1
|
Trevisan R, Trimpey-Warhaftig R, Gaston K, Butron L, Gaballah S, Di Giulio RT. Polystyrene nanoplastics impact the bioenergetics of developing zebrafish and limit molecular and physiological adaptive responses to acute temperature stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178026. [PMID: 39675295 DOI: 10.1016/j.scitotenv.2024.178026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/01/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
Plastic pollution is a growing environmental concern due to its ubiquitous impact on aquatic ecosystems. Nanoplastics can be generated from the breakdown of plastic waste and interact with organisms at the cellular level, potentially disrupting cellular physiology. We investigated the effects of 44 nm polystyrene nanoparticles (44 nm NanoPS) on the development and physiology of zebrafish (Danio rerio) in the presence of sublethal heat stress (32 °C vs control, 28 °C). We hypothesized that the simultaneous exposure to nanoplastics and rising temperatures seriously threaten developing fish. This combination could create a critical imbalance: rising temperatures may lead to heightened energy demands, while nanoplastic exposure reduces energy production, threatening animal survival. As expected, 32 °C increased markers associated with animal metabolism and developmental timing, such as growth, hatching, heart rate, and feeding. Changes in apoptosis dynamics, oxygen consumption rates, and a decrease in mitochondrial content were detected as adaptive processes to temperature. 44 nm NanoPS alone did not alter development but decreased mitochondrial efficiency in ATP production and increased apoptosis in the heart. Surprisingly, exposure to 44 nm NanoPS at 32 °C did not cause major implications to survival, developmental success, or morphology. Still, 44 nm NanoPS mitigated the temperature-driven change in heart rate, increased oxidative stress, and decreased the coupling efficiency of the less abundant and highly active mitochondria under heat stress. We highlight the interplay between temperature and nanoplastics exposure and suggest that the combined impact of nanoplastics and temperature stress results in a scenario where physiological adaptations are strained, potentially leading to compromised development. This research underscores the need for further investigation into the metabolic costs of plastic pollution, particularly in the context of global warming, to better understand its long-term implications for aquatic life.
Collapse
Affiliation(s)
- Rafael Trevisan
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané 29280, France.
| | | | - Kimberly Gaston
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Lynette Butron
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Shaza Gaballah
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | |
Collapse
|
2
|
Lerchner T, Jedlička J, Kripnerová M, Dejmek J, Kuncová J. Influence of micro- and nanoplastics on mitochondrial function in the cardiovascular system: a review of the current literature. Physiol Res 2024; 73:S685-S695. [PMID: 39808171 DOI: 10.33549/physiolres.935500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Mitochondria represent pivotal cellular organelles endowed with multifaceted functionalities encompassing cellular respiration, metabolic processes, calcium turnover, and the regulation of apoptosis, primarily through the generation of reactive oxygen species (ROS). Perturbations in mitochondrial dynamics have been intricately linked to the etiology of numerous cardiovascular pathologies, such as heart failure, ischemic heart disease, and various cardiomyopathies. Notably, recent attention has been directed towards the detrimental impact of micro- and nanoplastic pollution on mitochondrial integrity, an area underscored by a paucity of comprehensive investigations. Given the escalating prevalence of plastic particle contamination and the concomitant burden of cardiovascular disease in aging populations, understanding the interplay between mitochondria within the cardiovascular system and micro- and nanoplastic pollution assumes paramount importance. This review endeavors to elucidate the current albeit limited comprehension surrounding this complex interplay. Key words Mitochondria, Nanoplastics, Microplastics, Cardiovascular system, Endothelial function, Oxidative phosphorylation.
Collapse
Affiliation(s)
- T Lerchner
- Institute of Physiology, Biomedical Centre, Charles University, Faculty of Medicine in Plzen, Plzen, Czech Republic.
| | | | | | | | | |
Collapse
|
3
|
Xu Y, Liu L, Ma Y, Wang C, Duan F, Feng J, Yin H, Sun L, Cao Z, Jung J, Li P, Li ZH. Biotransport and toxic effects of micro- and nanoplastics in fish model and their potential risk to humans: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 279:107215. [PMID: 39706134 DOI: 10.1016/j.aquatox.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
The growing body of scientific evidence suggests that micro- and nanoplastics (MPs/NPs) pose a significant threat to aquatic ecosystems and human health. These particles can enter organisms through ingestion, inhalation, dermal contact, and trophic transfer. Exposure can directly affect multiple organs and systems (respiratory, digestive, neurological, reproductive, urinary, cardiovascular) and activate extensive intracellular signaling, inducing cytotoxicity involving mechanisms such as membrane disruption, extracellular polymer degradation, reactive oxygen species (ROS) production, DNA damage, cellular pore blockage, lysosomal instability, and mitochondrial depolarization. This review focuses on current research examining the in vivo and in vitro toxic effects of MPs/NPs on aquatic organisms, particularly fish, in relation to particulate toxicity aspects (such as particle transport mechanisms and structural modifications). Meanwhile, from the perspectives of the food chain and environmental factors, it emphasizes the comprehensive threats of MPs/NPs to human health in terms of both direct and indirect toxicity. Additionally, future research needs and strategies are discussed to aid in mitigating the potential risks of particulate plastics as carriers of toxic trace elements to human health.
Collapse
Affiliation(s)
- Yanan Xu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Cunlong Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Fengshang Duan
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Le Sun
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
4
|
Li C, Cui J, Lu X, Shi M, Xu J, Yu W. Function of DNA methylation in fruits: A review. Int J Biol Macromol 2024; 282:137086. [PMID: 39500431 DOI: 10.1016/j.ijbiomac.2024.137086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/09/2024] [Accepted: 10/29/2024] [Indexed: 11/14/2024]
Abstract
Advances in the detection and mapping of DNA methylation redefine our understanding of the modifications as epigenetic regulation. In plants, the most prevalent DNA methylation plays crucial and dynamic roles in a wide variety of processes, such as stress responses, seedlings growth, fruit ripening and so on. Here, we discuss firstly the changes of DNA methylation (CG, CHG, and CHH) dynamic in plants. Second, we review the latest research progress on DNA methylation in the pigment accumulation of fruits including apple, grape, pear, kiwifruit, sweet orange, peach, cucumber, and tomato. Thirdly, the roles of DNA methylation in fruit development and ripening also are summarized. Moreover, DNA methylation is also associates with disease resistance, and flavor and nutritional quality in fruits. Lastly, we also provide some perspectives on future research of the unknown DNA methylation in fruits.
Collapse
Affiliation(s)
- Changxia Li
- College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Jing Cui
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xuefang Lu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Meimei Shi
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Junrong Xu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Li Y, Ye Y, Zhu X, Li S, Rihan N, Yao Z, Sun Z, Gao P, Zhao Y, Lai Q. Polystyrene nanoplastics induce apoptosis, histopathological damage, and glutathione metabolism disorder in the intestine of juvenile East Asian river prawns (Macrobrachium nipponense). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176718. [PMID: 39366565 DOI: 10.1016/j.scitotenv.2024.176718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
Abstract
Nanoplastics (NPs) are widely distributed in the aquatic environment and have become a global concern as a new type of pollutant. Many researchers have studied the physiological effects of NPs on aquatic organisms, but relatively little is known about their effects on intestinal immune function in crustaceans. Therefore, we used NPs concentrations of 0, 5, 10, 20, 40 mg/L for 28 days of stress, evaluated the effects of NPs exposure on intestinal cell apoptosis, histopathological damage, and glutathione (GSH) metabolism of juvenile East Asian river prawns (Macrobrachium nipponense). As NPs concentration increased, the contents of total GSH and oxidized glutathione decreased gradually (P < 0.05), the concentration of GSH first increased and then decreased (P < 0.05), and the activities of lysozyme, acid phosphatase, phenoloxidase, and alkaline phosphatase first increased and then decreased (P < 0.05). Additionally, intestinal tissue structure was damaged, and the apoptosis rate significantly increased (P < 0.05). The expression of intestinal autophagy genes (CTL, ALF, Crustin, ATG8, and BCL-2) increased at first and then decreased, the expression levels of TNF and Wnt4 significantly decreased, and the expression of Beclin significantly increased with increasing NPs concentration. We also found that AP-1 and PTEN were highly expressed in the hepatopancreas and were involved in intestinal immune responses. Our results showed that exposure to NPs may induce apoptosis of intestinal tissue cells, induce autophagy, and inhibit GSH metabolism, thereby reducing intestinal immune function of M. nipponense. These findings provide a reference for healthy aquaculture and ecological risk assessment of prawns.
Collapse
Affiliation(s)
- Yiming Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xiaoyi Zhu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Siwen Li
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Na Rihan
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Zongli Yao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Zhen Sun
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Pengcheng Gao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Qifang Lai
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China.
| |
Collapse
|
6
|
Khandelwal D, Rana I, Mishra V, Ranjan KR, Singh P. Unveiling the impact of dyes on aquatic ecosystems through zebrafish - A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 261:119684. [PMID: 39067802 DOI: 10.1016/j.envres.2024.119684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Dye industry plays an essential role in industrial development, contributing significantly to economic growth and progress. However, its rapid expansion has led to significant environmental concerns, especially water pollution and ecosystem degradation due to the discharge of untreated or inadequately treated dye effluents. The effluents introduce various harmful chemicals altering water quality, depleting oxygen levels, harming aquatic organisms, and disrupting food chains. Dye contamination can also persist in the environment for extended periods, leading to long-term ecological damage and threatening biodiversity. Therefore, the complex effects of dye pollutants on aquatic ecosystems have been comprehensively studied. Recently, zebrafish (Danio rerio) has proved to be an effective biomedical model for this study due to its transparent embryos allowing real-time observation of developmental processes and genetic proximity (approx. 87%) to humans for studying diverse biological responses. This review highlights the various toxicological effects of industrial dyes, including cardiovascular toxicity, neurotoxicity, genotoxicity, hepatotoxicity, and developmental toxicity. These effects have been observed at different developmental stages and dye concentrations in zebrafish. The review underscores that the structure, stability and chemical composition of dyes significantly influence toxicological impact, emphasizing the need for detailed investigation into dye degradation to better understand and mitigate the environmental and health risks posed by dye pollutants.
Collapse
Affiliation(s)
- Drishti Khandelwal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, India; Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Ishika Rana
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, India
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, India.
| | - Kumar Rakesh Ranjan
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, India.
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.
| |
Collapse
|
7
|
Liang J, Ji F, Abdullah ALB, Qin W, Zhu T, Tay YJ, Li Y, Han M. Micro/nano-plastics impacts in cardiovascular systems across species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173770. [PMID: 38851343 DOI: 10.1016/j.scitotenv.2024.173770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
The widespread presence of microplastics and nanoplastics (MPs/NPs) in the environment has become a critical public health issue due to their potential to infiltrate and affect various biological systems. Our review is crucial as it consolidates current data and provides a comprehensive analysis of the cardiovascular impacts of MPs/NPs across species, highlighting significant implications for human health. By synthesizing findings from studies on aquatic and terrestrial organisms, including humans, this review offers insights into the ubiquity of MPs/NPs and their pathophysiological roles in cardiovascular systems. We demonstrated that exposure to MPs/NPs is linked to various cardiovascular ailments such as thrombogenesis, vascular damage, and cardiac impairments in model organisms, which likely extrapolate to humans. Our review critically evaluated methods for detecting MPs/NPs in biological tissues, assessing their toxicity, and understanding their behaviour within the vasculature. These findings emphasise the urgent need for targeted public health strategies and enhanced regulatory measures to mitigate the impacts of MP/NP pollution. Furthermore, the review underlined the necessity of advancing research methodologies to explore long-term effects and potential intergenerational consequences of MP/NP exposure. By mapping out the intricate links between environmental exposure and cardiovascular risks, our work served as a pivotal reference for future research and policymaking aimed at curbing the burgeoning threat of plastic pollution.
Collapse
Affiliation(s)
- Ji Liang
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Feng Ji
- Department of Clinical Science and Research, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | | | - Wei Qin
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Tian Zhu
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Yi Juin Tay
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| | - Mingming Han
- University Sains Malaysia, Minden, Penang 11800, Malaysia.
| |
Collapse
|
8
|
Pei J, Chen S, Li L, Wang K, Pang A, Niu M, Peng X, Li N, Wu H, Nie P. Impact of polystyrene nanoplastics on apoptosis and inflammation in zebrafish larvae: Insights from reactive oxygen species perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174737. [PMID: 39004365 DOI: 10.1016/j.scitotenv.2024.174737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
In recent years, there has been a growing focus on the toxicity and mortality induced by nanoplastics (NPs) in aquatic organisms. However, studies investigating mechanisms underlying oxidative stress (OS), apoptosis, and inflammation induced by NPs in fish remain limited. This study observed that polystyrene NPs (PS-NPs) were accumulated into zebrafish larvae and zebrafish embryonic fibroblast (ZF4 cells), accompanied by the occurrence of pathological damage both at the cellular and tissue-organ level. Additionally, the transcriptional up-regulation of NADPH oxidases (NOXs) and subsequent excessive generation of reactive oxygen species (ROS) resulted in notable changes in the relative mRNA and protein expression levels associated with antioxidant oxidase systems in larvae. Furthermore, the study identified the impact of NPs on mitochondrial ultrastructural, resulting in mitochondrial depolarization and downregulation of mRNA expression related to the electron transport chain due to excessive ROS generation. Short-term exposure to NPs also triggered apoptosis and inflammation in zebrafish larvae, evident from significant up-regulation in mRNA expressions of proapoptotic factors and NF-κB proinflammatory signaling pathway, as well as increased transcription and protein levels of pro-inflammatory factors in larvae. Inhibition of intracellular excessive ROS effectively reduced the induction of apoptosis, NF-κB P65 nuclear migration levels, and cytokine secretion, underscoring OS as a pivotal factor throughout the process of apoptosis and inflammatory responses induced by NPs. This research significantly advances our comprehension of biological effects and underlying mechanisms of NPs in freshwater fish.
Collapse
Affiliation(s)
- Jincheng Pei
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei Province 430074, China
| | - Shannan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Kailun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Anning Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Mengmeng Niu
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Xueyun Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Hongjuan Wu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei Province 430074, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
| |
Collapse
|
9
|
Li Y, Ye Y, Yuan H, Li S, Rihan N, Liu X, Zhao Y, Che X. Dietary lipid supplementation alleviated the impacts of polystyrene nanoplastic exposure in Litopenaeus vannamei. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106974. [PMID: 38815344 DOI: 10.1016/j.aquatox.2024.106974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
The widespread occurrence of nanoplastic (NP) pollution in the environment is a growing concern, and its presence poses a potential threat to cultured aquatic animals. Previously, we found that NPs can significantly affect the lipid metabolism of shrimp. However, relevant reports about the effects of increasing dietary lipid levels on NP toxicity are lacking. Therefore, we explored the effects of dietary supplementation with different lipid levels on the growth and lipid metabolism of Pacific white shrimp (Litopenaeus vannamei). We cultured L. vannamei at three dietary lipid levels (3 %, 6 %, and 9 %) and three NP concentrations (0, 1, and 3 mg/L) for 2 months. We evaluated the effects of lipid levels on growth indexes, hepatopancreas morphological structure, lipid metabolism-related enzyme activity, and gene expression of the shrimp. The results showed that as lipid intake increased, the survival rate, body weight growth rate, and hepatosomatic ratio of the shrimp increased while the feed conversion rate decreased. Additionally, the crude protein and crude lipid contents increased, whereas the moisture and ash contents did not change much. We found that the morphological structure of the hepatopancreas was seriously damaged in the 3 mg/L NPs and 3 % dietary lipid group. Finally, lipid metabolism-related enzyme activities and gene expression levels increased with increased dietary lipid levels. Together, these results suggest that increasing dietary lipid content can improve shrimp growth and alleviate lipid metabolism disorders caused by NPs. This study is the first to show that nutrition regulation can alleviate the toxicity of NPs, and it provides a theoretical basis for the green and healthy culture of L. vannamei.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Haojuan Yuan
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Siwen Li
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Na Rihan
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
10
|
Kim MS, Lee YH, Lee Y, Jeong H, Wang M, Wang DZ, Lee JS. Multigenerational effects of elevated temperature on host-microbiota interactions in the marine water flea Diaphanosoma celebensis exposed to micro- and nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:132877. [PMID: 38016313 DOI: 10.1016/j.jhazmat.2023.132877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
Rising ocean temperatures are driving unprecedented changes in global marine ecosystems. Meanwhile, there is growing concern about microplastic and nanoplastic (MNP) contamination, which can endanger marine organisms. Increasing ocean warming (OW) and plastic pollution inevitably cause marine organisms to interact with MNPs, but relevant studies remain sparse. Here, we investigated the interplay between ocean warming and MNP in the marine water flea Diaphanosoma celebensis. We found that combined exposure to MNPs and OW induced reproductive failure in the F2 generation. In particular, the combined effects of OW and MNPs on the F2 generation were associated with key genes related to reproduction and stress response. Moreover, populations of predatory bacteria were significantly larger under OW and MNP conditions during F2 generations, suggesting a potential link between altered microbiota and host fitness. These results were supported by a host transcriptome and microbiota interaction analysis. This research sheds light on the complex interplay between environmental stressors, their multigenerational effects on marine organisms, and the function of the microbiome.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Minghua Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
11
|
Sanpradit P, Byeon E, Lee JS, Jeong H, Kim HS, Peerakietkhajorn S, Lee JS. Combined effects of nanoplastics and elevated temperature in the freshwater water flea Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133325. [PMID: 38154181 DOI: 10.1016/j.jhazmat.2023.133325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Global warming and nanoplastics (NPs) are critical global issues. Among NPs, one of the most hazardous types of plastics, polystyrene (PS), poses ecotoxicological threats to several freshwater organisms. The degree of toxicity of PS-NPs is strongly influenced by various environmental factors. This study illustrates the combined effects of temperature and PS-NPs on the water flea Daphnia magna. The sensitivity of D. magna to PS-NPs was tested under control (23 °C) and elevated temperatures (28 °C). As a result, increased temperatures influenced the uptake and accumulation of PS-NPs. Co-exposure to both higher temperatures and PS-NPs resulted in a drastic decrease in reproductive performance. The level of oxidative stress was found to have increased in a temperature-dependent manner. Oxidative stress was stimulated by both stressors, leading to increased levels of reactive oxygen species and antioxidant enzyme activity supported by upregulation of antioxidant enzyme-related genes under combined PS-NPs exposure and elevated temperature. In the imbalanced status of intracellular redox, activation of the p38 mitogen-activated protein kinase signaling pathway was induced by exposure to PS-NPs at high temperatures, which supported the decline of the reproductive capacity of D. magna. Therefore, our results suggest that PS-NPs exposure along with an increase in temperature significantly affects physiological processes triggered by damage from oxidative stress, leading to severely inhibited reproduction of D. magna.
Collapse
Affiliation(s)
- Paweena Sanpradit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Saranya Peerakietkhajorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
12
|
Liu L, Du RY, Jia RL, Wang JX, Chen CZ, Li P, Kong LM, Li ZH. Micro(nano)plastics in marine medaka: Entry pathways and cardiotoxicity with triphenyltin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123079. [PMID: 38061435 DOI: 10.1016/j.envpol.2023.123079] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
The simultaneous presence of micro(nano)plastics (MNPs) and pollutants represents a prevalent environmental challenge that necessitates understanding their combined impact on toxicity. This study examined the distribution of 5 μm (PS-MP5) and 50 nm (PS-NP50) polystyrene plastic particles during the early developmental stages of marine medaka (Oryzias melastigma) and assessed their combined toxicity with triphenyltin (TPT). Results showed that 2 mg/L PS-MP5 and PS-NP50 could adhere to the embryo surface. PS-NP50 can passively enter the larvae and accumulate predominantly in the intestine and head, while PS-MP5 cannot. Nonetheless, both types can be actively ingested by the larvae and distributed in the intestine. 2 mg/L PS-MNPs enhance the acute toxicity of TPT. Interestingly, high concentrations of PS-NP50 (20 mg/L) diminish the acute toxicity of TPT due to their sedimentation properties and interactions with TPT. 200 μg/L PS-MNPs and 200 ng/L TPT affect complement and coagulation cascade pathways and cardiac development of medaka larvae. PS-MNPs exacerbate TPT-induced cardiotoxicity, with PS-NP50 exhibiting stronger effects than PS-MP5, which may be related to the higher adsorption capacity of NPs to TPT and their ability to enter the embryos before hatching. This study elucidates the distribution of MNPs during the early developmental stages of marine medaka and their effects on TPT toxicity, offering a theoretical foundation for the ecological risk assessment of MNPs.
Collapse
Affiliation(s)
- Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ren-Yan Du
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ruo-Lan Jia
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jin-Xin Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Cheng-Zhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling-Ming Kong
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|