1
|
Tong F, Xu L, Zhang Y, Wu D, Hu F. Earthworm mucus contributes significantly to the accumulation of soil cadmium in tomato seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176169. [PMID: 39260500 DOI: 10.1016/j.scitotenv.2024.176169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/31/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Whether earthworm mucus affects Cd transport behavior in soil-plant systems remains uncertain. Consequently, this study thoroughly assessed the impacts of earthworm mucus on plant growth and physiological responses, plant Cd accumulation, translocation, and distribution, as well as soil characteristics and Cd fractionation in a soil-plant (tomato seedling) system. Results demonstrated that the earthworm inoculation considerably enhanced plant Cd uptake and decreased plant Cd translocation, the effects of which were appreciably less significant than those of the earthworm mucus. This suggested that earthworm mucus may play a crucial role in the way earthworms influence plant Cd uptake and translocation. Moreover, the artificial mucus, which contained identical inorganic nitrogen contents to those in earthworm mucus, had no significant effect on plant Cd accumulation or translocation, implying that components other than inorganic nitrogen in the earthworm mucus may have contributed significantly to the overall effects of the mucus. Compared with the control, the earthworm mucus most substantially increased the root Cd content, the Cd accumulation amount of root and whole plant, and root Cd BCF by 93.7 %, 221.3 %, 72.2 %, and 93.7 %, respectively, while notably reducing the Cd TF by 48.2 %, which may be ascribed to the earthworm mucus's significant impacts on tomato seedling growth and physiological indicators, its considerable influences on the subcellular components and chemical species of root Cd, and its substantial effects on the soil characteristics and soil Cd fractionation, as revealed by correlation analysis. Redundancy analysis further suggested that the most prominent impacts of earthworm mucus may have been due to its considerable reduction of soil pH, improvement of soil DOC content, and enhancement of the exchangeable Cd fraction in soil. This work may help better understand how earthworm mucus influences the transport behavior of metals in soil-plant systems.
Collapse
Affiliation(s)
- Fei Tong
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs/National Agricultural Experimental Station for Agricultural Environment, Luhe, Nanjing 210014, China
| | - Li Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Di Wu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Kou B, Huo L, Cao M, Hui K, Tan W, Yuan Y, Jiang Y. New insights into the stages of cadmium remediation in ryegrass enhanced by kitchen compost-derived dissolved organic matter: Activation, absorption, and storage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177138. [PMID: 39490827 DOI: 10.1016/j.scitotenv.2024.177138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/05/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Dissolved organic matter (DOM) regulates plant behavior in both agricultural and environmental fields. However, the regulatory mechanisms by which DOM influences soil-plant system interactions during the phytoremediation of Cd-contaminated soils remain unclear. Therefore, this study investigated the enhanced effect of kitchen compost-derived DOM on the Cd remediation capability of ryegrass across three phases of phytoremediation. The main pathways and mechanisms of DOM-assisted phytoremediation were identified through the analysis of changes in soil microbial communities and metabolism functions. The results revealed that DOM increased the bioavailability of soil Cd and significantly enhanced the Cd enrichment capacity of ryegrass, regardless of the application rate. The application of 20 % DOM to soil with a 20 mg/kg Cd content increased the bioconcentration factors of ryegrass roots and shoots by up to 38.19 and 11.08 times, respectively, compared with the control group. The direct or indirect optimizing effects of DOM on Cd fraction transformation, microbial communities, and their metabolism functions significantly enhanced the Cd enrichment capacity of ryegrass. Notably, DOM exhibited dual effects on ryegrass growth, mainly influenced by changes in soil physicochemical properties, optimization of microbial communities, and alterations in nitrogen metabolic functions. Additionally, the Cd reserves in ryegrass, which serve as a vital indicator of phytoremediation, exhibited a positive response to DOM. This study provides insights into the various reinforcing roles of kitchen compost-derived DOM in Cd-contaminated soil phytoremediation. These findings support the development of effective agronomic strategies for precise Cd regulation.
Collapse
Affiliation(s)
- Bing Kou
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Lin Huo
- Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Minyi Cao
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
3
|
Qin XL, Zhao YQ, Zhang DJ, Wang KY, Chen WH, Tang ZZ, Chen YE, Yuan S, Ye L, Yuan M. Three species of rape responded to cadmium and melatonin alleviating Cd-toxicity in species-specific strategy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124178. [PMID: 38763294 DOI: 10.1016/j.envpol.2024.124178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Cadmium (Cd) pollution has been a significant concern in heavy metal pollution, prompting plants to adopt various strategies to mitigate its damage. While the response of plants to Cd stress and the impact of exogenous melatonin has received considerable attention, there has been limited focus on the responses of closely related species to these factors. Consequently, our investigation aimed to explore the response of three different species of rape to Cd stress and examine the influence of exogenous melatonin in this scenario. The research findings revealed distinctive responses among the investigated rape species. B. campestris showed the resistance to Cd and exhibited lower Cd absorption and sustained its physiological activity under Cd stress. In contrast, B. juncea accumulated much Cd and increased the amount of anthocyanin to mitigate the Cd-damage. Furthermore, B. napus showed the tolerance to Cd and tended to accumulate Cd in vacuoles under Cd stress, thereby decreasing the Cd damage and leading to higher activity of antioxidant enzymes and photosynthesis. Moreover, the application of exogenous melatonin significantly elevated the melatonin level in plants and mitigated Cd toxicity by promoting the activity of antioxidant enzymes, reducing Cd absorption, enhancing the chelating capacity with Cd, decreasing Cd accumulation in organelles, and reducing its fluidity. Specifically, exogenous melatonin increased the FHAc content in B. campestris, elevated the phytochelatins (PCs) level in B. napus, and stimulated photosynthesis in B. juncea. In summary, the findings underscore the species-specific responses of the three species of rape to both Cd stress and exogenous melatonin, highlighting the potential for tailored mitigation strategies based on the unique characteristics of each species.
Collapse
Affiliation(s)
- Xiao-Long Qin
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Yu-Qing Zhao
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - De-Jun Zhang
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Ke-Yu Wang
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Wen-Hui Chen
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Zi-Zhong Tang
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, 611130, Chengdu, China
| | - Lin Ye
- College of Animal Science and Technology, Sichuan Agricultural University, 611100, Chengdu, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130, Chengdu, China.
| |
Collapse
|
4
|
Qu T, Ma Y, Yun M, Zhao C. Transcriptome Analysis Revealed the Possible Reasons for the Change of Ni Resistance in Rhus typhina after Spraying Melatonin. PLANTS (BASEL, SWITZERLAND) 2024; 13:1287. [PMID: 38794358 PMCID: PMC11126081 DOI: 10.3390/plants13101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
Melatonin (MT) plays an important role in alleviating the stress of soil heavy metal pollution on plants. However, its ability to improve the tolerance of Rhus typhina to Ni stress and its mechanism of action are still unclear. Therefore, MT (0, 50, 100, and 200 μmol·L-1) was sprayed on the leaf surface of R. typhina seedlings under Ni (0 and 250 mg·kg-1) stress to study the differences in growth, physiology, and gene expression. The results showed that exogenous MT could improve the ability of R. typhina to resist Ni stress by inhibiting the degradation of chlorophyll and carotenoid, enhancing photosynthesis, and augmenting the activity of antioxidant enzymes. Moreover, 100 μmol·L-1 MT could increase the Ni concentration in R. typhina seedlings and reduce the translocation factor. Transcriptome analysis showed that MT mainly regulated the expression of related genes in plant hormone signal transduction, starch and sucrose metabolism, and various amino acid metabolism pathways. This study combined physiological and transcriptomic analysis to reveal the molecular mechanism of MT enhancing Ni resistance in R. typhina, and provides a new direction for expanding its application in phytoremediation.
Collapse
Affiliation(s)
| | | | | | - Chunli Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China; (T.Q.); (Y.M.); (M.Y.)
| |
Collapse
|
5
|
Qiu CW, Richmond M, Ma Y, Zhang S, Liu W, Feng X, Ahmed IM, Wu F. Melatonin enhances cadmium tolerance in rice via long non-coding RNA-mediated modulation of cell wall and photosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133251. [PMID: 38141306 DOI: 10.1016/j.jhazmat.2023.133251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
In plants, melatonin (MLT) is a versatile signaling molecule involved in promoting plant development and mitigating the damage caused by heavy metal exposure. Long non-coding RNAs (lncRNAs) are essential components in the plant's response to various abiotic stress, functioning within the gene regulatory network. Here, a hydroponic experiment was performed to explore the involvement of lncRNAs in MLT-mediated amelioration of cadmium (Cd) toxicity in rice plants. The results demonstrated that applying 250 mg L-1 MLT in a solution containing 10 μM Cd leads to an effective reduction of 30.0% in shoot Cd concentration. Remarkably, the treatment resulted in a 21.2% improvement in potassium and calcium uptake, a 164.5% enhancement in net photosynthetic rate, and a 33.2% decrease in malondialdehyde accumulation, resulting increases in plant height, root length, and biomass accumulation. Moreover, a transcriptome analysis revealed 2510 differentially expressed transcripts, including the Cd transporters (-3.82-fold downregulated) and the Cd tolerance-associated genes (1.24-fold upregulated). Notably, regulatory network prediction uncovered 6 differentially expressed lncRNAs that act as competitive endogenous RNA or in RNA complex interactions. These key lncRNAs regulate the expression of target genes that are involved in pectin and cellulose metabolism, scavenging of reactive oxygen species, salicylic acid-mediated defense response, and biosynthesis of brassinosteroids, which ultimately modify the cell wall for Cd adsorption, safeguard photosynthesis, and control hormone signaling to reduce Cd toxicity. Our results unveiled a crucial lncRNA-mediated mechanism underlying MLT's role in Cd detoxification in rice plants, providing potential applications in agricultural practices and environmental remediation.
Collapse
Affiliation(s)
- Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Marvin Richmond
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yue Ma
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Shuo Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Xue Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Imrul Mosaddek Ahmed
- Plant Biotechnology Laboratory, Center for Viticulture & Small Fruit Research, Florida A&M University, FL 32317, USA
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Zhang H, Li Y, Li R, Wu W, Abdelrahman H, Wang J, Al-Solaimani SG, Antoniadis V, Rinklebe J, Lee SS, Shaheen SM, Zhang Z. Mitigation of the mobilization and accumulation of toxic metal(loid)s in ryegrass using sodium sulfide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168387. [PMID: 37952661 DOI: 10.1016/j.scitotenv.2023.168387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Remediation of soils contaminated with toxic metal(loid)s (TMs) and mitigation of the associated ecological and human health risks are of great concern. Sodium sulfide (Na2S) can be used as an amendment for the immobilization of TMs in contaminated soils; however, the effects of Na2S on the leachability, bioavailability, and uptake of TMs in highly-contaminated soils under field conditions have not been investigated yet. This is the first field-scale research study investigating the effect of Na2S application on soils with Hg, Pb and Cu contents 70-to-7000-fold higher than background values and also polluted with As, Cd, Ni, and Zn. An ex situ remediation project including soil replacement, immobilization with Na2S, and safe landfilling was conducted at Daiziying and Anle (China) with soils contaminated with As, Cd, Cu, Hg, Ni, Pb and Zn. Notably, Na2S application significantly lowered the sulfuric-nitric acid leachable TMs below the limits defined by Chinese regulations. There was also a significant reduction in the DTPA-extractable TMs in the two studied sites up to 85.9 % for Hg, 71.4 % for Cu, 71.9 % for Pb, 48.1 % for Cd, 37.1 % for Zn, 34.3 % for Ni, and 15.7 % for As compared to the untreated controls. Moreover, Na2S treatment decreased the shoot TM contents in the last harvest to levels lower than the TM regulation limits concerning fodder crops, and decreased the TM root-to-shoot translocation, compared to the untreated control sites. We conclude that Na2S has great potential to remediate soils heavily tainted with TMs and mitigate the associated ecological and human health risks.
Collapse
Affiliation(s)
- Han Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - You Li
- Key laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Weilong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, PR China
| | - Samir G Al-Solaimani
- King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, 21589 Jeddah, Saudi Arabia
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Sabry M Shaheen
- King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
7
|
Wu Y, Liu J, Wu H, Zhu Y, Ahmad I, Zhou G. The Roles of Mepiquate Chloride and Melatonin in the Morpho-Physiological Activity of Cotton under Abiotic Stress. Int J Mol Sci 2023; 25:235. [PMID: 38203405 PMCID: PMC10778694 DOI: 10.3390/ijms25010235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Cotton growth and yield are severely affected by abiotic stress worldwide. Mepiquate chloride (MC) and melatonin (MT) enhance crop growth and yield by reducing the negative effects of abiotic stress on various crops. Numerous studies have shown the pivotal role of MC and MT in regulating agricultural growth and yield. Nevertheless, an in-depth review of the prominent performance of these two hormones in controlling plant morpho-physiological activity and yield in cotton under abiotic stress still needs to be documented. This review highlights the effects of MC and MT on cotton morpho-physiological and biochemical activities; their biosynthetic, signaling, and transduction pathways; and yield under abiotic stress. Furthermore, we also describe some genes whose expressions are affected by these hormones when cotton plants are exposed to abiotic stress. The present review demonstrates that MC and MT alleviate the negative effects of abiotic stress in cotton and increase yield by improving its morpho-physiological and biochemical activities, such as cell enlargement; net photosynthesis activity; cytokinin contents; and the expression of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase. MT delays the expression of NCED1 and NCED2 genes involved in leaf senescence by decreasing the expression of ABA-biosynthesis genes and increasing the expression of the GhYUC5, GhGA3ox2, and GhIPT2 genes involved in indole-3-acetic acid, gibberellin, and cytokinin biosynthesis. Likewise, MC promotes lateral root formation by activating GA20x genes involved in gibberellin catabolism. Overall, MC and MT improve cotton's physiological activity and antioxidant capacity and, as a result, improve the ability of the plant to resist abiotic stress. The main purpose of this review is to present an in-depth analysis of the performance of MC and MT under abiotic stress, which might help to better understand how these two hormones regulate cotton growth and productivity.
Collapse
Affiliation(s)
- Yanqing Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.L.); (H.W.); (Y.Z.)
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Jiao Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.L.); (H.W.); (Y.Z.)
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Hao Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.L.); (H.W.); (Y.Z.)
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yiming Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.L.); (H.W.); (Y.Z.)
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Irshad Ahmad
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.L.); (H.W.); (Y.Z.)
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.L.); (H.W.); (Y.Z.)
| |
Collapse
|