1
|
Yaqub M, Mee-Ngern L, Lee W. Cesium adsorption from an aqueous medium for environmental remediation: A comprehensive analysis of adsorbents, sources, factors, models, challenges, and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175368. [PMID: 39122022 DOI: 10.1016/j.scitotenv.2024.175368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Considering the widespread and indispensable nature of nuclear energy for future power generation, there is a concurrent increase in the discharge of radioactive Cs into water streams. Recent studies have demonstrated that adsorption is crucial in removing Cs from wastewater for environmental remediation. However, the existing literature lacks comprehensive studies on various adsorption methods, the capacities or efficiencies of adsorbents, influencing factors, isotherm and kinetic models of the Cs adsorption process. A bibliometric and comprehensive analysis was conducted using 1179 publications from the Web of Science Core Collection spanning from 2014 to 2023. It reviews and summarizes current publication trends, active countries, adsorption methods, adsorption capacities or efficiencies of adsorbents, tested water sources, influencing factors, isotherm, and kinetic models of Cs adsorption. The selection of suitable adsorbents and operating parameters is identified as a crucial factor. Over the past decade, due to their notable capacity for Cs adsorption, considerable research has focused on novel adsorbents, such as Prussian blue, graphene oxide, hydrogel, and nanoadsorbents (NA). However, there remains a need for further development of application-oriented laboratory-scale experiments. Future research directions should encompass exploring adsorption mechanisms, developing new adsorbents or their combinations, practical applications of lab-scale studies, and recycling radioactive Cs from wastewater. Drawing upon this literature review, we present the most recent research patterns concerning adsorbents to remove Cs, outline potential avenues for future research, and delineate the obstacles hindering effective adsorption. This comprehensive bibliometric review provides valuable insights into prevalent research focal points and emerging trends, serving as a helpful resource for researchers and policymakers seeking to understand the dynamics of adsorbents for Cs removal from water.
Collapse
Affiliation(s)
- Muhammad Yaqub
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| | - Ladawan Mee-Ngern
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Wontae Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| |
Collapse
|
2
|
Sun HY, Chen ZH, Hu B, Tang JH, Yang L, Guo YL, Yao YX, Feng ML, Huang XY. Boosting selective Cs + uptake through the modulation of stacking modes in layered niobate-based perovskites. Nat Commun 2024; 15:8681. [PMID: 39375328 PMCID: PMC11458626 DOI: 10.1038/s41467-024-52920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Selective separation of 137Cs is significant for the sustainable development of nuclear energy and environmental protection, due to its strong radioactivity and long half-life. However, selective capture of 137Cs+ from radioactive liquid waste is challenging due to strong coulomb interactions between the adsorbents and high-valency metal ions. Herein, we propose a strategy to resolve this issue and achieve specific Cs+ ion recognition and separation by modulating the stacking modes of layered perovskites. We demonstrate that among niobate-based perovskites, ALaNb2O7 (A = Cs, H, K, and Li), HLaNb2O7 shows an outstanding selectivity for Cs+ even in the presence of a large amount of competing Mn+ ions (Mn+ = K+, Ca2+, Mg2+, Sr2+, Eu3+, and Zr4+) owing to its suitable void fraction and space shape, brought by the stacking mode of layers. The Cs+ capture mechanism is directly elucidated at molecular level by single-crystal structural analyses and density functional theory calculations. This work not only provides key insights in the design and property optimization of perovskite-type materials for radiocesium separation, but also paves the way for the development of efficient inorganic materials for radionuclides remediation.
Collapse
Affiliation(s)
- Hai-Yan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhi-Hua Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bing Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun-Hao Tang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lu Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yan-Ling Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yue-Xin Yao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Mei-Ling Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
- Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, P. R. China.
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Wei C, Liu L, Yi W, Yu R, Xu Y, Zeng S. Characteristics of nutrients and heavy metals release from sewage sludge biochar produced by industrial-scale pyrolysis in the aquatic environment and its potential as a slow-release fertilizer and adsorbent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121871. [PMID: 39018844 DOI: 10.1016/j.jenvman.2024.121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
To assess the application potential of sewage sludge biochar produced by industrial-scale pyrolysis (ISB), the release characteristics of nutrients (NH4+, PO43-, K, Ca, Mg and Fe) and heavy metals (Mn, Cu, Zn, Pb, Ni and Cr) were investigated. Their release amounts increased with decreasing initial pH and increasing solid-liquid ratios (RS-L) and temperature. The release types of NH4+, K, Mg, and Mn were diffusion/dissolution, while those of Cu, Zn, Pb, Ni, and Cr were diffusion/resorption. The release types of PO43- and Ca varied with initial pH and RS-L, respectively. The chemical actions played dominant roles in their release, while particle surface diffusion and liquid film diffusion determined the rates of diffusion and resorption phases, respectively. The release of NH4+, PO43-, K, Ca, Mg, Mn and Zn was a non-interfering, spontaneous (except PO43-), endothermic, and elevated randomness process. The release efficiency of NH4+, PO43- and K met the Chinese standard for slow-release fertilizers, while the total risk of ISB was low. The eutrophication and potential ecological risks of ISB were acceptable when the dose was less than 3 g L-1 and the initial pH was no lower than 3. In conclusion, ISB had potential as a slow-release fertilizer and adsorbent.
Collapse
Affiliation(s)
- Chunzhong Wei
- Guangxi Beitou Environmental Protection & Water Group Co., Ltd., Nanning, 530025, China
| | - Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541006, China.
| | - Wei Yi
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Ronghao Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Yufeng Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541006, China
| | - Si Zeng
- Guangxi Beitou Environmental Protection & Water Group Co., Ltd., Nanning, 530025, China
| |
Collapse
|
4
|
Van Dyck I, Vanhoudt N, Vives I Batlle J, Vargas CS, Horemans N, Van Gompel A, Nauts R, Wijgaerts A, Marchal W, Claesen J, Vangronsveld J. Differentiation between chemo- and radiotoxicity of 137Cs and 60Co on Lemna minor. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 272:107351. [PMID: 38064934 DOI: 10.1016/j.jenvrad.2023.107351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 01/29/2024]
Abstract
The uptake and effects of stable Cs and Co on L.minor were extensively studied, together with the effects of gamma radiation using a 137Cs or 60Co source. Innovative is that we combined external irradiation (from 137Cs or 60Co sources) with the direct uptake of certain amounts of stable Cs or Co to simulate the impact of the same mass of a radioisotope compared with that of the stable element. Such approach allows to differentiate between chemo- and radiotoxicity of 137Cs or 60Co, permitting to study the 137Cs and 60Co uptake by L. minor without using high concentrations of these elements in solution. Our results indicate that radiotoxicity of both 137Cs and 60Co has a greater importance compared to their chemotoxicity. This was also supported by the independent action and concentration addition concepts. Both concepts resulted in a good prediction of the dose-response curve of the combination exposure. The maximal removal of 137Cs or 60Co per gram dry matter of L. minor was lower compared with the removal of the corresponding stable isotope. The toxicity of 60Co was higher compared to 137Cs based on EC50 values and uptake data. With respect to the effects on photosynthetic pigments, starch and soluble sugars contents, only starch increased in a concentration- and dose-dependent manner.
Collapse
Affiliation(s)
- Isabelle Van Dyck
- Belgian Nuclear Research Centre (SCK CEN), Biosphere Impact Studies, Boeretang 200, 2400, Mol, Belgium; UHasselt - Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Nathalie Vanhoudt
- Belgian Nuclear Research Centre (SCK CEN), Biosphere Impact Studies, Boeretang 200, 2400, Mol, Belgium.
| | - Jordi Vives I Batlle
- Belgian Nuclear Research Centre (SCK CEN), Biosphere Impact Studies, Boeretang 200, 2400, Mol, Belgium
| | - Clarita Saldarriaga Vargas
- Belgian Nuclear Research Centre (SCK CEN), Radiation Protection Dosimetry and Calibrations, Boeretang 200, 2400, Mol, Belgium
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK CEN), Biosphere Impact Studies, Boeretang 200, 2400, Mol, Belgium; UHasselt - Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Axel Van Gompel
- Belgian Nuclear Research Centre (SCK CEN), Biosphere Impact Studies, Boeretang 200, 2400, Mol, Belgium
| | - Robin Nauts
- Belgian Nuclear Research Centre (SCK CEN), Biosphere Impact Studies, Boeretang 200, 2400, Mol, Belgium
| | - Ann Wijgaerts
- UHasselt - Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Wouter Marchal
- UHasselt - Hasselt University, Institute for Materials Research (IMO-IMOMEC), Analytical & Circular Chemistry (ACC), Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Jürgen Claesen
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jaco Vangronsveld
- UHasselt - Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590, Diepenbeek, Belgium; Maria Curie-Skłodowska University, Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|