Zhang H, Sun W, Zhang J, Ma J. Vacuum-ultraviolet based advanced oxidation and reduction processes for water treatment.
JOURNAL OF HAZARDOUS MATERIALS 2024;
471:134432. [PMID:
38691932 DOI:
10.1016/j.jhazmat.2024.134432]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The use of vacuum-ultraviolet (VUV) photolysis in water treatment has been gaining significant interest due to its efficacy in degrading refractory organic contaminants and eliminating oxyanions. In recent years, the reactive species driving pollutant decomposition in VUV-based advanced oxidation and reduction processes (VUV-AOPs and VUV-ARPs) have been identified. This review aims to provide a concise overview of VUV photolysis and its advancements in water treatment. We begin with an introduction to VUV irradiation, followed by a summary of the primary reactive species in both VUV-AOPs and VUV-ARPs. We then explore the factors influencing VUV-photolysis in water treatment, including VUV irradiation dose, catalysts or activators, dissolved gases, water matrix components (e.g., DOM and inorganic anions), and solution pH. In VUV-AOPs, the predominant reactive species are hydroxyl radicals (˙OH), hydrogen peroxide (H2O2), and ozone (O3). Conversely, in VUV-ARPs, the main reactive species are the hydrated electron (eaq-) and hydrogen atom (˙H). It is worth noting that VUV-based advanced oxidation/reduction processes (VUV-AORPs) can transit between VUV-AOPs and VUV-ARPs based on the externally added chemicals and dissolved gases in the solution. Increase of the VUV irradiation dose and the concentration of catalysts/activators enhances the degradation of contaminants, whereas DOM and inorganic anions inhibit the reaction. The pH influences the redox potential of ˙OH, the speciation of contaminants and activators, and thus the overall performance of the VUV-AOPs. Conversely, an alkaline pH is favored in VUV-ARPs because eaq- predominates at higher pH.
Collapse