1
|
Na M, Zhang C, Xu S, Li X, Zhou S, Zhou J. Melatonin application enhances the remediation of cadmium-contaminated soils by Cinnamomum camphora. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178912. [PMID: 39978061 DOI: 10.1016/j.scitotenv.2025.178912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/10/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Cinnamomum camphora (C. camphora) is a tolerant plant with high potential for cadmium (Cd) uptake and resistance. However, it is still unclear how melatonin application regulates Cd absorption and detoxification in C. camphora, and whether the soil quality is improved after remediation. In this study, melatonin was applied at the concentration of 20 mg·kg-1 soil to the Cd-contaminated soil planted with C. camphora. We aimed to investigate the effect of exogenous melatonin on Cd phytoextraction and detoxification in C. camphora by assessing physiological and biochemical responses. We found that melatonin application improved Cd content in C. camphora (p < 0.05), with a pronounced increase by 150 % in both stem phloem and leaves. Under Cd stress, melatonin application resulted in a Cd bioconcentration factor that was over 2-times higher, and Cd translocation factors from root to stem and from stem to vein which were increased to the level of 1.0. Exogenous melatonin also enhanced plant growth and photosynthesis under the 180-day Cd stress. In addition, melatonin promoted C. camphora to modify its antioxidant defense systems in response to various temporal stages of Cd stress. At the early stage, melatonin decreased malondialdehyde by >20 % and increased both proline and glutathione reduction by over 30 %. At the late stage, melatonin increased glutathione and soluble sugar by 46.0 % and 10.7 %, respectively. Peroxidase activity was stimulated by melatonin throughout the growth period (p < 0.05). In the remediated soil, melatonin application decreased soil respiration by 12.5 % and inhabited activities of urease, catalase, and dehydrogenase, indicating improved soil quality. Overall, our findings suggest that melatonin application can enhance Cd phytoextraction and detoxification in C. camphora from contaminated soils, providing new insights into applicable strategies for Cd phytoremediation.
Collapse
Affiliation(s)
- Meng Na
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Chenyang Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Shangqi Xu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Xiaoping Li
- Collaborative Innovation Center of Southern Modern Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Shoubiao Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jihai Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Southern Modern Forestry, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Menhas S, Chen M, Jin H, Xu J, Zhu S, Lin D. Plant growth stage and melatonin concentration dependency together drive the metal-nutrient dynamics of rice in paddy soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025:1-14. [PMID: 39907292 DOI: 10.1080/15226514.2025.2460504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Foliar application of melatonin shows promise in alleviating oxidative stress in rice, though its influence on metal-nutrient dynamics remains unclear. This study investigated the optimal dosage, timing, and concentration of melatonin for regulating elemental uptake, maintaining redox homeostasis, and managing nutrient dynamics in rice cultivated in cadmium (Cd) and selenium (Se)-enriched soils. Melatonin (50, 200 µM) was applied at vegetative stages: jointing (J) and tillering (T). At the J stage, melatonin improved biomass and photosynthetic pigments but inadequately regulated metal-nutrient dynamics due to incomplete redox homeostasis. However, applying 200 µM melatonin during the T stage significantly (p < 0.05) enhanced Se and iron (Fe) root uptake by 48% and 11%, respectively, while also improving shoot translocation. Notably, M200 reduced chromium (Cr) translocation to shoots by 82% (p < 0.05), thereby increasing root retention capacity. Additionally, 50 µM melatonin reduced root Cd uptake by 54% and increased its translocation to shoots by 53% (p < 0.05), alleviating root toxicity and enhancing the detoxification response in aerial tissues. Melatonin application reduced oxidative stress markers, increased proline levels, and enhanced antioxidative enzyme activities, with M200 at the T stage showing pronounced effects. This strategy represents a promising technological approach for managing elemental homeostasis in rice cultivation.
Collapse
Affiliation(s)
- Saiqa Menhas
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, China
- Zhejiang Ecological Civilization Academy, Anji, China
| | - Minjie Chen
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, China
| | - Hui Jin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, China
| | - Saiyong Zhu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, China
- Zhejiang Ecological Civilization Academy, Anji, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, China
- Zhejiang Ecological Civilization Academy, Anji, China
| |
Collapse
|
3
|
Feng T, Meng Z, Li H, Chen G, Liu C, Tang K, Chen J. Industrial hemp (Cannabis sativa L.) adapts to cadmium stress by reshaping rhizosphere fungal community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177851. [PMID: 39631339 DOI: 10.1016/j.scitotenv.2024.177851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Increasing evidence indicates that plants under environmental stress can actively seek the help of microbes ('cry-for-help' hypothesis). However, empirical evidence underlying this strategy is limited under metal-stress conditions. Here, we employed integrated microbial community profiling in cadmium (Cd) polluted soil and culture-based methods to investigate the three-way interactions between the industrial hemp (Cannabis Sativa L.), rhizospheric microbes, and Cd stress. Results from the pot and three cycles of the successful hemp planting experiments showed that Cd stress significantly affected the composition of rhizosphere fungi in industrial hemp and induced enrichment of the fungal operational taxonomic unit (OTU)3 (Cladosporium). A representative of OTU3 (strain DM-2) was successfully isolated. In a hydroponic experiment, inoculation of DM-2 significantly increased the shoot length (by 25.84 %) and fresh weight (by 92.66 %) of hemp seedlings when compared to the absence of DM-2 under the Cd stress. The findings indicate that DM-2 inoculation could effectively alleviate the Cd stress in hemp seedlings. Metabolomic analysis of spent media with or without DM-2 revealed the association of DM-2 with the transformation of root exudates to melatonin, which may be a key chemical in plant-microbe interactions against abiotic stresses. The findings will inform efforts to manipulate the root microbiome to enhance plant growth in polluted environments.
Collapse
Affiliation(s)
- Tingting Feng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhuang Meng
- School of Agriculture, Yunnan University, Kunming 650091, China
| | - Huifen Li
- Zhonglan lianhai Design and Research Institute Co. LTD, 222000, Jiangsu, China
| | - Guohui Chen
- School of Agriculture, Yunnan University, Kunming 650091, China
| | - Chang'e Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Kailei Tang
- School of Agriculture, Yunnan University, Kunming 650091, China.
| | - Jinquan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
4
|
Kou B, Huo L, Cao M, Hui K, Tan W, Yuan Y, Jiang Y. New insights into the stages of cadmium remediation in ryegrass enhanced by kitchen compost-derived dissolved organic matter: Activation, absorption, and storage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177138. [PMID: 39490827 DOI: 10.1016/j.scitotenv.2024.177138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/05/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Dissolved organic matter (DOM) regulates plant behavior in both agricultural and environmental fields. However, the regulatory mechanisms by which DOM influences soil-plant system interactions during the phytoremediation of Cd-contaminated soils remain unclear. Therefore, this study investigated the enhanced effect of kitchen compost-derived DOM on the Cd remediation capability of ryegrass across three phases of phytoremediation. The main pathways and mechanisms of DOM-assisted phytoremediation were identified through the analysis of changes in soil microbial communities and metabolism functions. The results revealed that DOM increased the bioavailability of soil Cd and significantly enhanced the Cd enrichment capacity of ryegrass, regardless of the application rate. The application of 20 % DOM to soil with a 20 mg/kg Cd content increased the bioconcentration factors of ryegrass roots and shoots by up to 38.19 and 11.08 times, respectively, compared with the control group. The direct or indirect optimizing effects of DOM on Cd fraction transformation, microbial communities, and their metabolism functions significantly enhanced the Cd enrichment capacity of ryegrass. Notably, DOM exhibited dual effects on ryegrass growth, mainly influenced by changes in soil physicochemical properties, optimization of microbial communities, and alterations in nitrogen metabolic functions. Additionally, the Cd reserves in ryegrass, which serve as a vital indicator of phytoremediation, exhibited a positive response to DOM. This study provides insights into the various reinforcing roles of kitchen compost-derived DOM in Cd-contaminated soil phytoremediation. These findings support the development of effective agronomic strategies for precise Cd regulation.
Collapse
Affiliation(s)
- Bing Kou
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Lin Huo
- Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Minyi Cao
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
5
|
Tong F, Xu L, Zhang Y, Wu D, Hu F. Earthworm mucus contributes significantly to the accumulation of soil cadmium in tomato seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176169. [PMID: 39260500 DOI: 10.1016/j.scitotenv.2024.176169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/31/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Whether earthworm mucus affects Cd transport behavior in soil-plant systems remains uncertain. Consequently, this study thoroughly assessed the impacts of earthworm mucus on plant growth and physiological responses, plant Cd accumulation, translocation, and distribution, as well as soil characteristics and Cd fractionation in a soil-plant (tomato seedling) system. Results demonstrated that the earthworm inoculation considerably enhanced plant Cd uptake and decreased plant Cd translocation, the effects of which were appreciably less significant than those of the earthworm mucus. This suggested that earthworm mucus may play a crucial role in the way earthworms influence plant Cd uptake and translocation. Moreover, the artificial mucus, which contained identical inorganic nitrogen contents to those in earthworm mucus, had no significant effect on plant Cd accumulation or translocation, implying that components other than inorganic nitrogen in the earthworm mucus may have contributed significantly to the overall effects of the mucus. Compared with the control, the earthworm mucus most substantially increased the root Cd content, the Cd accumulation amount of root and whole plant, and root Cd BCF by 93.7 %, 221.3 %, 72.2 %, and 93.7 %, respectively, while notably reducing the Cd TF by 48.2 %, which may be ascribed to the earthworm mucus's significant impacts on tomato seedling growth and physiological indicators, its considerable influences on the subcellular components and chemical species of root Cd, and its substantial effects on the soil characteristics and soil Cd fractionation, as revealed by correlation analysis. Redundancy analysis further suggested that the most prominent impacts of earthworm mucus may have been due to its considerable reduction of soil pH, improvement of soil DOC content, and enhancement of the exchangeable Cd fraction in soil. This work may help better understand how earthworm mucus influences the transport behavior of metals in soil-plant systems.
Collapse
Affiliation(s)
- Fei Tong
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs/National Agricultural Experimental Station for Agricultural Environment, Luhe, Nanjing 210014, China
| | - Li Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Di Wu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Menhas S, Hayat K, Lin D, Shahid M, Bundschuh J, Zhu S, Hayat S, Liu W. Citric acid-driven cadmium uptake and growth promotion mechanisms in Brassica napus. CHEMOSPHERE 2024; 368:143716. [PMID: 39515533 DOI: 10.1016/j.chemosphere.2024.143716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Citric acid (CA) is well-known for mitigating cadmium (Cd) toxicity in plants. Yet, the underlying mechanisms driving growth promotion, Cd detoxification/tolerance, and enhanced phytoremediation processes remain incompletely understood. This study investigated the effects of CA application (2.5 mM) on Brassica napus grown in Cd-contaminated (30 mg kg-1) growth medium through a controlled pot experiment. Cd exposure alone significantly impaired various plant physiological parameters in B. napus. Whereas CA application significantly (p < 0.05) enhanced physiological attributes, Cd detoxification and tolerance by modulating key genes involved in photosynthesis and Cd transport, including the metal-transporting P1B-type ATPases (Cd/zinc heavy metal-transporting ATPase 1; HMA1) and light-harvesting chlorophyll a/b-binding 3 (LHCB3). Notably, CA application increased Cd accumulation in stems and leaves by 4% and 35%, respectively, enhancing bioconcentration factors (BCF) by 12% in stems and 40% in leaves while reducing root BCF by 10%. This translocation was facilitated by the upregulation of HMA4, HMA2, and plant Cd resistance (PCR2) genes in plant leaves, improving Cd mobility within the plant. Furthermore, CA induced a 34% increase in phytochelatins and a 32% upregulation in metallothioneins, accompanied by a significant reduction in oxidative stress markers, including a 40% decrease in hydrogen peroxide and a 44% decline in malondialdehyde levels in leaves. Enhanced antioxidant enzyme activity and osmolyte accumulation further contributed to improved Cd detoxification/sequestration in leaves, reduced oxidative stress, and improved photosynthetic efficiency, resulting in enhanced plant biomass production and Cd tolerance. Transcriptomic analysis showed that CA treatment substantially influenced the expression of 12,291 differentially expressed genes (DEGs), with 750 common genes consistently downregulated in CK vs Cd treatment group but upregulated in Cd vs Cd-CA treatment group. Additionally, CA modulated 11 DEGs associated with 32 gene ontologies in the citrate pathway under Cd stress, highlighting its targeted regulatory effect on metabolic pathways involved in Cd stress response. This study offers novel insights into the synergistic role of CA in promoting plant growth and regulating Cd uptake in B. napus, highlighting its potential to enhance phytoremediation strategies.
Collapse
Affiliation(s)
- Saiqa Menhas
- Zhejiang Ecological Civilization Academy, Anji, 313300, PR China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Kashif Hayat
- ZJP Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, PR China.
| | - Daohui Lin
- Zhejiang Ecological Civilization Academy, Anji, 313300, PR China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, 61100, Pakistan
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, 4350, Toowoomba, Queensland, Australia; Groundwater Arsenic Within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, 4350, Toowoomba, Queensland, Australia
| | - Saiyong Zhu
- Zhejiang Ecological Civilization Academy, Anji, 313300, PR China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, PR China.
| | - Sikandar Hayat
- College of Medicine, Xian International University, Xian, 710000, Shaanxi, PR China
| | - Weiping Liu
- ZJP Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, PR China
| |
Collapse
|
7
|
Qin XL, Zhao YQ, Zhang DJ, Wang KY, Chen WH, Tang ZZ, Chen YE, Yuan S, Ye L, Yuan M. Three species of rape responded to cadmium and melatonin alleviating Cd-toxicity in species-specific strategy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124178. [PMID: 38763294 DOI: 10.1016/j.envpol.2024.124178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Cadmium (Cd) pollution has been a significant concern in heavy metal pollution, prompting plants to adopt various strategies to mitigate its damage. While the response of plants to Cd stress and the impact of exogenous melatonin has received considerable attention, there has been limited focus on the responses of closely related species to these factors. Consequently, our investigation aimed to explore the response of three different species of rape to Cd stress and examine the influence of exogenous melatonin in this scenario. The research findings revealed distinctive responses among the investigated rape species. B. campestris showed the resistance to Cd and exhibited lower Cd absorption and sustained its physiological activity under Cd stress. In contrast, B. juncea accumulated much Cd and increased the amount of anthocyanin to mitigate the Cd-damage. Furthermore, B. napus showed the tolerance to Cd and tended to accumulate Cd in vacuoles under Cd stress, thereby decreasing the Cd damage and leading to higher activity of antioxidant enzymes and photosynthesis. Moreover, the application of exogenous melatonin significantly elevated the melatonin level in plants and mitigated Cd toxicity by promoting the activity of antioxidant enzymes, reducing Cd absorption, enhancing the chelating capacity with Cd, decreasing Cd accumulation in organelles, and reducing its fluidity. Specifically, exogenous melatonin increased the FHAc content in B. campestris, elevated the phytochelatins (PCs) level in B. napus, and stimulated photosynthesis in B. juncea. In summary, the findings underscore the species-specific responses of the three species of rape to both Cd stress and exogenous melatonin, highlighting the potential for tailored mitigation strategies based on the unique characteristics of each species.
Collapse
Affiliation(s)
- Xiao-Long Qin
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Yu-Qing Zhao
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - De-Jun Zhang
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Ke-Yu Wang
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Wen-Hui Chen
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Zi-Zhong Tang
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, 611130, Chengdu, China
| | - Lin Ye
- College of Animal Science and Technology, Sichuan Agricultural University, 611100, Chengdu, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130, Chengdu, China.
| |
Collapse
|
8
|
Qu T, Ma Y, Yun M, Zhao C. Transcriptome Analysis Revealed the Possible Reasons for the Change of Ni Resistance in Rhus typhina after Spraying Melatonin. PLANTS (BASEL, SWITZERLAND) 2024; 13:1287. [PMID: 38794358 PMCID: PMC11126081 DOI: 10.3390/plants13101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
Melatonin (MT) plays an important role in alleviating the stress of soil heavy metal pollution on plants. However, its ability to improve the tolerance of Rhus typhina to Ni stress and its mechanism of action are still unclear. Therefore, MT (0, 50, 100, and 200 μmol·L-1) was sprayed on the leaf surface of R. typhina seedlings under Ni (0 and 250 mg·kg-1) stress to study the differences in growth, physiology, and gene expression. The results showed that exogenous MT could improve the ability of R. typhina to resist Ni stress by inhibiting the degradation of chlorophyll and carotenoid, enhancing photosynthesis, and augmenting the activity of antioxidant enzymes. Moreover, 100 μmol·L-1 MT could increase the Ni concentration in R. typhina seedlings and reduce the translocation factor. Transcriptome analysis showed that MT mainly regulated the expression of related genes in plant hormone signal transduction, starch and sucrose metabolism, and various amino acid metabolism pathways. This study combined physiological and transcriptomic analysis to reveal the molecular mechanism of MT enhancing Ni resistance in R. typhina, and provides a new direction for expanding its application in phytoremediation.
Collapse
Affiliation(s)
| | | | | | - Chunli Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China; (T.Q.); (Y.M.); (M.Y.)
| |
Collapse
|
9
|
Qiu CW, Richmond M, Ma Y, Zhang S, Liu W, Feng X, Ahmed IM, Wu F. Melatonin enhances cadmium tolerance in rice via long non-coding RNA-mediated modulation of cell wall and photosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133251. [PMID: 38141306 DOI: 10.1016/j.jhazmat.2023.133251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
In plants, melatonin (MLT) is a versatile signaling molecule involved in promoting plant development and mitigating the damage caused by heavy metal exposure. Long non-coding RNAs (lncRNAs) are essential components in the plant's response to various abiotic stress, functioning within the gene regulatory network. Here, a hydroponic experiment was performed to explore the involvement of lncRNAs in MLT-mediated amelioration of cadmium (Cd) toxicity in rice plants. The results demonstrated that applying 250 mg L-1 MLT in a solution containing 10 μM Cd leads to an effective reduction of 30.0% in shoot Cd concentration. Remarkably, the treatment resulted in a 21.2% improvement in potassium and calcium uptake, a 164.5% enhancement in net photosynthetic rate, and a 33.2% decrease in malondialdehyde accumulation, resulting increases in plant height, root length, and biomass accumulation. Moreover, a transcriptome analysis revealed 2510 differentially expressed transcripts, including the Cd transporters (-3.82-fold downregulated) and the Cd tolerance-associated genes (1.24-fold upregulated). Notably, regulatory network prediction uncovered 6 differentially expressed lncRNAs that act as competitive endogenous RNA or in RNA complex interactions. These key lncRNAs regulate the expression of target genes that are involved in pectin and cellulose metabolism, scavenging of reactive oxygen species, salicylic acid-mediated defense response, and biosynthesis of brassinosteroids, which ultimately modify the cell wall for Cd adsorption, safeguard photosynthesis, and control hormone signaling to reduce Cd toxicity. Our results unveiled a crucial lncRNA-mediated mechanism underlying MLT's role in Cd detoxification in rice plants, providing potential applications in agricultural practices and environmental remediation.
Collapse
Affiliation(s)
- Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Marvin Richmond
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yue Ma
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Shuo Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Xue Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Imrul Mosaddek Ahmed
- Plant Biotechnology Laboratory, Center for Viticulture & Small Fruit Research, Florida A&M University, FL 32317, USA
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Zhang H, Li Y, Li R, Wu W, Abdelrahman H, Wang J, Al-Solaimani SG, Antoniadis V, Rinklebe J, Lee SS, Shaheen SM, Zhang Z. Mitigation of the mobilization and accumulation of toxic metal(loid)s in ryegrass using sodium sulfide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168387. [PMID: 37952661 DOI: 10.1016/j.scitotenv.2023.168387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Remediation of soils contaminated with toxic metal(loid)s (TMs) and mitigation of the associated ecological and human health risks are of great concern. Sodium sulfide (Na2S) can be used as an amendment for the immobilization of TMs in contaminated soils; however, the effects of Na2S on the leachability, bioavailability, and uptake of TMs in highly-contaminated soils under field conditions have not been investigated yet. This is the first field-scale research study investigating the effect of Na2S application on soils with Hg, Pb and Cu contents 70-to-7000-fold higher than background values and also polluted with As, Cd, Ni, and Zn. An ex situ remediation project including soil replacement, immobilization with Na2S, and safe landfilling was conducted at Daiziying and Anle (China) with soils contaminated with As, Cd, Cu, Hg, Ni, Pb and Zn. Notably, Na2S application significantly lowered the sulfuric-nitric acid leachable TMs below the limits defined by Chinese regulations. There was also a significant reduction in the DTPA-extractable TMs in the two studied sites up to 85.9 % for Hg, 71.4 % for Cu, 71.9 % for Pb, 48.1 % for Cd, 37.1 % for Zn, 34.3 % for Ni, and 15.7 % for As compared to the untreated controls. Moreover, Na2S treatment decreased the shoot TM contents in the last harvest to levels lower than the TM regulation limits concerning fodder crops, and decreased the TM root-to-shoot translocation, compared to the untreated control sites. We conclude that Na2S has great potential to remediate soils heavily tainted with TMs and mitigate the associated ecological and human health risks.
Collapse
Affiliation(s)
- Han Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - You Li
- Key laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Weilong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, PR China
| | - Samir G Al-Solaimani
- King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, 21589 Jeddah, Saudi Arabia
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Sabry M Shaheen
- King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
11
|
Wu Y, Liu J, Wu H, Zhu Y, Ahmad I, Zhou G. The Roles of Mepiquate Chloride and Melatonin in the Morpho-Physiological Activity of Cotton under Abiotic Stress. Int J Mol Sci 2023; 25:235. [PMID: 38203405 PMCID: PMC10778694 DOI: 10.3390/ijms25010235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Cotton growth and yield are severely affected by abiotic stress worldwide. Mepiquate chloride (MC) and melatonin (MT) enhance crop growth and yield by reducing the negative effects of abiotic stress on various crops. Numerous studies have shown the pivotal role of MC and MT in regulating agricultural growth and yield. Nevertheless, an in-depth review of the prominent performance of these two hormones in controlling plant morpho-physiological activity and yield in cotton under abiotic stress still needs to be documented. This review highlights the effects of MC and MT on cotton morpho-physiological and biochemical activities; their biosynthetic, signaling, and transduction pathways; and yield under abiotic stress. Furthermore, we also describe some genes whose expressions are affected by these hormones when cotton plants are exposed to abiotic stress. The present review demonstrates that MC and MT alleviate the negative effects of abiotic stress in cotton and increase yield by improving its morpho-physiological and biochemical activities, such as cell enlargement; net photosynthesis activity; cytokinin contents; and the expression of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase. MT delays the expression of NCED1 and NCED2 genes involved in leaf senescence by decreasing the expression of ABA-biosynthesis genes and increasing the expression of the GhYUC5, GhGA3ox2, and GhIPT2 genes involved in indole-3-acetic acid, gibberellin, and cytokinin biosynthesis. Likewise, MC promotes lateral root formation by activating GA20x genes involved in gibberellin catabolism. Overall, MC and MT improve cotton's physiological activity and antioxidant capacity and, as a result, improve the ability of the plant to resist abiotic stress. The main purpose of this review is to present an in-depth analysis of the performance of MC and MT under abiotic stress, which might help to better understand how these two hormones regulate cotton growth and productivity.
Collapse
Affiliation(s)
- Yanqing Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.L.); (H.W.); (Y.Z.)
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Jiao Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.L.); (H.W.); (Y.Z.)
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Hao Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.L.); (H.W.); (Y.Z.)
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yiming Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.L.); (H.W.); (Y.Z.)
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Irshad Ahmad
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.L.); (H.W.); (Y.Z.)
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.L.); (H.W.); (Y.Z.)
| |
Collapse
|