immobilize 5.4-12.6 % of Cd2+, while the presence of hydroxyapatite (HAP) considerably enhanced Cd2+ immobilization in P. oxalicum and reached over 99 % Cd2+ immobilization efficiency within 7 days. Compared to P. oxalicum mono inoculation, MIPP dramatically boosted Cd biosorption and biomineralization efficiency by 71 % and 16 % after 96 h cultivation, respectively. P. oxalicum preferred to absorbing Cd2+ and reaching maximum Cd2+ biosorption efficiency of 87.8 % in the presence of HAP. More surface groups in P. oxalicum and HAP mineral involved adsorption which resulted in the formation of Cd-apatite [Ca8Cd2(PO4)6(OH)2] via ion exchange. Intracellular S2-, secreted organic acids and soluble P via HAP solubilization complexed with Cd2+, progressively mineralized into Cd5(PO4)3OH, Cd(H2PO4)2, C4H6CdO4 and CdS. These results suggested that Cd2+ immobilization was enhanced simultaneously by the accelerated biosorption and biomineralization during P. oxalicum induced P precipitation. Our findings revealed new mechanisms of Cd immobilization in MIPP process and offered clues for remediation practices at metal contaminated sites.
Collapse
Affiliation(s)
- Jiaru Yue
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
| | - Ting Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
| | - Jiang Tian
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China.
| | - Fei Ge
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
| | - Feng Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
| | - Yun Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, China
| | - Jingwei Li
- Vegetable Industry Research Institute, Guizhou University, Guiyang 550000, Guizhou, China.
| |
Collapse
|
3
|
Huang H, Wang K, Li S, Liang K, Dai J, Jian J, Li Y, Liu H, Xu H. Different survival strategies of the phosphate-mineralizing bacterium Enterobacter sp. PMB-5 in response to cadmium stress: Biomineralization, biosorption, and bioaccumulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133284. [PMID: 38134699 DOI: 10.1016/j.jhazmat.2023.133284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/24/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
The phosphate-mineralizing bacteria (PMBs) has shown great potential as a sustainable solution to support pollution remediation through its induced mineralization capacity. However, few studies have been conducted on the mechanism of cadmium (Cd) tolerance in PMBs. In this study, a PMB strain, Enterobacter sp. PMB-5, screened from Cd-contaminated rhizosphere soil, has high resistance to Cd (540 - 1220 mg/L) and solubilized phosphate (232.08 mg/L). The removal experiments showed that the strain PMB-5 removed 71.69-98.24% and 34.83-76.36% of Cd with and without biomineralization, respectively. The characterization result of SEM, EDS, TEM, XPS and XRD revealed that PMB-5 induced Cd to form amorphous phosphate precipitation through biomineralization and adopted different survival strategies, including biomineralization, bioaccumulation, and biosorption to resistance Cd in the microbial induced phosphate precipitation (MIPP) system and the non-MIPP system, respectively. Moreover, the results of whole genome sequencing and qRT-PCR indicated that phosphorus metabolism genes such as pst, pit, phn, ugp, ppk, etc. and heavy metal tolerance genes (including ion transport, ion efflux, redox, antioxidant stress), such as czcD, zntA, mgtA, mgtC, katE, SOD2, dsbA, cysM, etc. were molecular for the PMB-5 mineralization and Cd tolerance of PMB-5. Together, our findings suggested Enterobacter sp. PMB-5 is a potential target for developing more effective bioinoculants for Cd contamination remediation.
Collapse
Affiliation(s)
- Huayan Huang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Keke Wang
- Sichuan Academy of Eco-Environmental Sciences, Chengdu 610066, PR China
| | - Shiyao Li
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Ke Liang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jingtong Dai
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jiannan Jian
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yongyun Li
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Huakang Liu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
4
|
He N, Hu L, Jiang C, Liu Y, Zhao H. Effect of Phanerochaete chrysosporium induced phosphate precipitation on bacterial diversity during the soil remediation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13523-13534. [PMID: 38253835 DOI: 10.1007/s11356-024-31993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Biomineralization by phosphate minerals and phosphate solubilizing fungi (PSF) has attracted great interest as a novel remediation method for heavy metal(loid) co-contaminated soil. It was very essential to investigate the microenvironment response with the application of amendments. In this study, three grain sizes of hydroxyapatites (HAP) and Phanerochaete chrysosporium (P. chrysosporium) were used to investigate the change in heavy metal(loid) fractions, soil physicochemical properties, and bacterial community during the remediation of Mangchang and Dabaoshan acidic mine soils. The results showed that the residual fractions in the two soils increased significantly after 35 days of remediation, especially that of As and Zn in Dabaoshan soils were presented at over 87%. In addition, soil pH, organic matter (OM), and available phosphorous (AP) were almost improved. 16S rRNA sequencing analysis indicated that the introduction of culture medium and P. chrysosporium alone changed bacterial abundance, but the addition of HAP changed the bacterial diversity and community composition by altering environmental conditions. The amendments in the research showed good performance on immobilizing heavy metal(loid)s and reducing their bioavailability. Moreover, the research suggested that environmental factors and soil inherent properties could influence the microbial community structure and composition.
Collapse
Affiliation(s)
- Ni He
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Liang Hu
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| | - Chunyangzi Jiang
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Yayuan Liu
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Hongbo Zhao
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| |
Collapse
|