1
|
Ahodantin J, Lekbaby B, Bou Nader M, Soussan P, Kremsdorf D. Hepatitis B virus X protein enhances the development of liver fibrosis and the expression of genes associated with epithelial-mesenchymal transitions and tumor progenitor cells. Carcinogenesis 2020; 41:358-367. [PMID: 31175830 DOI: 10.1093/carcin/bgz109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/03/2019] [Accepted: 06/06/2019] [Indexed: 12/24/2022] Open
Abstract
The hepatitis B virus X protein (HBx) has pleiotropic biological effects, which underlies its potential role in cell transformation. However, its involvement in hepatic fibrosis remains unclear. In this study, we wanted to clarify, in vivo, the role of HBx protein in the development of liver fibrosis. Mice transgenic for the full-length HBx (FL-HBx) were used. To create liver fibrosis, FL-HBx transgenic and control mice were chronically exposed to carbon tetrachloride (CCl4). Modulation of the expression of proteins involved in matrix remodeling, hepatic metabolism and epithelial-mesenchymal transition (EMT) were investigated. In transgenic mice, FL-HBx expression potentiates CCl4-induced liver fibrosis with increased expression of proteins involved in matrix remodeling (Collagen1a, α-Sma, PdgfR-β, MMP-13). In FL-HBx transgenic mice, an increase in EMT was observed with a higher transcription of two inflammatory cytokines (TNF-α and TGF-β) and a decrease of glutamine synthetase expression level. This was associated with a sustained cell cycle and hepatocyte polyploidy alteration consistent with p38 and ERK1/2 overactivation, increase of PLK1 transcription, accumulation of SQSTM1/p62 protein and increase expression of Beclin-1. This correlates with a higher expression of tumor progenitor cell markers (AFP, Ly6D and EpCam), indicating a higher risk of progression from fibrosis to hepatocellular carcinoma (HCC) in the presence of FL-HBx protein. In conclusion, our results show that FL-HBx protein enhances the development of liver fibrosis and contributes to the progression of liver disease from chronic hepatitis to HCC.
Collapse
Affiliation(s)
- James Ahodantin
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France.,Centre National de la Recherche Scientifique (CNRS, ERL8255), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France
| | - Bouchra Lekbaby
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France.,Centre National de la Recherche Scientifique (CNRS, ERL8255), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France
| | - Myriam Bou Nader
- Team Proliferation Stress and Liver Physiopathology, Genome and Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (Inserm), Paris, France.,Sorbonne Unversité, USPC, Paris, France.,Université Paris Descartes, Paris, France.,Université Paris Diderot, Paris, France
| | - Patrick Soussan
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France.,Centre National de la Recherche Scientifique (CNRS, ERL8255), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France
| | - Dina Kremsdorf
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France.,Centre National de la Recherche Scientifique (CNRS, ERL8255), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France
| |
Collapse
|
2
|
Joseph NM, Umetsu SE, Shafizadeh N, Ferrell L, Kakar S. Genomic profiling of well-differentiated hepatocellular neoplasms with diffuse glutamine synthetase staining reveals similar genetics across the adenoma to carcinoma spectrum. Mod Pathol 2019; 32:1627-1636. [PMID: 31189995 DOI: 10.1038/s41379-019-0282-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/06/2019] [Accepted: 04/07/2019] [Indexed: 12/30/2022]
Abstract
Well-differentiated hepatocellular neoplasms are currently classified in the World Health Organization scheme as hepatocellular adenoma or hepatocellular carcinoma. There is no recognized diagnostic category for atypical cases with borderline features, and we have designated these as atypical hepatocellular neoplasms. Diffuse glutamine synthetase staining is used as a surrogate marker to detect β-catenin activation, a well-recognized high risk feature in hepatocellular tumors. This study examined 27 well-differentiated hepatocellular neoplasms with diffuse glutamine synthetase staining, including 7 atypical hepatocellular neoplasms with no cytoarchitectural atypia, 6 atypical hepatocellular neoplasms with focal cytoarchitectural atypia, and 14 well-differentiated hepatocellular carcinomas. Capture-based next-generation sequencing was performed, and alterations in WNT pathway genes (CTNNB1, APC, AXIN1) were seen in 81% of cases (10/13 atypical hepatocellular neoplasms and 12/14 of hepatocellular carcinomas), while the molecular basis of diffuse glutamine synthetase staining was unclear in the remaining 19% of cases. Additional non-WNT pathway mutations (TP53, TSC1, DNMT3A, CREBBP) or copy number alterations were present in 56% of atypical hepatocellular neoplasms, with no significant difference in cases with or without focal cytoarchitectural atypia, supporting that all cases with β-catenin activation should be classified as atypical irrespective of atypia. Atypical hepatocellular neoplasm and hepatocellular carcinoma also demonstrated largely similar genomic profiles, but TERT promoter mutations were restricted to hepatocellular carcinoma (21%) and copy number alterations were more common in hepatocellular carcinoma (64 vs 31%). Mutational and copy number analysis may be helpful in characterization and risk stratification of atypical hepatocellular neoplasms when morphology and glutamine synthetase staining yield ambiguous results.
Collapse
Affiliation(s)
- Nancy M Joseph
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Sarah E Umetsu
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | | | - Linda Ferrell
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Sanjay Kakar
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
SILAC-Based Quantification of TGFBR2-Regulated Protein Expression in Extracellular Vesicles of Microsatellite Unstable Colorectal Cancers. Int J Mol Sci 2019; 20:ijms20174162. [PMID: 31454892 PMCID: PMC6747473 DOI: 10.3390/ijms20174162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Microsatellite unstable (MSI) colorectal cancers (CRCs) are characterized by mutational inactivation of Transforming Growth Factor Beta Receptor Type 2 (TGFBR2). TGFBR2-deficient CRCs present altered target gene and protein expression. Such cellular alterations modulate the content of CRC-derived extracellular vesicles (EVs). EVs function as couriers of proteins, nucleic acids, and lipids in intercellular communication. At a qualitative level, we have previously shown that TGFBR2 deficiency causes overall alterations in the EV protein content. To deepen the basic understanding of altered protein dynamics, this work aimed to determine TGFBR2-dependent EV protein signatures in a quantitative manner. Using a stable isotope labeling with amino acids in cell culture (SILAC) approach for mass spectrometry-based quantification, 48 TGFBR2-regulated proteins were identified in MSI CRC-derived EVs. Overall, TGFBR2 deficiency caused upregulation of several EV proteins related to the extracellular matrix and nucleosome as well as downregulation of proteasome-associated proteins. The present study emphasizes the general overlap of proteins between EVs and their parental CRC cells but also highlights the impact of TGFBR2 deficiency on EV protein composition. From a clinical perspective, TGFBR2-regulated quantitative differences of protein expression in EVs might nominate novel biomarkers for liquid biopsy-based MSI typing in the future.
Collapse
|
4
|
Atypical Hepatocellular Neoplasms: Review of Clinical, Morphologic, Immunohistochemical, Molecular, and Cytogenetic Features. Adv Anat Pathol 2018; 25:254-262. [PMID: 29649004 DOI: 10.1097/pap.0000000000000189] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The distinction of hepatocellular adenoma from well-differentiated hepatocellular carcinoma (HCC) can be difficult in some cases, especially on biopsy specimens. These borderline cases often occur in men or older patients and may have β-catenin activation or focal atypical morphologic features (such as small cell change, prominent pseudoacinar formation, cytologic atypia, focally thick plates, and/or focal reticulin loss) that are insufficient for an unequivocal diagnosis of HCC. The term "atypical hepatocellular neoplasm" has been advocated for these tumors, but a number of other terms, including "atypical adenoma," "hepatocellular neoplasm of uncertain malignant potential," and "well-differentiated hepatocellular neoplasm with atypical or borderline features" have also been proposed. This review proposes guidelines for designating tumors as atypical hepatocellular neoplasm and describes clinical, morphologic, immunohistochemical, molecular, and cytogenetic features that distinguish these tumors from typical hepatocellular adenoma and HCC.
Collapse
|
5
|
Correlation of exon 3 β-catenin mutations with glutamine synthetase staining patterns in hepatocellular adenoma and hepatocellular carcinoma. Mod Pathol 2016; 29:1370-1380. [PMID: 27469330 PMCID: PMC5149418 DOI: 10.1038/modpathol.2016.122] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 01/18/2023]
Abstract
The current clinical practice is based on the assumption of strong correlation between diffuse glutamine synthetase expression and β-catenin activation in hepatocellular adenoma and hepatocellular carcinoma. This high correlation is based on limited data and may represent an oversimplification as glutamine synthetase staining patterns show wide variability in clinical practice. Standardized criteria for interpreting diverse glutamine synthetase patterns, and the association between each pattern and β-catenin mutations is not clearly established. This study examines the correlation between glutamine synthetase staining patterns and β-catenin mutations in 15 typical hepatocellular adenomas, 5 atypical hepatocellular neoplasms and 60 hepatocellular carcinomas. Glutamine synthetase staining was classified into one of the three patterns: (a) diffuse homogeneous: moderate-to-strong cytoplasmic staining in >90% of lesional cells, without a map-like pattern, (b) diffuse heterogeneous: moderate-to-strong staining in 50-90% of lesional cells, without a map-like pattern, and (c) patchy: moderate-to-strong staining in <50% of lesional cells (often perivascular), or weak staining irrespective of the extent, and all other staining patterns (including negative cases). Sanger sequencing of CTNNB1 exon 3 was performed in all cases. Of hepatocellular tumors with diffuse glutamine synthetase staining (homogeneous or heterogeneous), an exon 3 β-catenin mutation was detected in 33% (2/6) of typical hepatocellular adenoma, 75% (3/4) of atypical hepatocellular neoplasm and 17% (8/47) of hepatocellular carcinomas. An exon 3 mutation was also observed in 15% (2/13) of hepatocellular carcinomas with patchy glutamine synthetase staining. The results show a modest correlation between diffuse glutamine synthetase immunostaining and exon 3 β-catenin mutations in hepatocellular adenoma and hepatocellular carcinoma with discrepancy rates >50% in both hepatocellular adenoma and hepatocellular carcinoma. The interpretation of β-catenin activation based on glutamine synthetase staining should be performed with caution, and the undetermined significance of various glutamine synthetase patterns should be highlighted in pathology reports.
Collapse
|
6
|
Optimality in the zonation of ammonia detoxification in rodent liver. Arch Toxicol 2015; 89:2069-78. [DOI: 10.1007/s00204-015-1596-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
|
7
|
Kim DH, Lee EM, Do SH, Jeong DH, Jeong KS. Changes of the Cytoplasmic Proteome in Response to Alcoholic Hepatotoxicity in Rats. Int J Mol Sci 2015; 16:18664-82. [PMID: 26266409 PMCID: PMC4581265 DOI: 10.3390/ijms160818664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023] Open
Abstract
Proteomic analyses have already been used in a number of hepatological studies and provide important information. However, few reports have focused on changes in the cytoplasmic proteome. The present study therefore aimed to evaluate changes in cytoplasmic proteome of rats in response to alcoholic hepatotoxicity. Rats were fed a Liber-DeCarli liquid diet containing ethanol for four weeks. Cytoplasmic proteins except mitochondrial proteins from the livers of these animals were investigated using two-dimensional gel electrophoresis and mass spectrometry. Alcohol induced a decrease in body weight gain and an increase in alanine transaminase (ALT), cholesterol, and phospholipid levels. Histopathological observations revealed hepatic damage characterized by necrosis and fatty change in alcohol-treated group at week 2, which continues until week 4. Our proteomic analysis revealed that 25 proteins were differentially expressed in the ethanol-fed group. Of these, 12 cytoplasmic proteins are being reported for the first time. Taken together, our results provide further insights into the disease mechanism and therapeutic information of alcoholic liver disease.
Collapse
Affiliation(s)
- Dong Hwan Kim
- College of Interdisciplinary & Creative Studies, Konyang University, Nonsan 320-711, Korea.
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Korea.
| | - Eun-Mi Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Korea.
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu 702-701, Korea.
| | - Sun-Hee Do
- College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea.
| | - Da-Hee Jeong
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Korea.
| | - Kyu-Shik Jeong
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Korea.
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu 702-701, Korea.
| |
Collapse
|
8
|
Vázquez-Martínez O, De Ita-Pérez D, Valdés-Fuentes M, Flores-Vidrio A, Vera-Rivera G, Miranda MI, Méndez I, Díaz-Muñoz M. Molecular and biochemical modifications of liver glutamine synthetase elicited by daytime restricted feeding. Liver Int 2014; 34:1391-401. [PMID: 25368882 DOI: 10.1111/liv.12412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS The circadian clock system in the liver plays important roles in regulating metabolism and energy homeostasis. Restricted feeding schedules (RFS) become an entraining stimulus that promotes adaptations that form part of an alternative circadian clock known as the food entrained oscillator (FEO). The aim of this study was to evaluate the daily variations of glutamine synthetase (GS) in liver under a daytime RFS. METHODS Hepatic GS properties were analysed at 3-h intervals over a 24-h period in adult male Wistar rats maintained in a 12:12 h light–dark cycle. RFS group: food access for 2-h in light phase, during 3 weeks. AL group: feeding ad libitum. Fa group: acute fast (21 h). Fa–Re group: acute fast followed by refed 2 h.mRNA expression was measured by RT-qPCR, protein presence by Western-blot and immunohistochemistry, enzyme activity by a spectrophotometric assay, and glutamine by high pressure liquid chromatography. RESULTS AND CONCLUSIONS Restricted feeding schedule induced circadian rhythmicity inmRNA levels of GS and the loss of the rhythmic pattern in mitochondrial GS activity. GS activity in liver homogenates displayed a robust rhythmic pattern in AL that was not modified by RFS. The presence of GS and its zonal distribution did not show rhythmic pattern in both groups. However, acute Fa and Fa–Re diminished GS protein and activity in liver homogenates. Hepatic glutamine concentrations showed a 24-h rhythmic pattern in both groups, in an antiphasic pattern. In conclusion, daytime RFS influences the liver GS system at different levels, that could be part of rheostatic adaptations associated to the FEO, and highlight the plasticity of this system.
Collapse
Affiliation(s)
- Olivia Vázquez-Martínez
- Department of Cellular and Molecular Neurobiology; Instituto de Neurobiología; Universidad Nacional Autónoma de México (UNAM); Querétaro Mexico
| | - Dalia De Ita-Pérez
- Department of Cellular and Molecular Neurobiology; Instituto de Neurobiología; Universidad Nacional Autónoma de México (UNAM); Querétaro Mexico
| | - Marlen Valdés-Fuentes
- Department of Cellular and Molecular Neurobiology; Instituto de Neurobiología; Universidad Nacional Autónoma de México (UNAM); Querétaro Mexico
| | - Alejandra Flores-Vidrio
- Department of Cellular and Molecular Neurobiology; Instituto de Neurobiología; Universidad Nacional Autónoma de México (UNAM); Querétaro Mexico
| | - Gabriela Vera-Rivera
- Department of Behavioral and Cognitive Neurobiology; Instituto de Neurobiología; Universidad Nacional Autónoma de México (UNAM); Querétaro Mexico
| | - María I. Miranda
- Department of Behavioral and Cognitive Neurobiology; Instituto de Neurobiología; Universidad Nacional Autónoma de México (UNAM); Querétaro Mexico
| | - Isabel Méndez
- Department of Cellular and Molecular Neurobiology; Instituto de Neurobiología; Universidad Nacional Autónoma de México (UNAM); Querétaro Mexico
| | - Mauricio Díaz-Muñoz
- Department of Cellular and Molecular Neurobiology; Instituto de Neurobiología; Universidad Nacional Autónoma de México (UNAM); Querétaro Mexico
| |
Collapse
|
9
|
Berry RS, Gullapalli RR, Wu J, Morris K, Hanson JA. Diffuse glutamine synthetase overexpression restricted to areas of peliosis in a β-catenin-activated hepatocellular adenoma: a potential pitfall in glutamine synthetase interpretation. Virchows Arch 2014; 465:241-5. [PMID: 24997695 DOI: 10.1007/s00428-014-1620-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/16/2014] [Accepted: 06/26/2014] [Indexed: 11/25/2022]
Abstract
Hepatocellular adenomas have recently been classified into four subtypes based on molecular findings: hepatocyte nuclear factor 1α (HNF1α) inactivated, inflammatory/telangiectatic, β-catenin activated, and unclassifiable. β-catenin-activated adenomas have the potential for malignant transformation and are thus important to recognize. Diffuse glutamine synthetase immunohistochemical positivity has been shown to be a reliable surrogate marker for β-catenin activation, though variations in staining patterns may be difficult to interpret. We report a case of a peliotic adenoma that was morphologically consistent with a β-catenin wild-type hepatocellular adenoma but harbored a β-catenin mutation by molecular analysis. The tumor lacked nuclear β-catenin positivity and demonstrated a hitherto undescribed pattern of glutamine synthetase overexpression restricted to areas of peliosis with mostly negative staining in non-peliotic areas. This pattern was initially interpreted as physiologic and may represent a potential pitfall in glutamine synthetase interpretation.
Collapse
Affiliation(s)
- Ryan S Berry
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | | | | | | | | |
Collapse
|
10
|
Gebhardt R, Coffer PJ. Hepatic autophagy is differentially regulated in periportal and pericentral zones - a general mechanism relevant for other tissues? Cell Commun Signal 2013; 11:21. [PMID: 23531205 PMCID: PMC3623826 DOI: 10.1186/1478-811x-11-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/11/2013] [Indexed: 02/08/2023] Open
Abstract
Background Liver zonation, the fact that metabolic pathways are spatially separated along the liver sinusoids, is fundamental for proper functioning of this organ. For example, glutamine synthesis from glutamate and ammonia is localized pericentrally in only 7% of the hepatocytes concentrically arranged around the central veins. Recently, we found that FOXO transcription factors lead to upregulation of glutamine synthetase expression inducing autophagy via increasing glutamine production. Since in liver this mechanism can only be functioning in the pericentral zone it remains unclear how autophagy might be regulated in the rest of liver parenchyma. Presentation of the hypothesis We hypothesize that the regulation of autophagy by glutamine in liver is zonated. In the periportal zone, autophagy is inhibited by low intracellular glutamine but high essential amino acids, while in the pericentral zone it is stimulated by high intracellular glutamine. This zonation may be controlled by the Wnt and Hedgehog signalling pathways through reciprocal influence on the expression of amino acid transporters and metabolic enzymes in the different zones of the parenchyma. Testing the hypothesis The hypothesis can be tested in transgenic mice with conditional hepatocyte-specific modulation of Wnt and Hedgehog signalling. Isolated periportal and pericentral hepatocyte populations allow for determining the different activities of autophagy and its regulating mechanisms in different zones of the parenchyma. Implications of the hypothesis Zonation of the regulation of autophagy may allow adapting the extent of the proteolytic breakdown of proteins and organelles to different physiological needs in different zones of liver parenchyma. In this manner metabolic functions can be supported in one zone, for example maintenance of blood glucose levels during starvation which is a periportal issue, while simultaneously preventing cytotoxic events in the opposite zone. Likewise, lipid metabolism can be differentially influenced by uncoupling periportal lipophagy from pericentral breakdown of peroxisomes. Further implications concern the shaping of morphogen gradients along the sinusoidal axis by autophagy, and the different contribution of autophagy to the development of various different liver pathologies. The proposed dependence of the dual glutamine-dependent regulatory mechanisms of autophagy on inverse gradients of Wnt and hedgehog signalling may be relevant for other tissues in which GS is heterogeneously expressed.
Collapse
Affiliation(s)
- Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
11
|
Schreiber S, Rignall B, Braeuning A, Marx-Stoelting P, Ott T, Buchmann A, Hammad S, Hengstler JG, Schwarz M, Köhle C. Phenotype of single hepatocytes expressing an activated version of β-catenin in liver of transgenic mice. J Mol Histol 2011; 42:393-400. [DOI: 10.1007/s10735-011-9342-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 07/23/2011] [Indexed: 01/28/2023]
|
12
|
Ueberham E, Böttger J, Ueberham U, Grosche J, Gebhardt R. Response of sinusoidal mouse liver cells to choline-deficient ethionine-supplemented diet. COMPARATIVE HEPATOLOGY 2010; 9:8. [PMID: 20942944 PMCID: PMC2964607 DOI: 10.1186/1476-5926-9-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 10/13/2010] [Indexed: 01/10/2023]
Abstract
BACKGROUND Proliferation of oval cells, the bipotent precursor cells of the liver, requires impeded proliferation and loss of hepatocytes as well as a specific micro-environment, provided by adjacent sinusoidal cells of liver. Despite their immense importance for triggering the oval cell response, cells of hepatic sinusoids are rarely investigated. To elucidate the response of sinusoidal liver cells we have employed a choline-deficient, ethionine-supplemented (CDE) diet, a common method for inducing an oval cell response in rodent liver. We have utilised selected expression markers commonly used in the past for phenotypic discrimination of oval cells and sinusoidal cells: cytokeratin, E-cadherin and M2-pyruvate kinase for oval cells; and glial fibrillary acidic protein (GFAP) was used for hepatic stellate cells (HSCs). RESULTS CDE diet leads to an activation of all cells of the hepatic sinusoid in the mouse liver. Beside oval cells, also HSCs and Kupffer cells proliferate. The entire fraction of proliferating cells in mouse liver as well as endothelial cells and cholangiocytes express M2-pyruvate kinase. Concomitantly, GFAP, long considered a unique marker of quiescent HSCs was upregulated in activated HSCs and expressed also in cholangiocytes and oval cells. CONCLUSIONS Our results point to an important role of all types of sinusoidal cells in regeneration from CDE induced liver damage and call for utmost caution in using traditional marker for identifying specific cell types. Thus, M2-pyruvate kinase should no longer be used for estimating the oval cell response in mouse liver. CDE diet leads to activation of GFAP positive HSCs in the pericentral zone of liver lobulus. In the periportal zone the detection of GFAP in biliary cells and oval cells, calls other cell types as progenitors of hepatocytes into question under CDE diet conditions.
Collapse
Affiliation(s)
- Elke Ueberham
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
13
|
Ehnert S, Knobeloch D, Blankenstein A, Müller A, Böcker U, Gillen S, Friess H, Thasler WE, Dooley S, Nussler AK. Neohepatocytes from alcoholics and controls express hepatocyte markers and display reduced fibrogenic TGF-ß/Smad3 signaling: advantage for cell transplantation? Alcohol Clin Exp Res 2010; 34:708-18. [PMID: 20102559 DOI: 10.1111/j.1530-0277.2009.01140.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Liver transplantation is the only definitive treatment for end stage liver disease. Donor organ scarcity raises a growing interest in new therapeutic options. Recently, we have shown that injection of monocyte-derived NeoHepatocytes can increase survival in rats with extended liver resection. In order to apply this technology in humans with chronic liver diseases in an autologous setting, we generated NeoHepatocytes from patients with alcoholic liver disease and healthy controls and compared those to human hepatocytes. METHODS We generated NeoHepatocytes from alcoholics with Child A and B cirrhosis and healthy controls. Hepatocytes marker expression and transforming growth factor (TGF)-beta signaling was investigated by RT-PCR, Western blot, immunofluorescent staining, and adenoviral reporter assays. Glucose and urea was measured photometrically. Phase I and II enzyme activities were measured using fluorogenic substrates. Neutral lipids were visualized by Oil Red O staining. RESULTS There was no significant difference in generation and yield of NeoHepatocytes from alcoholics and controls. Hepatocyte markers, e.g., cytokeratin18 and alcohol dehydrogenase 1, increased significantly throughout differentiation. Glucose and urea production did not differ between alcoholics and controls and was comparable to human hepatocytes. During differentiation, phase I and II enzyme activities increased, however remained significantly lower than in human hepatocytes. Fat accumulation was induced by treatment with insulin, TGF-beta and ethanol only in differentiated cells and hepatocytes. TGF-beta signaling, via Smad transcription factors, critically required for progression of chronic liver disease, was comparable among the investigated cell types, merely expression of Smad1 and -3 was reduced (approximately 30 and approximately 60%) in monocytes, programmable cells of monocytic origin, and NeoHepatocytes. Subsequently, expression of TGF-beta regulated pro-fibrogenic genes, e.g., connective tissue growth factor and fibronectin was reduced. CONCLUSIONS Generation of NeoHepatocytes from alcoholics, displaying several features of human hepatocytes, offers new perspectives for cell therapeutic approaches, as cells can be obtained repeatedly in a noninvasive manner. Furthermore, the autologous setting reduces the need for immunosuppressants, which may support recovery of patients which are declined for liver transplantation.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Klinikum rechts der Isar, Department of Traumatology, MRI, TechnischeUniversität München, München, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rebouissou S, Couchy G, Libbrecht L, Balabaud C, Imbeaud S, Auffray C, Roskams T, Bioulac-Sage P, Zucman-Rossi J. The beta-catenin pathway is activated in focal nodular hyperplasia but not in cirrhotic FNH-like nodules. J Hepatol 2008; 49:61-71. [PMID: 18466996 DOI: 10.1016/j.jhep.2008.03.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 02/25/2008] [Accepted: 03/03/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS Focal nodular hyperplasias (FNHs) are benign liver lesions considered to be a hyperplastic response to increased blood flow in normal liver. In contrast, FNH-like lesions/nodules occur in cirrhotic liver but share similar histopathological features. We conducted a transcriptome analysis to identify biological pathways deregulated in FNH. METHODS Gene expression profiles obtained in FNH and normal livers were compared. Differentially-expressed genes were validated using quantitative-RT-PCR in 70 benign liver tumors including FNH-like lesions. RESULTS Among the deregulated genes in FNHs, 19 displayed physiological restricted distribution in the normal liver. All six perivenous genes were up-regulated in FNH, whereas 13 periportal genes were down-regulated. Almost all these genes are known to be regulated by beta-catenin. Glutamine synthetase was markedly overexpressed in anastomosed areas usually centered on visible veins. Moreover, activated hypophosphorylated beta-catenin protein accumulated in FNH in the absence of activating mutations. These results suggest the zonated activation of the beta-catenin pathway in FNH, whereas the other benign hepatocellular tumors, including FNH-like lesions, demonstrated an entirely different pattern of beta-catenin expression. CONCLUSIONS In FNH, increased activation of the beta-catenin pathway was found restricted to enlarged perivenous areas. FNH-like nodules may have a different pathogenetic origin.
Collapse
Affiliation(s)
- Sandra Rebouissou
- Inserm, U674, Génomique fonctionnelle des tumeurs solides, 27 rue Juliette Dodu, Paris F-75010, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ueberham E, Lindner R, Kamprad M, Hiemann R, Hilger N, Woithe B, Mahn D, Cross M, Sack U, Gebhardt R, Arendt T, Ueberham U. Oval cell proliferation in p16INK4a expressing mouse liver is triggered by chronic growth stimuli. J Cell Mol Med 2007; 12:622-38. [PMID: 18053084 PMCID: PMC3822548 DOI: 10.1111/j.1582-4934.2007.00178.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Terminal differentiation requires molecules also involved in aging such as the cell cycle inhibitor p16INK4a.Like other organs, the adult liver represents a quiescent organ with terminal differentiated cells, hepatocytes and cholangiocytes. These cells retain the ability to proliferate in response to liver injury or reduction of liver mass. However, under conditions which prevent mitotic activation of hepatocytes, regeneration can occur instead from facultative hepatic stem cells.For therapeutic application a non-toxic activation of this stem cell compartment is required. We have established transgenic mice with conditional overexpression of the cell cycle inhibitor p16INK4a in hepatocytes and have provoked and examined oval cell activation in adult liver in response to a range of proliferative stimuli.We could show that the liver specific expression of p16INK4a leads to a faster differentiation of hepatocytes and an activation of oval cells already in postnatal mice without negative consequences on liver function.
Collapse
Affiliation(s)
- Elke Ueberham
- Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ueberham E, Aigner T, Ueberham U, Gebhardt R. E-cadherin as a reliable cell surface marker for the identification of liver specific stem cells. J Mol Histol 2007; 38:359-68. [PMID: 17605082 DOI: 10.1007/s10735-007-9098-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 05/04/2007] [Indexed: 01/19/2023]
Abstract
Oval cells are liver-specific bipotent stem cells which accumulate in injured liver when proliferation of mature hepatocytes and/or cholangiocytes is impaired. They represent an intermediary cell type with phenotypical characteristics of both, hepatocytes and cholangiocytes. Oval cells express specific cell surface proteins allowing their identification in situ. Most of these cell surface proteins, however, are recognized by antibodies in mouse liver tissue that are not commercially available or work only on frozen sections. We show herein the unequivocal identification of oval cells in paraffin-embedded mouse liver samples based on strong E-cadherin expression different from that of hepatocytes and bile duct cells. By comparing the pattern of E-cadherin expression with that of both, A6-antigen and CD44, we suggest a tight control of E-cadherin expression depending on the differentiation stage of the progenitor cells. In human cirrhotic liver samples E-cadherin expression was found as a common feature of both, typical and atypical reactions, and, thus, can also serve as an indication of the progenitor cell compartment activation.
Collapse
Affiliation(s)
- Elke Ueberham
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
17
|
Lenart J, Dombrowski F, Görlach A, Kietzmann T. Deficiency of manganese superoxide dismutase in hepatocytes disrupts zonated gene expression in mouse liver. Arch Biochem Biophys 2007; 462:238-44. [PMID: 17367743 DOI: 10.1016/j.abb.2007.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 01/31/2007] [Accepted: 02/04/2007] [Indexed: 12/01/2022]
Abstract
The liver acinus displays a physiological periportal to perivenous oxygen gradient. This gradient was implicated to use reactive oxygen species (ROS) as mediators for the zonal gene expression. Mitochondria use oxygen and produce ROS, therefore they may contribute to the zonation of gene expression. To further elucidate this, we used the Cre-loxP system to generate a hepatocyte-specific null mutation of the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) in mice. We found that ROS levels were enhanced in livers of MnSOD(-/-) mice which were reduced in size and displayed signs of liver failure such as intracellular protein droplets, increased apoptotic bodies and Bax levels as well as multinuclear hepatocytes. Further, the zonation of glutamine synthetase, glucokinase and phosphoenolpyruvate carboxykinase was no longer preserved. We conclude that deficiency of mitochondrial MnSOD initiates a dysregulation of zonated gene expression in liver.
Collapse
Affiliation(s)
- Jacek Lenart
- Faculty of Chemistry, Department of Biochemistry, Erwin-Schrödinger-Strasse, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | | | | |
Collapse
|
18
|
Gebhardt R, Baldysiak-Figiel A, Krügel V, Ueberham E, Gaunitz F. Hepatocellular expression of glutamine synthetase: an indicator of morphogen actions as master regulators of zonation in adult liver. ACTA ACUST UNITED AC 2007; 41:201-66. [PMID: 17368308 DOI: 10.1016/j.proghi.2006.12.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutamine synthetase (GS) has long been known to be expressed exclusively in pericentral hepatocytes most proximal to the central veins of liver lobuli. This enzyme as well as its peculiar distribution complementary to the periportal compartment for ureogenesis plays an important role in nitrogen metabolism, particularly in homeostasis of blood levels of ammonium ions and glutamine. Despite this fact and intensive studies in vivo and in vitro, many aspects of the regulation of its activity on the protein and on the genetic level remained enigmatic. Recent experimental advances using transgenic mice and new analytic tools have revealed the fundamental role of morphogens such as wingless-type MMTV integration site family member signals (Wnt), beta-catenin, and adenomatous polyposis coli in the regulation of this particular enzyme. In addition, novel information concerning the structure of transcription factor binding sites within regulatory regions of the GS gene and their interactions with signalling pathways could be collected. In this review we focus on all aspects of the regulation of GS in the liver and demonstrate how the new findings have changed our view of the determinants of liver zonation. What appeared as a simple response of hepatocytes to blood-derived factors and local cellular interactions must now be perceived as a fundamental mechanism of adult tissue patterning by morphogens that were considered mainly as regulators of developmental processes. Though GS may be the most obvious indicator of morphogen action among many other targets, elucidation of the complex regulation of the expression of the GS gene could pave the road for a better understanding of the mechanisms involved in patterning of liver parenchyma. Based on current knowledge we propose a new concept of how morphogens, hormones and other factors may act in concert, in order to restrict gene expression to small subpopulations of one differentiated cell type, the hepatocyte, in different anatomical locations. Although many details of this regulatory network are still missing, and an era of exciting new discoveries is still about to come, it can already be envisioned that similar mechanisms may well be active in other organs contributing to the fine-tuning of organ-specific functions.
Collapse
Affiliation(s)
- Rolf Gebhardt
- Institut für Biochemie, Medizinische Fakultät, Universität Leipzig, Johannisallee 30, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
19
|
Gebhardt R, Ueberham E. Zonal gene expression in murine liver: Are tumors helping us to solve the mystery? Hepatology 2006; 44:512; author reply 512-3. [PMID: 16871579 DOI: 10.1002/hep.21276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
20
|
Arendt E, Ueberham U, Bittner R, Gebhardt R, Ueberham E. Enhanced matrix degradation after withdrawal of TGF-beta1 triggers hepatocytes from apoptosis to proliferation and regeneration. Cell Prolif 2005; 38:287-99. [PMID: 16202037 PMCID: PMC6495815 DOI: 10.1111/j.1365-2184.2005.00350.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
TGF-beta1 is a profibrogenic cytokine participating in deposition of extracellular matrix in fibrotic disorders. In liver, its anti-proliferative/apoptotic effect on hepatocytes promotes fibrosis. The tetracycline-controlled double-transgenic TA(LAP-2)/p(tet)TGF-beta1 mouse provides a model for reversible liver fibrosis. In livers of TGF-beta1-expressing mice, hepatocytes showed synchronous apoptosis detected by DNA laddering and active caspase-3 staining that disappeared when expression of transgenic TGF-beta1 was switched off. In these 'off' mice, perisinusoidal liver fibrosis resolved within 21 days accompanied by elevated proliferation of hepatocytes. Here, we have specified the intermediary stages (2-3 days off and 6 days off) in terms of (i) proliferation (by immunohistochemical staining of proliferating cell nuclear antigen and expression of cyclin D1 mRNA) and (ii) extracellular matrix remodelling processes (by measuring mRNA expression of matrix metalloproteinases-2 and -13 (mmp-2 and mmp-13) and tissue inhibitor of matrix metalloproteinases 1 (timp-1) and quantitative morphometric analysis. In summary, we show a rapidly declining timp-1 mRNA level together with lastingly high mmp-2 and mmp-13 mRNA levels after 2-3 days, suggesting that high matrix-degrading potential represents a prerequisite for the markedly enhanced proliferation of hepatocytes in the early stages after switching off transgenic TGF-beta1.
Collapse
Affiliation(s)
- E Arendt
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | | | | | | | | |
Collapse
|