1
|
Novel Gene-Correction-Based Therapeutic Modalities for Monogenic Liver Disorders. Bioengineering (Basel) 2022; 9:bioengineering9080392. [PMID: 36004917 PMCID: PMC9404740 DOI: 10.3390/bioengineering9080392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The majority of monogenic liver diseases are autosomal recessive disorders, with few being sex-related or co-dominant. Although orthotopic liver transplantation (LT) is currently the sole therapeutic option for end-stage patients, such an invasive surgical approach is severely restricted by the lack of donors and post-transplant complications, mainly associated with life-long immunosuppressive regimens. Therefore, the last decade has witnessed efforts for innovative cellular or gene-based therapeutic strategies. Gene therapy is a promising approach for treatment of many hereditary disorders, such as monogenic inborn errors. The liver is an organ characterized by unique features, making it an attractive target for in vivo and ex vivo gene transfer. The current genetic approaches for hereditary liver diseases are mediated by viral or non-viral vectors, with promising results generated by gene-editing tools, such as CRISPR-Cas9 technology. Despite massive progress in experimental gene-correction technologies, limitations in validated approaches for monogenic liver disorders have encouraged researchers to refine promising gene therapy protocols. Herein, we highlighted the most common monogenetic liver disorders, followed by proposed genetic engineering approaches, offered as promising therapeutic modalities.
Collapse
|
2
|
Alfaro J, Pérez D, Jiménez C, Serrano M, Martínez-Flores JÁ, Grau M, Sánchez-Zapardiel E, Paz-Artal E, Serrano A. Blockade of cell adhesion molecules enhances cell engraftment in a murine model of liver cell transplantation. Transpl Immunol 2016; 35:7-11. [PMID: 26875547 DOI: 10.1016/j.trim.2016.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/13/2015] [Accepted: 01/30/2016] [Indexed: 11/26/2022]
Abstract
AIM OLT is the best alternative for patients with end-stage liver diseases. However, as the need for organs surpasses donor availability, alternatives to OLT are required. LCT could be a useful option versus OLT in several patients even though its low cell-engraftment hampers its efficiency. Endothelial cell barrier is the main obstacle for the implantation of cells into the parenchyma. Our study has focused on the modification of the endothelial barrier with monoclonal antibodies against adhesion molecules in order to increase cell engraftment in a mouse model of liver cell transplantation. METHODS Anti-mouse CD54 and anti-mouse CD61 antibodies were administered intrasplenically to healthy mice within 60 min prior to stem cell transplantation. Animals were sacrificed either short term at 2h or middle term seven days after transplantation. Immunohistochemical techniques to detect alkaline phosphatase activity were used to identify the transplanted cells within the liver parenchyma. RESULTS Anti-CD54 and anti-CD61 administration increases vascular patency and cell engraftment. This represents a 32% and 45% increase, respectively, of engrafted cells compared to the control (p<0.05). CONCLUSION Modification of the vascular wall with monoclonal antibodies against endothelial adhesion molecules before cell transplantation enhances cell engraftment into the mouse liver.
Collapse
Affiliation(s)
- Javier Alfaro
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Dolores Pérez
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Carlos Jiménez
- Department of General Surgery and Liver Transplantation, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Manuel Serrano
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Montserrat Grau
- Department of General Surgery and Liver Transplantation, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Estela Paz-Artal
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain; Section of Immunology, Universidad San Pablo-CEU. Madrid, Spain
| | - Antonio Serrano
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain; Section of Immunology, Universidad San Pablo-CEU. Madrid, Spain
| |
Collapse
|
3
|
Matsuura K, Utoh R, Nagase K, Okano T. Cell sheet approach for tissue engineering and regenerative medicine. J Control Release 2014; 190:228-39. [DOI: 10.1016/j.jconrel.2014.05.024] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 01/06/2023]
|
4
|
Fogel WA, Stasiak A, Maksymowicz M, Kobos J, Unzeta M, Mussur M. Hepatocyte transplants improve liver function and encephalopathy in portacaval shunted rats. CNS Neurosci Ther 2014; 20:685-91. [PMID: 24716845 DOI: 10.1111/cns.12265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 11/28/2022] Open
Abstract
AIM Rats with portacaval shunt (PCS) are useful experimental models of human hepatic encephalopathy in chronic liver dysfunction. We have previously shown that PCS modifies amine neurotransmitter systems in the CNS and increases voluntary alcohol intake by rats. Hepatocyte transplantation, used in acute liver failure, has recently also been applied to chronic liver diseases, which prompted us to investigate whether the altered brain amine system and the drinking behavior in long-term shunted rats could be normalized by hepatocyte transplants. METHODS Hepatocytes, isolated from syngeneic donors by collagenase digestion, were injected (3 × 10(6) cells/rat) into the pancreatic tail region, 6 months after PCS. Hepatic function was evaluated by measuring urine urea and plasma L-histidine concentrations. A free choice test with two bottles (tap water and 10% ethyl alcohol) was performed for 3 days to assess the rats' preference for alcohol. The rats were euthanized 2 months posttransplantation. Brain histamine and 5-hydroxyindoleacetic acid (5-HIAA) levels were measured by radioenzymatic assay and by HPLC-EC, respectively, N-tele-methylhistamine by GC/MS while MAOA and MAOB activities by isotopic procedures. RESULTS Portacaval shunt rats with hepatocyte transplants gave more urea than before transplantation, with lower plasma L-His levels and higher body weight versus the PCS counterparts. Also, those rats consumed less alcohol. The CNS amines and 5-HIAA concentrations, as well as MAO-B activity, being abnormally high in untreated PCS rats, significantly reduced after PCS hepatocyte treatment. CONCLUSIONS The results support the therapeutic values of hepatocyte transplants in chronic liver diseases and the temporary character of PCS-exerted CNS dysfunctions.
Collapse
|
5
|
Abstract
The liver has an enormous potential to restore the parenchymal tissue loss due to injury. This is accomplished by the proliferation of either the hepatocytes or liver progenitor cells in cases where massive damage prohibits hepatocytes from entering the proliferative response. Under debate is still whether hepatic stem cells are involved in liver tissue maintenance and regeneration or even whether they exist at all. The definition of an adult tissue-resident stem cell comprises basic functional stem cell criteria like the potential of self-renewal, multipotent, i.e. at least bipotent differentiation capacity and serial transplantability featuring the ability of functional tissue repopulation. The relationship between a progenitor and its progeny should exemplify the lineage commitment from the putative stem cell to the differentiated cell. This is mainly assessed by lineage tracing and immunohistochemical identification of markers specific to progenitors and their descendants. Flow cytometry approaches revealed that the liver stem cell population in animals is likely to be heterogeneous giving rise to progeny with different molecular signatures, depending on the stimulus to activate the putative stem cell compartment. The stem cell criteria are met by a variety of cells identified in the fetal and adult liver both under normal and injury conditions. It is the purpose of this review to verify hepatic stem cell candidates in the light of the stem cell definition criteria mentioned. Also from this point of view adult stem cells from non-hepatic tissues such as bone marrow, umbilical cord blood or adipose tissue, have the potential to differentiate into cells featuring functional hepatocyte characteristics. This has great impact because it opens the possibility of generating hepatocyte-like cells from adult stem cells in a sufficient amount and quality for their therapeutical application to treat end-stage liver diseases by stem cell-based hepatocytes in place of whole organ transplantation.
Collapse
Affiliation(s)
- Bruno Christ
- Translational Centre for Regenerative Medicine-TRM, University of Leipzig, Philipp-Rosenthal-Straße 55, D-04103 Leipzig, Germany.
| | | |
Collapse
|
6
|
Jorns C, Ellis EC, Nowak G, Fischler B, Nemeth A, Strom SC, Ericzon BG. Hepatocyte transplantation for inherited metabolic diseases of the liver. J Intern Med 2012; 272:201-23. [PMID: 22789058 DOI: 10.1111/j.1365-2796.2012.02574.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inherited metabolic diseases of the liver are characterized by deficiency of a hepatic enzyme or protein often resulting in life-threatening disease. The remaining liver function is usually normal. For most patients, treatment consists of supportive therapy, and the only curative option is liver transplantation. Hepatocyte transplantation is a promising therapy for patients with inherited metabolic liver diseases, which offers a less invasive and fully reversible approach. Procedure-related complications are rare. Here, we review the experience of hepatocyte transplantation for metabolic liver diseases and discuss the major obstacles that need to be overcome to establish hepatocyte transplantation as a reliable treatment option in the clinic.
Collapse
Affiliation(s)
- C Jorns
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
7
|
Goulinet-Mainot S, Tranchart H, Groyer-Picard MT, Lainas P, Saloum Diop P, Holopherne D, Gonin P, Benihoud K, Ba N, Gauthier O, Franco D, Guettier C, Pariente D, Weber A, Dagher I, Huy Nguyen T. Improved Hepatocyte Engraftment After Portal Vein Occlusion in LDL Receptor-Deficient WHHL Rabbits and Lentiviral-Mediated Phenotypic Correction In Vitro. CELL MEDICINE 2012; 4:85-98. [PMID: 26858856 DOI: 10.3727/215517912x647136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Innovative cell-based therapies are considered as alternatives to liver transplantation. Recent progress in lentivirus-mediated hepatocyte transduction has renewed interest in cell therapy for the treatment of inherited liver diseases. However, hepatocyte transplantation is still hampered by inefficient hepatocyte engraftment. We previously showed that partial portal vein embolization (PVE) improved hepatocyte engraftment in a nonhuman primate model. We developed here an ex vivo approach based on PVE and lentiviral-mediated transduction of hepatocytes from normal (New Zealand White, NZW) and Watanabe heritable hyperlipidemic (WHHL) rabbits: the large animal model of familial hypercholesterolemia type IIa (FH). FH is a life-threatening human inherited autosomal disease caused by a mutation in the low-density lipoprotein receptor (LDLR) gene, which leads to severe hypercholesterolemia and premature coronary heart disease. Rabbit hepatocytes were isolated from the resected left liver lobe, and the portal branches of the median lobes were embolized with Histoacryl® glue under radiologic guidance. NZW and WHHL hepatocytes were each labeled with Hoechst dye or transduced with lentivirus expressing GFP under the control of a liver-specific promoter (mTTR, a modified murine transthyretin promoter) and were then immediately transplanted back into donor animals. In our conditions, 65-70% of the NZW and WHHL hepatocytes were transduced. Liver repopulation after transplantation with the Hoechst-labeled hepatocytes was 3.5 ± 2%. It was 1.4 ± 0.6% after transplantation with either the transduced NZW hepatocytes or the transduced WHHL hepatocytes, which was close to that obtained with Hoechst-labeled cells, given the mean transduction efficacy. Transgene expression persisted for at least 8 weeks posttransplantation. Transduction of WHHL hepatocytes with an LDLR-encoding vector resulted in phenotypic correction in vitro as assessed by internalization of fluorescent LDL ligands. In conclusion, our results have applications for the treatment of inherited metabolic liver diseases, such as FH, by transplantation of lentivirally transduced hepatocytes.
Collapse
Affiliation(s)
| | - Hadrien Tranchart
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital , Le Kremlin-Bicêtre , France
| | | | - Panagiotis Lainas
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital, Le Kremlin-Bicêtre, France; †Department of General Surgery, Univ. Paris-Sud, Antoine Béclère Hospital, Clamart, France
| | - Papa Saloum Diop
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital, Le Kremlin-Bicêtre, France; †Department of General Surgery, Univ. Paris-Sud, Antoine Béclère Hospital, Clamart, France
| | - Delphine Holopherne
- ‡ Department of Animal Surgery, Veterinary School of Nantes , Nantes , France
| | - Patrick Gonin
- ‡ Department of Animal Surgery, Veterinary School of Nantes , Nantes , France
| | - Karim Benihoud
- ¶ CNRS UMR 8203, Institut Gustave Roussy , Villejuif , France
| | - Nathalie Ba
- # IFR 93, Bicêtre Hospital , Le Kremlin-Bicêtre , France
| | - Olivier Gauthier
- ‡ Department of Animal Surgery, Veterinary School of Nantes , Nantes , France
| | - Dominique Franco
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital, Le Kremlin-Bicêtre, France; †Department of General Surgery, Univ. Paris-Sud, Antoine Béclère Hospital, Clamart, France
| | - Catherine Guettier
- * Department of Pathology, Bicêtre Hospital , Le Kremlin-Bicêtre , France
| | - Danièle Pariente
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital, Le Kremlin-Bicêtre, France; ††Department of Pediatric Radiology, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Anne Weber
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital , Le Kremlin-Bicêtre , France
| | - Ibrahim Dagher
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital, Le Kremlin-Bicêtre, France; †Department of General Surgery, Univ. Paris-Sud, Antoine Béclère Hospital, Clamart, France
| | - Tuan Huy Nguyen
- ‡‡ INSERM U1064, CHU Hôtel Dieu, Université de Nantes , Nantes , France
| |
Collapse
|
8
|
Kafert-Kasting S, Schneider A, Attaran M, Priesner C, Barthold M, Perrier AL, Kriegbaum H, Ott M, Meyburg J. Safety assessment of intraportal liver cell application in New Zealand white rabbits under GLP conditions. Arch Toxicol 2012; 86:1413-22. [PMID: 22532025 DOI: 10.1007/s00204-012-0852-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 04/05/2012] [Indexed: 01/03/2023]
Abstract
Liver cell transplantation (LCT) is considered a new therapeutic strategy for the treatment of acute liver failure and inborn metabolic defects of the liver. Although minimally invasive, known safety risks of the method include portal vein thrombosis and pulmonary embolism. Since no systematic data on these potential side effects exist, we investigated the toxicological profile of repeated intraportal infusion of allogeneic liver cells in 30 rabbits under GLP conditions. Rabbit liver cells were administered once daily for 6 consecutive days at 3 different dose levels, followed by a 2-week recovery period. No test item-related mortality was observed. During cell infusion, clinical findings such as signs of apathy and hyperventilation, moderate elevations of liver enzymes ALT and AST and a slight decrease in AP were observed, all fully reversible. Cell therapy-related macroscopic and histological findings, especially in liver and lungs, were observed in animals of all dose groups. In conclusion, the liver and lungs were identified as potential toxicological target organs of intraportal allogeneic liver cell infusion. A NOAEL (no observed adverse effect level) was not defined because of findings observed also in the low-dose group. No unexpected reactions became apparent in this GLP study. Overall, LCT at total doses up to 12 % (2 % daily over 6 days) of the total liver cell count were tolerated in rabbits. Observed adverse effects are not considered critical for treatment in the intended patient populations provided that a thorough monitoring of safety relevant parameters is in place during the application procedure.
Collapse
Affiliation(s)
- S Kafert-Kasting
- Research and Development, Cytonet GmbH & Co. KG, 30625 Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Koenig S, Yuan Q, Krause P, Christiansen H, Rave-Fraenk M, Kafert-Kasting S, Kriegbaum H, Schneider A, Ott M, Meyburg J. Regional Transient Portal Ischemia and Irradiation as Preparative Regimen for Hepatocyte Transplantation. Cell Transplant 2011; 20:303-11. [DOI: 10.3727/096368910x520074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hepatocyte transplantation is regarded as a promising option to correct hereditary metabolic liver disease. This study describes a novel method involving regional transient portal ischemia (RTPI) in combination with hepatic irradiation (IR) as a preparative regimen for hepatocyte transplantation. The right lobules of rat livers (45% of liver mass) were subjected to RTPI of 30–120 min. Liver specimens and serum samples were analyzed for transaminase levels, DNA damage, apoptosis, and proliferation. Repopulation experiments involved livers of dipeptidylpeptidase IV (DPPIV)-deficient rats preconditioned with RTPI (60–90 min) either with or without prior partial hepatic IR (25 Gy). After reperfusion intervals of 1 and 24 h, 12 million wild-type (DPPIV positive) hepatocytes were transplanted into recipient livers via the spleen. RTPI of 60–90 min caused limited hepatic injury through necrosis and induced a distinct regenerative response in the host liver. Twelve weeks following transplantation, small clusters of donor hepatocytes were detected within the portal areas. Quantitative analysis revealed limited engraftment of 0.79% to 2.95%, whereas control animals (sham OP) exhibited 4.16% (determined as relative activity of DPPIV when compared to wild-type liver). Repopulation was significantly enhanced (21.43%) when IR was performed prior to RTPI, optimum preconditioning settings being 90 min of ischemia and 1 h of reperfusion before transplantation. We demonstrate that RTPI alone is disadvantageous to donor cell engraftment, whereas the combination of IR with RTPI comprises an effective preparative regimen for liver repopulation. The method described clearly has potential for clinical application.
Collapse
Affiliation(s)
- S. Koenig
- Department of General and Visceral Surgery, University Medical Centre Goettingen, Goettingen, Germany
| | - Q. Yuan
- Department of Gastroenterology, Hepatology and Endocrinology, Centre of Internal Medicine, Hanover Medical School, Hanover, Germany
- Twincore Centre for Experimental and Clinical Research, Hannover, Germany
| | - P. Krause
- Department of General and Visceral Surgery, University Medical Centre Goettingen, Goettingen, Germany
| | - H. Christiansen
- Department of Radiotherapy, University Medical Centre Goettingen, Goettingen, Germany
| | - M. Rave-Fraenk
- Department of Radiotherapy, University Medical Centre Goettingen, Goettingen, Germany
| | | | | | - A. Schneider
- Department of Gastroenterology, Hepatology and Endocrinology, Centre of Internal Medicine, Hanover Medical School, Hanover, Germany
| | - M. Ott
- Department of General and Visceral Surgery, University Medical Centre Goettingen, Goettingen, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Centre of Internal Medicine, Hanover Medical School, Hanover, Germany
- Twincore Centre for Experimental and Clinical Research, Hannover, Germany
| | - J. Meyburg
- Department of General and Visceral Surgery, University Medical Centre Goettingen, Goettingen, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Centre of Internal Medicine, Hanover Medical School, Hanover, Germany
| |
Collapse
|
10
|
|
11
|
Meyburg J, Alexandrova K, Barthold M, Kafert-Kasting S, Schneider AS, Attaran M, Hoerster F, Schmidt J, Hoffmann GF, Ott M. Liver cell transplantation: basic investigations for safe application in infants and small children. Cell Transplant 2009; 18:777-86. [PMID: 19796496 DOI: 10.3727/096368909x470775] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cell transplantation (LCT) is a very promising method for the use in pediatric patients. It is significantly less invasive than whole organ transplantation, but has the potential to cure or at least to substantially improve severe disorders like inborn errors of metabolism or acute liver failure. Prior to a widespread use of the technique in children, some important issues regarding safety and efficacy must be addressed. We developed a mathematical model to estimate total hepatocyte counts in relation to bodyweight to make possible more appropriate dose calculations. Different liver cell suspensions were studied at different flow rates and different catheter sizes to determine mechanical damage of cells by shear forces. At moderate flow rates, no significant loss of viability was observed even at a catheter diameter of 4.2F. Addition of heparin to the cell suspension is favored, which is in contrast to previous animal experiments. Mitochondrial function of the hepatocytes was determined with the WST-1 assay and was not substantially altered by cryopreservation. We conclude that especially with the use of small catheters, human LCT should be safe and efficient even in small infants and neonates.
Collapse
Affiliation(s)
- Jochen Meyburg
- Department of General Pediatrics, University Children's Hospital, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Alison MR, Islam S, Lim S. Stem cells in liver regeneration, fibrosis and cancer: the good, the bad and the ugly. J Pathol 2009; 217:282-98. [PMID: 18991329 DOI: 10.1002/path.2453] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The worldwide shortage of donor livers to transplant end stage liver disease patients has prompted the search for alternative cell therapies for intractable liver diseases, such as acute liver failure, cirrhosis and hepatocellular carcinoma (HCC). Under normal circumstances the liver undergoes a low rate of hepatocyte 'wear and tear' renewal, but can mount a brisk regenerative response to the acute loss of two-thirds or more of the parenchymal mass. A body of evidence favours placement of a stem cell niche in the periportal regions, although the identity of such stem cells in rodents and man is far from clear. In animal models of liver disease, adopting strategies to provide a selective advantage for transplanted hepatocytes has proved highly effective in repopulating recipient livers, but the poor success of today's hepatocyte transplants can be attributed to the lack of a clinically applicable procedure to force a similar repopulation of the human liver. The activation of bipotential hepatic progenitor cells (HPCs) is clearly vital for survival in many cases of acute liver failure, and the signals that promote such reactions are being elucidated. Bone marrow cells (BMCs) make, at best, a trivial contribution to hepatocyte replacement after damage, but other BMCs contribute to the hepatic collagen-producing cell population, resulting in fibrotic disease; paradoxically, BMC transplantation may help alleviate established fibrotic disease. HCC may have its origins in either hepatocytes or HPCs, and HCCs, like other solid tumours appear to be sustained by a minority population of cancer stem cells.
Collapse
Affiliation(s)
- M R Alison
- Centre for Diabetes and Metabolic Medicine, St Bartholomew's Hospital and the London School of Medicine and Dentistry, London, UK.
| | | | | |
Collapse
|
13
|
Ott M. A symphony of techniques for liver cell therapy, only applicable to rats? J Hepatol 2008; 49:6-8. [PMID: 18485519 DOI: 10.1016/j.jhep.2008.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
14
|
Meyburg J, Hoffmann GF. Liver cell transplantation for the treatment of inborn errors of metabolism. J Inherit Metab Dis 2008; 31:164-72. [PMID: 18392744 DOI: 10.1007/s10545-008-0829-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 02/01/2008] [Accepted: 02/05/2008] [Indexed: 11/25/2022]
Abstract
Over the last 15 years, liver cell transplantation (LCT) has developed from an experimental laboratory technique to a potentially life-saving therapeutic option. Because of its minimally invasive nature, the method is especially attractive for (small) children. In children with liver-based inborn errors of metabolism, this transfer of enzyme activity can be regarded as a gene therapy, which can be installed independently and additionally to conservative treatment concepts. To date 14 children with inherited metabolic diseases have undergone LCT in various centres. Although individual results are encouraging, different treatment protocols, difficulties in the objective assessment of function of the transplant, and finally the lack of a controlled study make it difficult to judge the overall significance of LCT in the treatment of metabolic diseases and call for collaborative clinical research.
Collapse
Affiliation(s)
- J Meyburg
- Department of General Pediatrics, University Children’s Hospital, Heidelberg, Germany.
| | | |
Collapse
|
15
|
Alison MR, Choong C, Lim S. Application of liver stem cells for cell therapy. Semin Cell Dev Biol 2007; 18:819-26. [PMID: 17997335 DOI: 10.1016/j.semcdb.2007.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 09/28/2007] [Indexed: 02/06/2023]
Abstract
The worldwide shortage of donor livers to transplant end stage liver disease patients has prompted the search for alternative cell therapies for intractable liver disease. Embryonic stem cells can be readily differentiated into hepatocytes, and their transplantation into animals has improved liver function in the absence of teratoma formation: their use in bioartificial liver support is an obvious application. In animal models of liver disease, adopting strategies to provide a selective advantage for transplanted foetal or adult hepatocytes have proved highly effective in repopulating recipient livers, but the poor success of today's hepatocyte transplants can be attributed to the lack of a clinically applicable procedure to force a similar repopulation of the human liver. The activation of bipotential hepatic progenitor cells is clearly vital for survival in many cases of acute liver failure, but surprisingly little progress has been made with these cells in terms of transplantation. Finally there is the controversial subject of autologous bone marrow, and while the contribution of these indigenous cells to liver turnover seems at best, trivial, results from a small number of phase 1 studies of transplantation of bone marrow to cirrhotic patients have been moderately encouraging.
Collapse
Affiliation(s)
- Malcolm R Alison
- Centre for Diabetes and Metabolic Medicine, Queen Mary's School of Medicine and Dentistry, ICMS, 4 Newark Street, London E1 2AT, UK.
| | | | | |
Collapse
|
16
|
Lebedinsky AS, Cherkashina DV, Sukach AN, Volkova NA, Fuller BJ, Petrenko AY. Positive effects of cryopreserved adult or fetal liver cell transplants on hypercholesterolemia and hepatic antioxidant defenses in cholesterol-fed rabbits. Cryobiology 2007; 55:72-9. [PMID: 17624324 DOI: 10.1016/j.cryobiol.2007.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Revised: 05/28/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
The liver plays a central role in lipid metabolism and the pathophysiology of many lipid disorders leads in turn to liver cell injury. Adult hepatocyte transplants provide well-recognized metabolic support, whilst hepatic stem cells may promote liver regeneration and repair, but in both cases, any clinical application would require low temperature banking of the cells. A model of dietary hypercholesterolemia was established in rabbits over 5 months, and transplants of cryopreserved adult hepatocytes (CH) and cryopreserved fetal liver cells (CFLC) were compared to Sham transplants. Cryopreservation was performed by a two-step freezing protocol using 1.5mol/l dimethyl sulfoxide (Me(2)SO). Serum contents of cholesterol lipid classes were measured during the subsequent 4 weeks, in addition to markers of serum and liver oxidative stress. Both CH and CFLC transplantation resulted in a decrease of serum lipids during the 1st week after transplantation. The effect of CH was limited to the 1st week, but CFLC provided a sustained lipid-lowering effect over the 4 weeks. The ultimate outcome of CFLC transplantation by the end of 4 weeks was more pronounced and statistically significant for both serum total cholesterol (0.15+/-0.05 versus 3.65+/-1.4mmol/l) and high-density lipoprotein-cholesterol (0.04+/-0.01 versus 0.56+/-0.06mmol/l) compared to Sham transplants (p<0.05 in both cases). CFLC transplantation also normalized hepatic tissue antioxidant defenses, namely an increase in reduced glutathione content, and enzyme activities for catalase and glutathione reductase (all significantly higher at p<0.05 than in Sham transplants) by 4 weeks.
Collapse
Affiliation(s)
- Alexander S Lebedinsky
- Department of Biochemistry, Institute for Problems of Cryobiology and Cryomedicine, Pereyaslavskaya Street, 23, Kharkov 61015, Ukraine
| | | | | | | | | | | |
Collapse
|
17
|
Takahashi RI, Kuramochi T, Aoyagi K, Hashimoto S, Miyoshi I, Kasai N, Hakamata Y, Kobayashi E, Ueda M. Establishment and characterization of CAG/EGFP transgenic rabbit line. Transgenic Res 2006; 16:115-20. [PMID: 17103241 DOI: 10.1007/s11248-006-9043-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 09/19/2006] [Indexed: 10/23/2022]
Abstract
Cell marking is a very important procedure for identifying donor cells after cell and/or organ transplantation in vivo. Transgenic animals expressing marker proteins such as enhanced green fluorescent protein (EGFP) in their tissues are a powerful tool for research in fields of tissue engineering and regenerative medicine. The purpose of this study was to establish transgenic rabbit lines that ubiquitously express EGFP under the control of the cytomegalovirus immediate early enhancer/beta-actin promoter (CAG) to provide a fluorescent transgenic animal as a bioresource. We microinjected the EGFP expression vector into 945 rabbit eggs and 4 independent transgenic candidate pups were obtained. Two of them died before sexual maturation and one was infertile. One transgenic male candidate founder rabbit was obtained and could be bred by artificial insemination. The rabbit transmitted the transgene in a Mendelian manner. Using fluorescence in situ hybridization analysis, we detected the transgene at 7q11 on chromosome 7 as a large centromeric region in two F1 offspring (one female and one male). Eventually, one transgenic line was established. Ubiquitous EGFP fluorescence was confirmed in all examined organs. There were no gender-related differences in fluorescence. The established CAG/EGFP transgenic rabbit will be an important bioresource and a useful tool for various studies in tissue engineering and regenerative medicine.
Collapse
|
18
|
Nussler A, Konig S, Ott M, Sokal E, Christ B, Thasler W, Brulport M, Gabelein G, Schormann W, Schulze M, Ellis E, Kraemer M, Nocken F, Fleig W, Manns M, Strom SC, Hengstler JG. Present status and perspectives of cell-based therapies for liver diseases. J Hepatol 2006; 45:144-59. [PMID: 16730092 DOI: 10.1016/j.jhep.2006.04.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In recent years the interest in liver cell therapy has been increasing continuously, since the demand for whole liver transplantations in human beings far outweighs the supply. From the clinical point of view, transplantation of hepatocytes or hepatocyte-like cells may represent an alternative to orthotopic liver transplants in acute liver failure, for the correction of genetic disorders resulting in metabolically deficient states, and for late stage liver disease such as cirrhosis. Although the concept of cell therapy for various diseases of the liver is widely accepted, the practical approach in humans often remains difficult. An international expert panel critically discussed the recent published data on clinical and experimental hepatocyte transplantation and the possible role of stem cells in liver tissue repair. This paper aims to summarise the present status of cell based therapies for liver diseases and to identify areas of future preclinical and clinical research.
Collapse
Affiliation(s)
- Andreas Nussler
- Fresenius Biotech Bad Homburg, Division of Cell Therapy, Bad Homburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|