1
|
MacLelland V, Kravitz M, Gupta A. Therapeutic and diagnostic applications of antisense peptide nucleic acids. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102086. [PMID: 38204913 PMCID: PMC10777018 DOI: 10.1016/j.omtn.2023.102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Peptide nucleic acids (PNAs) are synthetic nucleic acid analogs with a neutral N-(2-aminoethyl) glycine backbone. PNAs possess unique physicochemical characteristics such as increased resistance to enzymatic degradation, ionic strength and stability over a wide range of temperatures and pH, and low intrinsic electrostatic repulsion against complementary target oligonucleotides. PNA has been widely used as an antisense oligonucleotide (ASO). Despite the favorable characteristics of PNA, in comparison with other ASO technologies, the use of antisense PNA for novel therapeutics has lagged. This review provides a brief overview of PNA, its antisense mechanisms of action, delivery strategies, and highlights successful applications of PNA, focusing on anti-pathogenic, anti-neurodegenerative disease, anti-cancer, and diagnostic agents. For each application, several studies are discussed focusing on the different target sites of the PNA, design of different PNAs and the therapeutic outcome in different cell lines and animal models. Thereafter, persisting limitations slowing the successful integration of antisense PNA therapeutics are discussed in order to highlight actionable next steps in the development and optimization of PNA as an ASO.
Collapse
Affiliation(s)
- Victoria MacLelland
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, CT 06117, USA
| | - Madeline Kravitz
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, CT 06117, USA
| | - Anisha Gupta
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, CT 06117, USA
| |
Collapse
|
2
|
Padarath K, Deroubaix A, Kramvis A. The Complex Role of HBeAg and Its Precursors in the Pathway to Hepatocellular Carcinoma. Viruses 2023; 15:v15040857. [PMID: 37112837 PMCID: PMC10144019 DOI: 10.3390/v15040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Hepatitis B virus (HBV) is one of the seven known human oncogenic viruses and has adapted to coexist with a single host for prolonged periods, requiring continuous manipulation of immunity and cell fate decisions. The persistence of HBV infection is associated with the pathogenesis of hepatocellular carcinoma, and various HBV proteins have been implicated in promoting this persistence. The precursor of hepatitis e antigen (HBeAg), is translated from the precore/core region and is post-translationally modified to yield HBeAg, which is secreted in the serum. HBeAg is a non-particulate protein of HBV and can act as both a tolerogen and an immunogen. HBeAg can protect hepatocytes from apoptosis by interfering with host signalling pathways and acting as a decoy to the immune response. By evading the immune response and interfering with apoptosis, HBeAg has the potential to contribute to the hepatocarcinogenic potential of HBV. In particular, this review summarises the various signalling pathways through which HBeAg and its precursors can promote hepatocarcinogenesis via the various hallmarks of cancer.
Collapse
|
3
|
Cell Penetrating Peptides Used in Delivery of Therapeutic Oligonucleotides Targeting Hepatitis B Virus. Pharmaceuticals (Basel) 2020; 13:ph13120483. [PMID: 33371278 PMCID: PMC7766285 DOI: 10.3390/ph13120483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Peptide Nucleic Acid (PNAs) and small noncoding RNAs including small interfering RNAs (siRNAs) represent a new class of oligonucleotides considered as an alternative therapeutic strategy in the chronic hepatitis B treatment. Indeed, chronic hepatitis B virus (HBV) infection remains a major public health problem worldwide, despite the availability of an effective prophylactic vaccine. Current therapeutic approaches approved for chronic HBV treatment are pegylated-interferon alpha (IFN)-α and nucleos(t)ide analogues (NAs). Both therapies do not completely eradicate viral infection and promote severe side effects. In this context, the development of new effective treatments is imperative. This review focuses on antiviral activity of both PNAs and siRNAs targeting hepatitis B virus. Thus, we briefly present our results on the ability of PNAs to decrease hepadnaviral replication in duck hepatitis B virus (DHBV) model. Interestingly, other oligonucleotides as siRNAs could significantly inhibit HBV antigen expression in transient replicative cell culture. Because the application of these oligonucleotides as new antiviral drugs has been hampered by their poor intracellular bioavailability, we also discuss the benefits of their coupling to different molecules such as the cell penetrating peptides (CPPs), which were used as vehicles to deliver therapeutic agents into the cells.
Collapse
|
4
|
Salmain M, Fischer-Durand N, Rudolf B. Bioorthogonal Conjugation of Transition Organometallic Complexes to Peptides and Proteins: Strategies and Applications. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michèle Salmain
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; 4 place Jussieu 75005 Paris France
| | - Nathalie Fischer-Durand
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; 4 place Jussieu 75005 Paris France
| | - Bogna Rudolf
- Department of Organic Chemistry; Faculty of Chemistry; University of Lodz; 91-403 Lodz Poland
| |
Collapse
|
5
|
Developments in Cell-Penetrating Peptides as Antiviral Agents and as Vehicles for Delivery of Peptide Nucleic Acid Targeting Hepadnaviral Replication Pathway. Biomolecules 2018; 8:biom8030055. [PMID: 30013006 PMCID: PMC6165058 DOI: 10.3390/biom8030055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/11/2022] Open
Abstract
Alternative therapeutic approaches against chronic hepatitis B virus (HBV) infection need to be urgently developed because current therapies are only virostatic. In this context, cell penetration peptides (CPPs) and their Peptide Nucleic Acids (PNAs) cargoes appear as a promising novel class of biologically active compounds. In this review we summarize different in vitro and in vivo studies, exploring the potential of CPPs as vehicles for intracellular delivery of PNAs targeting hepadnaviral replication. Thus, studies conducted in the duck HBV (DHBV) infection model showed that conjugation of (D-Arg)8 CPP to PNA targeting viral epsilon (ε) were able to efficiently inhibit viral replication in vivo following intravenous administration to ducklings. Unexpectedly, some CPPs, (D-Arg)8 and Decanoyl-(D-Arg)8, alone displayed potent antiviral effect, altering late stages of DHBV and HBV morphogenesis. Such antiviral effects of CPPs may affect the sequence-specificity of CPP-PNA conjugates. By contrast, PNA conjugated to (D-Lys)4 inhibited hepadnaviral replication without compromising sequence specificity. Interestingly, Lactose-modified CPP mediated the delivery of anti-HBV PNA to human hepatoma cells HepaRG, thus improving its antiviral activity. In light of these promising data, we believe that future studies will open new perspectives for translation of CPPs and CPP-PNA based technology to therapy of chronic hepatitis B.
Collapse
|
6
|
Role of Cell-Penetrating Peptides in Intracellular Delivery of Peptide Nucleic Acids Targeting Hepadnaviral Replication. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:162-169. [PMID: 29246295 PMCID: PMC5633256 DOI: 10.1016/j.omtn.2017.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 02/08/2023]
Abstract
Peptide nucleic acids (PNAs) are potentially attractive antisense agents against hepatitis B virus (HBV), although poor cellular uptake limits their therapeutic application. In the duck HBV (DHBV) model, we evaluated different cell-penetrating peptides (CPPs) for delivery to hepatocytes of a PNA-targeting hepadnaviral encapsidation signal (ε). This anti-ε PNA exhibited sequence-specific inhibition of DHBV RT in a cell-free system. Investigation of the best in vivo route of delivery of PNA conjugated to (D-Arg)8 (P1) showed that intraperitoneal injection to ducklings was ineffective, whereas intravenously (i.v.) injected fluorescein-P1-PNA reached the hepatocytes. Treatment of virus carriers with i.v.-administered P1-PNA resulted in a decrease in viral DNA compared to untreated controls. Surprisingly, a similar inhibition of viral replication was observed in vivo as well as in vitro in primary hepatocyte cultures for a control 2 nt mismatched PNA conjugated to P1. By contrast, the same PNA coupled to (D-Lys)4 (P2) inhibited DHBV replication in a sequence-specific manner. Interestingly, only P1, but not P2, displayed anti-DHBV activity in the absence of PNA cargo. Hence, we provide new evidence that CPP-PNA conjugates inhibit DHBV replication following low-dose administration. Importantly, our results demonstrate the key role of CPPs used as vehicles in antiviral specificity of CPP-PNA conjugates.
Collapse
|
7
|
Abstract
The discovery of an ever-expanding plethora of coding and non-coding RNAs with nodal and causal roles in the regulation of lung physiology and disease is reinvigorating interest in the clinical utility of the oligonucleotide therapeutic class. This is strongly supported through recent advances in nucleic acids chemistry, synthetic oligonucleotide delivery and viral gene therapy that have succeeded in bringing to market at least three nucleic acid-based drugs. As a consequence, multiple new candidates such as RNA interference modulators, antisense, and splice switching compounds are now progressing through clinical evaluation. Here, manipulation of RNA for the treatment of lung disease is explored, with emphasis on robust pharmacological evidence aligned to the five pillars of drug development: exposure to the appropriate tissue, binding to the desired molecular target, evidence of the expected mode of action, activity in the relevant patient population and commercially viable value proposition.
Collapse
|
8
|
Zeng Z, Han S, Hong W, Lang Y, Li F, Liu Y, Li Z, Wu Y, Li W, Zhang X, Cao Z. A Tat-conjugated Peptide Nucleic Acid Tat-PNA-DR Inhibits Hepatitis B Virus Replication In Vitro and In Vivo by Targeting LTR Direct Repeats of HBV RNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e295. [PMID: 26978579 PMCID: PMC5014453 DOI: 10.1038/mtna.2016.11] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 01/30/2016] [Indexed: 12/21/2022]
Abstract
Hepatitis B virus (HBV) infection is a major cause of chronic active hepatitis, cirrhosis, and primary hepatocellular carcinoma, all of which are severe threats to human health. However, current clinical therapies for HBV are limited by potential side effects, toxicity, and drug-resistance. In this study, a cell-penetrating peptide-conjugated peptide nucleic acid (PNA), Tat-PNA-DR, was designed to target the direct repeat (DR) sequences of HBV. Tat-PNA-DR effectively inhibited HBV replication in HepG2.2.15 cells. Its anti-HBV effect relied on the binding of Tat-PNA-DR to the DR, whereby it suppressed the translation of hepatitis B e antigen (HBeAg), HBsAg, HBV core, hepatitis B virus x protein, and HBV reverse transcriptase (RT) and the reverse transcription of the HBV genome. Furthermore, Tat-PNA-DR administered by intravenous injection efficiently cleared HBeAg and HBsAg in an acute hepatitis B mouse model. Importantly, it induced an 80% decline in HBV DNA in mouse serum, which was similar to the effect of the widely used clinical drug Lamivudine (3TC). Additionally, a long-term hydrodynamics HBV mouse model also demonstrated Tat-PNA-DR's antiviral effect. Interestingly, Tat-PNA-DR displayed low cytotoxicity, low mouse acute toxicity, low immunogenicity, and high serum stability. These data indicate that Tat-PNA-DR is a unique PNA and a promising drug candidate against HBV.
Collapse
Affiliation(s)
- Zhengyang Zeng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Shisong Han
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Wei Hong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yange Lang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Fangfang Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yongxiang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zeyong Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xianzheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
9
|
Mari C, Mosberger S, Llorente N, Spreckelmeyer S, Gasser G. Insertion of organometallic moieties into peptides and peptide nucleic acids using alternative “click” strategies. Inorg Chem Front 2016. [DOI: 10.1039/c5qi00270b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Application of alternative “click” strategies (metal-free photoclick and one-pot click) to cymantrene and ferrocene derivatives yielded novel metal-containing conjugates.
Collapse
Affiliation(s)
- Cristina Mari
- University of Zurich
- Department of Chemistry
- Zurich
- Switzerland
| | | | - Nuria Llorente
- University of Zurich
- Department of Chemistry
- Zurich
- Switzerland
| | | | - Gilles Gasser
- University of Zurich
- Department of Chemistry
- Zurich
- Switzerland
| |
Collapse
|
10
|
Gebbing M, Bergmann T, Schulz E, Ehrhardt A. Gene therapeutic approaches to inhibit hepatitis B virus replication. World J Hepatol 2015; 7:150-164. [PMID: 25729471 PMCID: PMC4342598 DOI: 10.4254/wjh.v7.i2.150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/23/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Acute and chronic hepatitis B virus (HBV) infections remain to present a major global health problem. The infection can be associated with acute symptomatic or asymptomatic hepatitis which can cause chronic inflammation of the liver and over years this can lead to cirrhosis and the development of hepatocellular carcinomas. Currently available therapeutics for chronically infected individuals aim at reducing viral replication and to slow down or stop the progression of the disease. Therefore, novel treatment options are needed to efficiently combat and eradicate this disease. Here we provide a state of the art overview of gene therapeutic approaches to inhibit HBV replication. We discuss non-viral and viral approaches which were explored to deliver therapeutic nucleic acids aiming at reducing HBV replication. Types of delivered therapeutic nucleic acids which were studied since many years include antisense oligodeoxynucleotides and antisense RNA, ribozymes and DNAzymes, RNA interference, and external guide sequences. More recently designer nucleases gained increased attention and were exploited to destroy the HBV genome. In addition we mention other strategies to reduce HBV replication based on delivery of DNA encoding dominant negative mutants and DNA vaccination. In combination with available cell culture and animal models for HBV infection, in vitro and in vivo studies can be performed to test efficacy of gene therapeutic approaches. Recent progress but also challenges will be specified and future perspectives will be discussed. This is an exciting time to explore such approaches because recent successes of gene therapeutic strategies in the clinic to treat genetic diseases raise hope to find alternative treatment options for patients chronically infected with HBV.
Collapse
|
11
|
Abstract
Over the past two decades, cell-penetrating peptides (CPPs) have become increasingly popular both in research and in application. There have been numerous studies on the physiochemical characteristics and behavior of CPPs in various environments; likewise, the mechanisms of entry and delivery capabilities of these peptides have also been extensively researched. Besides the fundamental issues, there is an enormous interest in the delivery capabilities of the peptides as the family of CPPs is a promising and mostly non-toxic delivery vector candidate for numerous medical applications such as gene silencing, transgene delivery, and splice correction. Lately, however, there has been an emerging field of study besides the high-profile gene therapy applications-the use of peptides and CPPs to combat various infections caused by harmful bacteria, fungi, and viruses.In this chapter, we aim to provide a short overview of the history and properties of CPPs which is followed by more thorough descriptions of antimicrobial and antiviral peptides. To achieve this, we analyze the origin of such peptides, give an overview of the mechanisms of action and discuss the various practical applications which are ongoing or have been suggested based on research.
Collapse
Affiliation(s)
- Kalle Pärn
- Laboratory of Molecular Biotechnology, Institute of Technology, Tartu University, Nooruse 1/517, Tartu, 50411, Estonia,
| | | | | |
Collapse
|
12
|
Abdul F, Ndeboko B, Buronfosse T, Zoulim F, Kann M, Nielsen PE, Cova L. Potent inhibition of late stages of hepadnavirus replication by a modified cell penetrating peptide. PLoS One 2012; 7:e48721. [PMID: 23173037 PMCID: PMC3500254 DOI: 10.1371/journal.pone.0048721] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/28/2012] [Indexed: 12/17/2022] Open
Abstract
Cationic cell-penetrating peptides (CPPs) and their lipid domain-conjugates (CatLip) are agents for the delivery of (uncharged) biologically active molecules into the cell. Using infection and transfection assays we surprisingly discovered that CatLip peptides were able to inhibit replication of Duck Hepatitis B Virus (DHBV), a reference model for human HBV. Amongst twelve CatLip peptides we identified Deca-(Arg)8 having a particularly potent antiviral activity, leading to a drastic inhibition of viral particle secretion without detectable toxicity. Inhibition of virion secretion was correlated with a dose-dependent increase in intracellular viral DNA. Deca-(Arg)8 peptide did neither interfere with DHBV entry, nor with formation of mature nucleocapsids nor with their travelling to the nucleus. Instead, Deca-(Arg)8 caused envelope protein accumulation in large clusters as revealed by confocal laser scanning microscopy indicating severe structural changes of preS/S. Sucrose gradient analysis of supernatants from Deca-(Arg)8-treated cells showed unaffected naked viral nucleocapsids release, which was concomitant with a complete arrest of virion and surface protein-containing subviral particle secretion. This is the first report showing that a CPP is able to drastically block hepadnaviral release from infected cells by altering late stages of viral morphogenesis via interference with enveloped particle formation, without affecting naked nucleocapsid egress, thus giving a view inside the mode of inhibition. Deca-(Arg)8 may be a useful tool for elucidating the hepadnaviral secretory pathway, which is not yet fully understood. Moreover we provide the first evidence that a modified CPP displays a novel antiviral mechanism targeting another step of viral life cycle compared to what has been so far described for other enveloped viruses.
Collapse
Affiliation(s)
- Fabien Abdul
- Université de Lyon 1, Lyon, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Bénédicte Ndeboko
- Université de Lyon 1, Lyon, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Thierry Buronfosse
- Université de Lyon 1, Lyon, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- VetAgro-Sup, Marcy l'Etoile, France
| | - Fabien Zoulim
- Université de Lyon 1, Lyon, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Michael Kann
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CHU de Bordeaux, Bordeaux, France
| | - Peter E. Nielsen
- Department of Cellular and Molecular Medicine and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| | - Lucyna Cova
- Université de Lyon 1, Lyon, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
13
|
Fabani MM, Ivanova GD, Gait MJ. Peptide–Peptide Nucleic Acid Conjugates for Modulation of Gene Expression. THERAPEUTIC OLIGONUCLEOTIDES 2008. [DOI: 10.1039/9781847558275-00080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Martin M. Fabani
- Medical Research Council Laboratory of Molecular Biology Hills Road Cambridge CB2 0QH UK
| | - Gabriela D. Ivanova
- Medical Research Council Laboratory of Molecular Biology Hills Road Cambridge CB2 0QH UK
| | - Michael J. Gait
- Medical Research Council Laboratory of Molecular Biology Hills Road Cambridge CB2 0QH UK
| |
Collapse
|
14
|
|
15
|
Zoulim F, Lucifora J. Hepatitis B virus drug resistance: mechanism and clinical implications for the prevention of treatment failure. Future Virol 2006. [DOI: 10.2217/17460794.1.3.361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatitis B virus (HBV) infection remains a major public health problem worldwide. Recently, the research efforts to identify new inhibitors enabled the development of antiviral agents to treat patients chronically infected by HBV. In clinical practice, the use of nucleoside analogs, which inhibit viral polymerase activity, induces suppression of viral replication accompanied by an improvement in biochemical and histological conditions in most patients. However, many clinical studies revealed the emergence of drug-resistant mutants during extended treatment. This review focuses on the mechanism of HBV drug-resistant mutant selection and on the clinical implications of HBV drug resistance for the prevention of treatment failure.
Collapse
Affiliation(s)
- Fabien Zoulim
- INSERM Unit 271, 151 cours Albert Thomas, 69003 Lyon, France
| | - Julie Lucifora
- INSERM Unit 271, 151 cours Albert Thomas, 69003 Lyon, France
| |
Collapse
|
16
|
Abstract
The efforts towards peptide nucleic acid (PNA) drug discovery using cellular RNAs as molecular targets is briefly reviewed, with special emphasis on recent developments. Special attention is given to cellular delivery in vivo bioavailability and the possibilities of using PNA oligomers to (re)direct alternative splicing of pre-messenger (m)RNA.
Collapse
Affiliation(s)
- E Nielsen
- Department of Medical Biochemistry and Genetics, University of Copenhagen, The Panum Institute, Blegdamsvej 3c, 2200 Copenhagen N, Denmark.
| |
Collapse
|
17
|
Abstract
There are two new nucleoside analogues available for the management of chronic hepatitis B, adefovir and entecavir, and several more in development. In addition, pegylated interferon has become available. Large-scale population studies have re-emphasized the significance of viral load in predicting a poor outcome over the longer term. These new developments have prompted a reassessment of the indications and objectives of therapy for chronic hepatitis B. Hepatitis B virus deoxyribonucleic acid, rather than alanine aminotransferase should be the prime indication for therapy. Hepatitis B e antigen seroconversion can be achieved in 30-40% of treated patients whatever agent is used. However, it takes longer for nucleoside analogues to achieve the same seroconversion rates as interferon. In anti-HBe-positive disease long-term therapy is required for most patients because the relapse rate after withdrawal of therapy is very high, irrespective of the agent used. Viral resistance limits the use of lamivudine, and to a lesser extent adefovir. Resistance to entecavir has so far only been described in pre-existing lamivudine resistance. Although therapy with combinations of nucleoside analogues has not been investigated to any extent, this is the only way to reduce the emergence or resistance, and studies are urgently needed.
Collapse
|
18
|
Lundin KE, Good L, Strömberg R, Gräslund A, Smith CIE. Biological activity and biotechnological aspects of peptide nucleic acid. ADVANCES IN GENETICS 2006; 56:1-51. [PMID: 16735154 DOI: 10.1016/s0065-2660(06)56001-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the latest decades a number of different nucleic acid analogs containing natural nucleobases on a modified backbone have been synthesized. An example of this is peptide nucleic acid (PNA), a DNA mimic with a noncyclic peptide-like backbone, which was first synthesized in 1991. Owing to its flexible and neutral backbone PNA displays very good hybridization properties also at low-ion concentrations and has subsequently attracted large interest both in biotechnology and biomedicine. Numerous modifications have been made, which could be of value for particular settings. However, the original PNA does so far perform well in many diverse applications. The high biostability makes it interesting for in vivo use, although the very limited diffusion over lipid membranes requires further modifications in order to make it suitable for treatment in eukaryotic cells. The possibility to use this nucleic acid analog for gene regulation and gene editing is discussed. Peptide nucleic acid is now also used for specific genetic detection in a number of diagnostic techniques, as well as for site-specific labeling and hybridization of functional molecules to both DNA and RNA, areas that are also discussed in this chapter.
Collapse
Affiliation(s)
- Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center Karolinska Institutet, Karolinska University Hospital, Huddinge 141 86 Stockholm, Sweden
| | | | | | | | | |
Collapse
|