1
|
Wang L, Tian Y, Sun J, Li Y, Yang Z. The efficacy of bioretention systems amended with iron-modified biochar for the source-separated and component-specific treatment of rainwater runoff: A microbiome perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123728. [PMID: 39700931 DOI: 10.1016/j.jenvman.2024.123728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Bioretention systems offer advantages in controlling non-point source pollution from runoff rainwater. However, the systems frequently encounter challenges, including insufficient stability of nitrogen and phosphorus removal. Limited research has been performed on bioretention systems which integrate actual data from non-point source pollution cases for the quantitative and qualitative refinement of initial and non-initial rainwater. Moreover, the potential linkages between amended media and microbial communities in bioretention systems with the addition of novel functional filler have not been explored. In this study, a system for treating both initial and non-initial rainwater was established through measurements including iron-modified biochar (FeBC) packing and the optimization of the layer structures. In system treating initial rainwater, the systems loaded with FeBC maintained stable NH4+-N and NO3--N removal rates of over 95% and 80%, respectively under 12 rainfall simulation events. After a 10-day antecedent drying duration (ADD), the removal rates for NH4+-N and PO43--P remained above 78% and 85%. In systems designed to process non-initial rainwater, increasing the height of the transition layer effectively enhanced the NH4+-N removal stability. Meanwhile, increasing the height of the drainage layer could promote PO43--P removal rates to over 75%. The addition of FeBC facilitated the growth of certain denitrifiers improved overall NO3--N removal during successive rainfall events. The microbial communities may adapt to variations in the external environment by enhancing the synthesis of ribosome and the metabolism of pyrimidine and purine, further improving the stability of NH4+-N removal. This study provides a theoretical basis for the precise enhancement of nitrogen and phosphorus removal and the design of bioretention systems for differentiated treatment of rainwater, guiding their design and applications in different regions.
Collapse
Affiliation(s)
- Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yuan Tian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jie Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Zhengjian Yang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, PR China.
| |
Collapse
|
2
|
Nan Y, Zhu N, Sun S, Lei T, Guo X, Leng F, Yang M, Chen J, Wang Y. Degradation of petroleum hydrocarbon contaminants by Rhodococcus erythropolis KB1 synergistic with alfalfa (Medicago sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35332-35352. [PMID: 38727971 DOI: 10.1007/s11356-024-33227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/02/2024] [Indexed: 05/30/2024]
Abstract
Petroleum hydrocarbons are a stubborn pollutant that is difficult to degrade globally, and plant-microbial degradation is the main way to solve this type of pollutant. In this study, the physiological and ecological responses of alfalfa to petroleum hydrocarbons in different concentrations of petroleum hydrocarbon-contaminated soil with KB1 (Rhodococcus erythropolis) were analyzed and determined by laboratory potting techniques. The growth of alfalfa (CK) and alfalfa with KB1 (JZ) in different concentrations of petroleum hydrocarbons contaminated soil was compared and analyzed. The results of the CK group showed that petroleum hydrocarbons could significantly affect the activity of alfalfa antioxidant enzyme system, inhibit the development of alfalfa roots and the normal growth of plants, especially in the high-concentration group. KB1 strain had the ability to produce IAA, form biofilm, fix nitrogen, produce betaine and ACC deaminase, and the addition of KB1 could improve the growth traits of alfalfa in the soil contaminated with different concentrations of petroleum hydrocarbons, the content of soluble sugars in roots, and the stress resistance and antioxidant enzyme activities of alfalfa. In addition, the degradation kinetics of the strain showed that the degradation rate of petroleum could reach 75.2% after soaking with KB1. Furthermore, KB1 can efficiently degrade petroleum hydrocarbons in advance and significantly alleviate the damage of high concentration of petroleum hydrocarbons to plant roots. The results showed that KB1 strains and alfalfa plants could effectively enhance the degradation of petroleum hydrocarbons, which provided new ideas for improving bioremediation strategies.
Collapse
Affiliation(s)
- Yan Nan
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, Gansu Province, China
| | - Ning Zhu
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, Gansu Province, China
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shangchen Sun
- Lanzhou Resources & Environment Voc-Tech University, Lanzhou, 730050, China
| | - Tianzhu Lei
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730050, China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, Gansu Province, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, Gansu Province, China
| | - Mingjun Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, Gansu Province, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, Gansu Province, China.
| |
Collapse
|
3
|
Zhou X, Xiao C, Zhang B, Chen T, Yang X. Effects of microplastics on carbon release and microbial community in mangrove soil systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133152. [PMID: 38056259 DOI: 10.1016/j.jhazmat.2023.133152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Mangrove ecosystems are major carbon sink biomes and also a sink of microplastics (MPs). The final enrichment of MPs in sediments may have a significant impact on the microbial community and carbon turnover in the soil. However, the effects of MP pollution on the mangrove soil microbial communities and carbon release remain unknown. Here, we conducted a manipulative incubation experiment by adding MPs to soil at different soil depths to examine the effect of enriched MPs on soil microorganisms and its function (i.e., decomposition of soil carbon). The results showed that the addition of MPs had no significant effect on the microbial diversity and CO2 cumulative emission in the topsoil but significantly increased CO2 release from the subsoil. The promoting effect of polylactide (PLA) on the release of CO2 from the subsoil was stronger than that of polyethylene (PE) and aging PE. In the subsoil, the activity of soil extracellular enzymes related to N acquisition increased with the MP addition, indicating an increase in microbial N deficiency. The subsoil was more sensitive to MPs because of the exacerbated nitrogen limitation. MP addition reduced the microbial diversity of the subsoil and altered soil microbial interactions. The increasing abundance of some microbial taxa, especially bacteria related to the sulfur cycle, indicated more active electron transfer and organic carbon mineralization in the subsoil. Our findings suggest that MP contamination has potential effects on microbial communities, nutrient cycling, and carbon release in mangrove soils that vary depending on soil depth.
Collapse
Affiliation(s)
- Xu Zhou
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)
| | - Cunde Xiao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Bingwei Zhang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| | - Tao Chen
- MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiaofan Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou).
| |
Collapse
|