1
|
Wróblewska A, Woziwodzka A, Rybicka M, Bielawski KP, Sikorska K. Polymorphisms Related to Iron Homeostasis Associate with Liver Disease in Chronic Hepatitis C. Viruses 2023; 15:1710. [PMID: 37632052 PMCID: PMC10457817 DOI: 10.3390/v15081710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Dysregulation of iron metabolism in chronic hepatitis C (CHC) is a significant risk factor for hepatic cirrhosis and cancer. We studied if known genetic variants related to iron homeostasis associate with liver disease progression in CHC. Retrospective analysis included 249 CHC patients qualified for antiviral therapy between 2004 and 2014. For all patients, nine SNPs within HFE, TFR2, HDAC2, HDAC3, HDAC5, TMPRSS6, and CYBRD1 genes were genotyped. Expression of selected iron-related genes, was determined with qRT-PCR in 124 liver biopsies, and mRNA expression of co-inhibitory receptors (PD-1, Tim3, CTLA4) was measured in 79 liver samples. CYBRD1 rs884409, HDAC5 rs368328, TFR2 rs7385804, and TMPRSS6 rs855791 associated with histopathological changes in liver tissue at baseline. The combination of minor allele in HDAC3 rs976552 and CYBRD1 rs884409 linked with higher prevalence of hepatocellular carcinoma (HCC) during follow up (OR 8.1 CI 2.2-29.2; p = 0.001). Minor allele in HDAC3 rs976552 associated with lower hepatic expression of CTLA4. Tested polymorphisms related to iron homeostasis associate with histopathological changes in the liver. The presence of both HDAC3 rs976552 G and CYBRD1 rs884409 G alleles correlates with HCC occurrence, especially in the group of patients with elevated AST (>129 IU/L). rs976552 in HDAC3 could impact immunological processes associated with carcinogenesis in CHC.
Collapse
Affiliation(s)
- Anna Wróblewska
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (A.W.); (A.W.); (M.R.); (K.P.B.)
| | - Anna Woziwodzka
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (A.W.); (A.W.); (M.R.); (K.P.B.)
| | - Magda Rybicka
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (A.W.); (A.W.); (M.R.); (K.P.B.)
| | - Krzysztof P. Bielawski
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (A.W.); (A.W.); (M.R.); (K.P.B.)
| | - Katarzyna Sikorska
- Division of Tropical Medicine and Epidemiology, Faculty of Health Sciences, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 81-519 Gdynia, Poland
| |
Collapse
|
2
|
El-Gharbawi N, Shaheen I, Hamdy M, Elgawhary S, Samir M, Hanna BM, Ali EY, Youssef EA. Genetic Variations of ferroportin-1(FPN1-8CG), TMPRSS6 (rs855791) and Hemojuvelin (I222N and G320V) Among a Cohort of Egyptian β-Thalassemia Major Patients. Indian J Hematol Blood Transfus 2023; 39:258-265. [PMID: 37006987 PMCID: PMC10064347 DOI: 10.1007/s12288-022-01580-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 09/05/2022] [Indexed: 04/04/2023] Open
Abstract
Iron overload remains a major cause of morbidity and mortality among β-thalassemia major (β-TM) patients. Iron regulatory proteins and their genetic variants together with changes in hepcidin levels in thalassemic patients could affect the disease manifestations. This work aimed to study genetic variations of ferroportin-1 (FPN1-8CG), Transmembrane Serine Protease 6 (TMPRSS6 rs855791) and hemojuvelin (HJV I222N and G320V) genes within a cohort of 97 β-TM Egyptian patients by Polymerase chain reaction Restriction Fragment Length Polymorphism (PCR-RFLP) in comparison to fifty normal control subjects. Among β-TM patients; the CG variant of FPN1 was significantly higher, while the TT and TC variants of TMPRSS6 were significantly lower in comparison to controls. Liver Iron Concentration (LIC) was significantly higher among β-TM patients harboring the FPN1 (GG) genotype and we found that FPN1gene mutation acts as independent predictor of MRI LIC (p = 0.011), Pulmonary artery pressure (PAP) was significantly higher in patients harboring the mutant FPN1 (GG and CG) genotypes (p value 0.04). β-TM patients having the HJV I222N (AA) genotype were having significantly higher cardiac iron overload (p value = 0.026). The studied genetic variants of iron regulatory proteins could alter the manifestations of iron overload thus resulting in different clinical phenotypes of thalassemic patients, these findings need to be confirmed by larger cohorts of patients with longer follow-up periods. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-022-01580-8.
Collapse
Affiliation(s)
| | - Iman Shaheen
- Clinical Pathology Department, Cairo University, Cairo, Egypt
| | - Mona Hamdy
- Pediatric Hematology, Department of pediatrics, Cairo University, Cairo, Egypt
| | | | - Mohamed Samir
- Pediatric Cardiology, Department of Pediatrics, Cairo University, Cairo, Egypt
| | - Baher Matta Hanna
- Pediatric Cardiology, Department of Pediatrics, Cairo University, Cairo, Egypt
| | | | - Eman Ahmed Youssef
- Clinical Pathology Department, Cairo University, Cairo, Egypt
- Lecturer of Hematopathology, Department of Clinical and chemical pathology, Cairo University, Cairo, Egypt
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, 11562 Cairo, Egypt
| |
Collapse
|
3
|
Tian T, Xiao F, Li H, Ding D, Dong W, Hou G, Zhao L, Yang Y, Yang Y, Zhou W. Association between serum iron status and primary liver cancer risk: a Mendelian randomization analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1533. [PMID: 34790739 PMCID: PMC8576647 DOI: 10.21037/atm-21-4608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022]
Abstract
Background Serum iron status has been reported as associated with primary liver cancer (PLC) risk. However, whether iron status plays a role in the development of PLC remains inconclusive. Methods Genetic summary statistics of the four biomarkers (serum iron, ferritin, transferrin saturation, and transferrin) of iron status and PLC were retrieved from two independent genome-wide association studies (GWAS) that had been performed in European populations. Two-sample univariate and multivariate Mendelian randomization (MR) analyses were conducted to determine the causal link between iron status and PLC risk. Results No significant horizontal pleiotropy was detected for the four biomarkers according to the Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) global test. No evidence of between-single nucleotide polymorphism (SNP) heterogeneity and directional pleiotropy was detected by the Cochran’s Q test and MR-Egger regression for serum iron, ferritin, and transferrin. For transferrin saturation, although no heterogeneity was detected, the directional pleiotropy was significant (P value for intercept of MR-Egger regression =0.033). Univariate MR estimates based on inverse variance weighting (IVW) method suggested that there was no causal link between serum iron [odds ratio (OR) =0.71, 95% confidence interval (CI): 0.45 to 1.11], ferritin (OR =0.56, 95% CI: 0.16 to 2.04), and transferrin (OR =0.91, 95% CI: 0.72 to 1.15) and PLC risk. We found a significant causal relationship between transferrin saturation and PLC risk (OR =0.45, 95% CI: 0.22 to 0.90), although this link was non-significant in multivariate MR analysis. Conclusions There might be no causal relationship between iron status and PLC risk. However, data from larger sample size and people with different ethnic background were needed to further validate our findings.
Collapse
Affiliation(s)
- Tao Tian
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Feng Xiao
- Department of Organ Transplantation, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Hongdong Li
- No. 960 Hospital of PLA Joint Logistic Support Force, Jinan, China
| | - Dongyang Ding
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Wei Dong
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Guojun Hou
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Linghao Zhao
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Yun Yang
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Yuan Yang
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Weiping Zhou
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| |
Collapse
|
4
|
Maciak K, Adamowicz-Salach A, Poznanski J, Gora M, Fronk J, Burzynska B. A Family Affected by a Life-Threatening Erythrocyte Defect Caused by Pyruvate Kinase Deficiency With Normal Iron Status: A Case Report. Front Genet 2020; 11:560248. [PMID: 33193643 PMCID: PMC7655982 DOI: 10.3389/fgene.2020.560248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/09/2020] [Indexed: 01/19/2023] Open
Abstract
Background Red cell pyruvate kinase deficiency (PKD) is a defect of glycolysis causing congenital non-spherocytic hemolytic anemia. PKD is transmitted as an autosomal recessive trait. The clinical features of PKD are highly variable, from mild to life-threatening anemia which can lead to death in the neonatal period. Most patients with PKD must receive regular transfusions in early childhood and as a consequence suffer from iron overloading. Patient Here, we report a Polish family with life-threatening hemolytic anemia of unknown etiology. Whole exome sequencing identified two heterozygous mutations, c.1529 G > A (p.R510Q) and c.1495 T > C (p.S499P) in the PKLR gene. Molecular modeling showed that the both PKLR mutations are responsible for major disturbance of the protein structure and functioning. Despite frequent transfusions the patients do not show any signs of iron overload and hepcidin, a major regulator of iron uptake, is undetectable in their serum. The patients were homozygous for the rs855791 variant of the TMPRSS6 gene which has earlier been shown to down-regulate iron absorption and accumulation. Conclusion The lack of iron overload despite a reduced level of hepcidin in two transfusion-dependent PKD patients suggests the existence of a hepcidin-independent mechanism of iron regulation preventing iron overloading.
Collapse
Affiliation(s)
- Karolina Maciak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Adamowicz-Salach
- Department of Pediatrics, Hematology and Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Jaroslaw Poznanski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Monika Gora
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Fronk
- Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warsaw, Poland
| | - Beata Burzynska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Regulation of Iron Homeostasis and Related Diseases. Mediators Inflamm 2020; 2020:6062094. [PMID: 32454791 PMCID: PMC7212278 DOI: 10.1155/2020/6062094] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
The liver is the organ for iron storage and regulation; it senses circulating iron concentrations in the body through the BMP-SMAD pathway and regulates the iron intake from food and erythrocyte recovery into the bloodstream by secreting hepcidin. Under iron deficiency, hypoxia, and hemorrhage, the liver reduces the expression of hepcidin to ensure the erythropoiesis but increases the excretion of hepcidin during infection and inflammation to reduce the usage of iron by pathogens. Excessive iron causes system iron overload; it accumulates in never system and damages neurocyte leading to neurodegenerative diseases such as Parkinson's syndrome. When some gene mutations affect the perception of iron and iron regulation ability in the liver, then they decrease the expression of hepcidin, causing hereditary diseases such as hereditary hemochromatosis. This review summarizes the source and utilization of iron in the body, the liver regulates systemic iron homeostasis by sensing the circulating iron concentration, and the expression of hepcidin regulated by various signaling pathways, thereby understanding the pathogenesis of iron-related diseases.
Collapse
|
6
|
Rametta R, Dongiovanni P, Baselli GA, Pelusi S, Meroni M, Fracanzani AL, Busti F, Castagna A, Scarlini S, Corradini E, Pietrangelo A, Girelli D, Fargion S, Valenti L. Impact of natural neuromedin-B receptor variants on iron metabolism. Am J Hematol 2020; 95:167-177. [PMID: 31724192 DOI: 10.1002/ajh.25679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/18/2019] [Accepted: 11/11/2019] [Indexed: 12/27/2022]
Abstract
Iron overload heritability remains partly unexplained. By performing whole exome sequencing in three patients with a clinical phenotype of hemochromatosis not accounted by known genetic risk factors, we identified in all patients rare variants predicted to alter activity of Neuromedin-B receptor (NMBR). Coding NMBR mutations were enriched in 129 patients with hereditary hemochromatosis or iron overload phenotype, as compared to ethnically matched controls, including 100 local healthy blood donors and 1000Genomes project participants (15.5% vs 5%, P = .0038 at burden test), and were associated with higher transferrin saturation in regular blood donors (P = .04). Consistently, in 191 patients with nonalcoholic fatty liver, the most common low-frequency p.L390 M variant was independently associated with higher ferritin (P = .03). In 58 individuals, who underwent oral iron challenge, carriage of the p.L390 M variant was associated with higher transferrin saturation and lower hepcidin release. Furthermore, the circulating concentration of the natural NMBR ligand, Neuromedin-B, was reduced in response to iron challenge. It was also decreased in individuals carrying the p.L390 M variant and with hemochromatosis in parallel with increased transferrin saturation. In mice, Nmbr was induced by chronic dietary iron overload in the liver, gut, pancreas, spleen, and skeletal muscle, while Nmb was downregulated in gut, pancreas and spleen. Finally, Nmb amplified holo-transferrin dependent induction of hepcidin in primary mouse hepatocytes, which was associated with Jak2 induction and abolished by the NMBR antagonist PD168368. In conclusion, NMBR natural variants were enriched in patients with iron overload, and associated with facilitated iron absorption, possibly related to a defect of iron-induced hepcidin release.
Collapse
Affiliation(s)
- Raffaela Rametta
- General Medicine and Metabolic DiseasesFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic DiseasesFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| | - Guido A. Baselli
- Department of Pathophysiology and TransplantationUniversità degli Studi di Milano Milan Italy
| | - Serena Pelusi
- Department of Pathophysiology and TransplantationUniversità degli Studi di Milano Milan Italy
- Translational Medicine – Department of Transfusion Medicine and HematologyFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| | - Marica Meroni
- General Medicine and Metabolic DiseasesFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| | - Anna L. Fracanzani
- General Medicine and Metabolic DiseasesFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
- Department of Pathophysiology and TransplantationUniversità degli Studi di Milano Milan Italy
| | - Fabiana Busti
- Department of MedicineSection of Internal Medicine, Azienda Ospedaliera Universitaria Integrata Verona, University of Verona Verona Italy
| | - Annalisa Castagna
- Department of MedicineSection of Internal Medicine, Azienda Ospedaliera Universitaria Integrata Verona, University of Verona Verona Italy
| | - Stefania Scarlini
- Internal Medicine and Center for Hemochromatosis and Heredometabolic Liver DiseasesAzienda Ospedaliera Universitaria di Modena, University of Modena and Reggio Emilia Modena Italy
| | - Elena Corradini
- Internal Medicine and Center for Hemochromatosis and Heredometabolic Liver DiseasesAzienda Ospedaliera Universitaria di Modena, University of Modena and Reggio Emilia Modena Italy
| | - Antonello Pietrangelo
- Internal Medicine and Center for Hemochromatosis and Heredometabolic Liver DiseasesAzienda Ospedaliera Universitaria di Modena, University of Modena and Reggio Emilia Modena Italy
| | - Domenico Girelli
- Department of MedicineSection of Internal Medicine, Azienda Ospedaliera Universitaria Integrata Verona, University of Verona Verona Italy
| | - Silvia Fargion
- General Medicine and Metabolic DiseasesFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
- Department of Pathophysiology and TransplantationUniversità degli Studi di Milano Milan Italy
| | - Luca Valenti
- Department of Pathophysiology and TransplantationUniversità degli Studi di Milano Milan Italy
- Translational Medicine – Department of Transfusion Medicine and HematologyFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| |
Collapse
|
7
|
Abstract
Dietary iron absorption and systemic iron traffic are tightly controlled by hepcidin, a liver-derived peptide hormone. Hepcidin inhibits iron entry into plasma by binding to and inactivating the iron exporter ferroportin in target cells, such as duodenal enterocytes and tissue macrophages. Hepcidin is induced in response to increased body iron stores to inhibit further iron absorption and prevent iron overload. The mechanism involves the BMP/SMAD signaling pathway, which triggers transcriptional hepcidin induction. Inactivating mutations in components of this pathway cause hepcidin deficiency, which allows inappropriately increased iron absorption and efflux into the bloodstream. This leads to hereditary hemochromatosis (HH), a genetically heterogenous autosomal recessive disorder of iron metabolism characterized by gradual buildup of unshielded non-transferrin bound iron (NTBI) in plasma and excessive iron deposition in tissue parenchymal cells. The predominant HH form is linked to mutations in the HFE gene and constitutes the most frequent genetic disorder in Caucasians. Other, more severe and rare variants are caused by inactivating mutations in HJV (hemojuvelin), HAMP (hepcidin) or TFR2 (transferrin receptor 2). Mutations in SLC40A1 (ferroportin) that cause hepcidin resistance recapitulate the biochemical phenotype of HH. However, ferroportin-related hemochromatosis is transmitted in an autosomal dominant manner. Loss-of-function ferroportin mutations lead to ferroportin disease, characterized by iron overload in macrophages and low transferrin saturation. Aceruloplasminemia and atransferrinemia are further inherited disorders of iron overload caused by deficiency in ceruloplasmin or transferrin, the plasma ferroxidase and iron carrier, respectively.
Collapse
Affiliation(s)
- Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
De Falco L, Tortora R, Imperatore N, Bruno M, Capasso M, Girelli D, Castagna A, Caporaso N, Iolascon A, Rispo A. The role of TMPRSS6 and HFE variants in iron deficiency anemia in celiac disease. Am J Hematol 2018; 93:383-393. [PMID: 29194702 DOI: 10.1002/ajh.24991] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022]
Abstract
We investigated the role of HFE C282Y, H63D, and TMPRSS6 A736V variants in the pathogenesis of iron deficiency anemia (IDA) in celiac disease (CD) patients, at diagnosis and after 1 year of gluten-free diet (GFD). Demographic and clinical features were prospectively recorded for all CD patients between 2013 and 2017. C282Y, H63D, and A736V variants were evaluated for CD patients and controls. Finally, 505 consecutive CD patients and 539 age-matched control subjects were enrolled. At diagnosis, 229 CD subjects had IDA (45.3%), with a subgroup of anemic patients (45.4%) presented persistent IDA at follow-up. C282Y allele frequency was significantly increased in CD compared with controls (1.1% vs 0.2%, P = .001), whereas H63D and A736V allele frequencies were similar among patients and controls (P = .92 and .84, respectively). At diagnosis, C282Y variant in anemic CD patients was significantly increased compared to nonanemic group (2% and 0.5%, P = .04). At follow-up, A736V was significantly increased in IDA persistent than in IDA not persistent (57.7% vs 35.2%, P < .0001). CD patients with H63D mutation showed higher Hb, MCV, serum iron, and ferritin levels than subjects without HFE mutations. Decreased hepcidin values were observed in anemic compared to nonanemic subjects at follow-up (1.22 ± 1.14 vs 2.08 ± 2.15, P < .001). This study suggests a protective role of HFE in IDA CD patients and confirms the role of TMPRSS6 in predicting oral iron response modulating hepcidin action on iron absorption. Iron supplementation therapeutic management in CD could depend on TMPRSS6 genotype that could predict persistent IDA despite iron supplementation and GFD.
Collapse
Affiliation(s)
- Luigia De Falco
- Department of Molecular Medicine and Medical Biotechnologies; University “Federico II” of Naples; Naples Italy
- CEINGE, Advanced Biotechnologies; Naples Italy
| | - Raffaella Tortora
- Gastroenterology, Department of Clinical Medicine and Surgery; School of Medicine “Federico II” of Naples; Naples Italy
| | - Nicola Imperatore
- Gastroenterology, Department of Clinical Medicine and Surgery; School of Medicine “Federico II” of Naples; Naples Italy
| | - Mariasole Bruno
- CEINGE, Advanced Biotechnologies; Naples Italy
- Department of Medicine, Section of Internal Medicine; University of Verona; Verona Italy
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnologies; University “Federico II” of Naples; Naples Italy
- CEINGE, Advanced Biotechnologies; Naples Italy
- SDN Diagnostic and Nuclear Research Institute; Naples Italy
| | - Domenico Girelli
- Department of Medicine, Section of Internal Medicine; University of Verona; Verona Italy
| | - Annalisa Castagna
- Department of Medicine, Section of Internal Medicine; University of Verona; Verona Italy
| | - Nicola Caporaso
- Gastroenterology, Department of Clinical Medicine and Surgery; School of Medicine “Federico II” of Naples; Naples Italy
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies; University “Federico II” of Naples; Naples Italy
- CEINGE, Advanced Biotechnologies; Naples Italy
| | - Antonio Rispo
- Gastroenterology, Department of Clinical Medicine and Surgery; School of Medicine “Federico II” of Naples; Naples Italy
| |
Collapse
|
9
|
Brissot P, Cavey T, Ropert M, Gaboriau F, Loréal O. Hemochromatosis: a model of metal-related human toxicosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2007-2013. [PMID: 27628916 DOI: 10.1007/s11356-016-7576-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Many environmental agents, such as excessive alcohol intake, xenobiotics, and virus, are able to damage the human body, targeting especially the liver. Metal excess may also assault the liver. Thus, chronic iron overload may cause, especially when associated with cofactors, diffuse organ damage that is a source of significant morbidity and mortality. Iron excess can be either of acquired (mostly transfusional) or of genetic origin. Hemochromatosis is the archetype of genetic iron overload diseases and represents a serious health problem. A better understanding of iron metabolism has deeply modified the hemochromatosis field which today benefits from much more efficient diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Pierre Brissot
- Hepatology, Faculty of Medicine, University of Rennes1, 2, avenue Pr. Léon BERNARD, 35043, Rennes, France.
- Department of Biochemistry, Pontchaillou University Hospital, Rennes, France.
- Inserm-UMR 991, University of Rennes1, Rennes, France.
| | - Thibault Cavey
- Department of Biochemistry, Pontchaillou University Hospital, Rennes, France
- Inserm-UMR 991, University of Rennes1, Rennes, France
| | - Martine Ropert
- Department of Biochemistry, Pontchaillou University Hospital, Rennes, France
- Inserm-UMR 991, University of Rennes1, Rennes, France
| | | | | |
Collapse
|
10
|
Abstract
In chronic hemodialysis patients, a disruption in iron metabolism ranging from absolute to functional deficiency, with compartmentalization of this metal into macrophages, is often observed. Chronic inflammation indeed often causes an upregulation of the iron hormone hepcidin, thereby reducing iron absorption and availability to the erythron. We systematically reviewed the literature on the role of genetic risk factors on iron metabolism in hemodialysis. In this setting, mutations in the HFE gene of hereditary hemochromatosis may confer an adaptive benefit by decreasing hepcidin release, thus improving iron availability to erythropoiesis, anemia control, and the response to erythropoiesis stimulating agents and iron itself, and reducing the side effects of these therapies. The HFE protein together with Transferrin receptor-2 may also have a direct role on erythroid differentiation and iron uptake in erythroid cells. In addition, other genetic determinants of iron status, such as variants in Matriptase-2 (TMPRSS6), have been shown to influence iron metabolism in chronic hemodialysis patients, most likely acting through hepcidin regulation. Although data must be confirmed in larger prospective studies, this favorable shift in iron metabolism balance possibly results in reduced mortality, in particular because of cardiovascular and infective diseases. Further genetic studies may offer a valuable tool to test these hypotheses and guide personalized clinical management and the research of new therapies.
Collapse
Affiliation(s)
- Luca Valenti
- Department of Pathophysiology and Transplantation, Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milano, Italy
| | - Serena Pelusi
- Department of Pathophysiology and Transplantation, Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
11
|
Fang H, Wu Y, Yang H, Yoon M, Jiménez-Barrón LT, Mittelman D, Robison R, Wang K, Lyon GJ. Whole genome sequencing of one complex pedigree illustrates challenges with genomic medicine. BMC Med Genomics 2017; 10:10. [PMID: 28228131 PMCID: PMC5322674 DOI: 10.1186/s12920-017-0246-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/14/2017] [Indexed: 12/18/2022] Open
Abstract
Background Human Phenotype Ontology (HPO) has risen as a useful tool for precision medicine by providing a standardized vocabulary of phenotypic abnormalities to describe presentations of human pathologies; however, there have been relatively few reports combining whole genome sequencing (WGS) and HPO, especially in the context of structural variants. Methods We illustrate an integrative analysis of WGS and HPO using an extended pedigree, which involves Prader–Willi Syndrome (PWS), hereditary hemochromatosis (HH), and dysautonomia-like symptoms. A comprehensive WGS pipeline was used to ensure reliable detection of genomic variants. Beyond variant filtering, we pursued phenotypic prioritization of candidate genes using Phenolyzer. Results Regarding PWS, WGS confirmed a 5.5 Mb de novo deletion of the parental allele at 15q11.2 to 15q13.1. Phenolyzer successfully returned the diagnosis of PWS, and pinpointed clinically relevant genes in the deletion. Further, Phenolyzer revealed how each of the genes is linked with the phenotypes represented by HPO terms. For HH, WGS identified a known disease variant (p.C282Y) in HFE of an affected female. Analysis of HPO terms alone fails to provide a correct diagnosis, but Phenolyzer successfully revealed the phenotype-genotype relationship using a disease-centric approach. Finally, Phenolyzer also revealed the complexity behind dysautonomia-like symptoms, and seven variants that might be associated with the phenotypes were identified by manual filtering based on a dominant inheritance model. Conclusions The integration of WGS and HPO can inform comprehensive molecular diagnosis for patients, eliminate false positives and reveal novel insights into undiagnosed diseases. Due to extreme heterogeneity and insufficient knowledge of human diseases, it is also important that phenotypic and genomic data are standardized and shared simultaneously. Electronic supplementary material The online version of this article (doi:10.1186/s12920-017-0246-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Han Fang
- Stanley Institute for Cognitive Genomics, One Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, USA.,Simons Center for Quantitative Biology, One Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Yiyang Wu
- Stanley Institute for Cognitive Genomics, One Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, USA
| | - Hui Yang
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Margaret Yoon
- Stanley Institute for Cognitive Genomics, One Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Laura T Jiménez-Barrón
- Stanley Institute for Cognitive Genomics, One Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Centro de Ciencias Genomicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, MX, Mexico
| | | | - Reid Robison
- Tute, Genomics Inc., 150 S 100 W, Provo, UT, USA.,Utah Foundation for Biomedical Research, Salt Lake City, UT, USA
| | - Kai Wang
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA.,Department of Psychiatry, University of Southern California, Los Angeles, CA, USA.,Division of Bioinformatics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.,Present Address: Department of Biomedical Informatics and Institute for Genomic Medicine, Columbia University Medical Center, New York, 10032, NY, USA
| | - Gholson J Lyon
- Stanley Institute for Cognitive Genomics, One Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. .,Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, USA. .,Utah Foundation for Biomedical Research, Salt Lake City, UT, USA.
| |
Collapse
|
12
|
Abstract
A number of human disorders are related to chronic iron overload, either of genetic or acquired origin. The multi-organ damage produced by iron excess leads, in adults and in children, to severe clinical consequences, affecting both quality of life and life expectancy. The diagnosis is increasingly based on a non-invasive strategy, resorting to clinical, biological and imaging data. The treatment rests on either venesection or chelation therapy, depending on the etiology. Major advances in the fields of molecular biology, pharmacology, and biotechnology pave the road for key improvements in the diagnostic and therapeutic management of the patients.
Collapse
Affiliation(s)
- Pierre Brissot
- a Hepatology-Faculty of Medicine, Inserm-UMR 991, National Center of Reference for Rare Iron Overload Diseases , University Hospital Pontchaillou , Rennes , France
| |
Collapse
|
13
|
Iron metabolism and related genetic diseases: A cleared land, keeping mysteries. J Hepatol 2016; 64:505-515. [PMID: 26596411 DOI: 10.1016/j.jhep.2015.11.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
Body iron has a very close relationship with the liver. Physiologically, the liver synthesizes transferrin, in charge of blood iron transport; ceruloplasmin, acting through its ferroxidase activity; and hepcidin, the master regulator of systemic iron. It also stores iron inside ferritin and serves as an iron reservoir, both protecting the cell from free iron toxicity and ensuring iron delivery to the body whenever needed. The liver is first in line for receiving iron from the gut and the spleen, and is, therefore, highly exposed to iron overload when plasma iron is in excess, especially through its high affinity for plasma non-transferrin bound iron. The liver is strongly involved when iron excess is related either to hepcidin deficiency, as in HFE, hemojuvelin, hepcidin, and transferrin receptor 2 related haemochromatosis, or to hepcidin resistance, as in type B ferroportin disease. It is less involved in the usual (type A) form of ferroportin disease which targets primarily the macrophagic system. Hereditary aceruloplasminemia raises important pathophysiological issues in light of its peculiar organ iron distribution.
Collapse
|
14
|
Cau M, Danjou F, Chessa R, Serrenti M, Addis M, Barella S, Origa R. The V736A TMPRSS6 polymorphism influences liver iron concentration in nontransfusion-dependent thalassemias. Am J Hematol 2015; 90:E225-6. [PMID: 26385264 DOI: 10.1002/ajh.24197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Milena Cau
- Dipartimento Di Sanità Pubblica; Medicina Clinica E Molecolare, Università Di Cagliari; Italy
| | - Fabrice Danjou
- Dipartimento Di Sanità Pubblica; Medicina Clinica E Molecolare, Università Di Cagliari; Italy
| | - Roberta Chessa
- Dipartimento Di Sanità Pubblica; Medicina Clinica E Molecolare, Università Di Cagliari; Italy
| | - Marianna Serrenti
- Dipartimento Di Sanità Pubblica; Medicina Clinica E Molecolare, Università Di Cagliari; Italy
| | - Maria Addis
- Dipartimento Di Sanità Pubblica; Medicina Clinica E Molecolare, Università Di Cagliari; Italy
| | | | - Raffaella Origa
- Dipartimento Di Sanità Pubblica; Medicina Clinica E Molecolare, Università Di Cagliari; Italy
| |
Collapse
|
15
|
McLaren CE, Emond MJ, Subramaniam VN, Phatak PD, Barton JC, Adams PC, Goh JB, McDonald CJ, Powell LW, Gurrin LC, Allen KJ, Nickerson DA, Louie T, Ramm GA, Anderson GJ, McLaren GD. Exome sequencing in HFE C282Y homozygous men with extreme phenotypes identifies a GNPAT variant associated with severe iron overload. Hepatology 2015; 62:429-39. [PMID: 25605615 PMCID: PMC4508230 DOI: 10.1002/hep.27711] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/13/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED To identify polymorphisms associated with variability of iron overload severity in HFE-associated hemochromatosis, we performed exome sequencing of DNA from 35 male HFE C282Y homozygotes with either markedly increased iron stores (n = 22; cases) or with normal or mildly increased iron stores (n = 13; controls). The 35 participants, residents of the United States, Canada, and Australia, reported no or light alcohol consumption. Sequencing data included 82,068 single-nucleotide variants, and 10,337 genes were tested for a difference between cases and controls. A variant in the GNPAT gene showed the most significant association with severe iron overload (P = 3 × 10(-6) ; P = 0.033 by the likelihood ratio test after correction for multiple comparisons). Sixteen of twenty-two participants with severe iron overload had glyceronephosphate O-acyltransferase (GNPAT) polymorphism p.D519G (rs11558492; 15 heterozygotes, one homozygote). No control participant had this polymorphism. To examine functional consequences of GNPAT deficiency, we performed small interfering RNA-based knockdown of GNPAT in the human liver-derived cell line, HepG2/C3A. This knockdown resulted in a >17-fold decrease in expression of the messenger RNA encoding the iron-regulatory hormone, hepcidin. CONCLUSION GNPAT p.D519G is associated with a high-iron phenotype in HFE C282Y homozygotes and may participate in hepcidin regulation.
Collapse
Affiliation(s)
| | - Mary J. Emond
- Department of Biostatistics, University of Washington, Seattle, WA
| | - V. Nathan Subramaniam
- QIMR Berghofer Medical Research Institute, Brisbane, Australia,Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | | | | | - Paul C. Adams
- Department of Medicine, London Health Sciences Centre, London, ON, Canada
| | - Justin B. Goh
- QIMR Berghofer Medical Research Institute, Brisbane, Australia,Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | | | - Lawrie W. Powell
- QIMR Berghofer Medical Research Institute, Brisbane, Australia,Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Australia,Royal Brisbane & Women’s Hospital, Brisbane, Australia
| | - Lyle C. Gurrin
- Centre for MEGA Epidemiology, The University of Melbourne, Melbourne, Australia
| | | | | | - Tin Louie
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Grant A. Ramm
- QIMR Berghofer Medical Research Institute, Brisbane, Australia,Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Gregory J. Anderson
- QIMR Berghofer Medical Research Institute, Brisbane, Australia,School of Medicine and School of Chemistry and Molecular Bioscience, University of Queensland
| | - Gordon D. McLaren
- Department of Veterans Affairs Long Beach Healthcare System, Long Beach, CA,Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, CA
| |
Collapse
|
16
|
Genome-wide association study identifies TF as a significant modifier gene of iron metabolism in HFE hemochromatosis. J Hepatol 2015; 62:664-72. [PMID: 25457201 DOI: 10.1016/j.jhep.2014.10.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 09/25/2014] [Accepted: 10/09/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Hereditary hemochromatosis (HH) is the most common form of genetic iron loading disease. It is mainly related to the homozygous C282Y/C282Y mutation in the HFE gene that is, however, a necessary but not a sufficient condition to develop clinical and even biochemical HH. This suggests that modifier genes are likely involved in the expressivity of the disease. Our aim was to identify such modifier genes. METHODS We performed a genome-wide association study (GWAS) using DNA collected from 474 unrelated C282Y homozygotes. Associations were examined for both quantitative iron burden indices and clinical outcomes with 534,213 single nucleotide polymorphisms (SNP) genotypes, with replication analyses in an independent sample of 748 C282Y homozygotes from four different European centres. RESULTS One SNP met genome-wide statistical significance for association with transferrin concentration (rs3811647, GWAS p value of 7×10(-9) and replication p value of 5×10(-13)). This SNP, located within intron 11 of the TF gene, had a pleiotropic effect on serum iron (GWAS p value of 4.9×10(-6) and replication p value of 3.2×10(-6)). Both serum transferrin and iron levels were associated with serum ferritin levels, amount of iron removed and global clinical stage (p<0.01). Serum iron levels were also associated with fibrosis stage (p<0.0001). CONCLUSIONS This GWAS, the largest one performed so far in unselected HFE-associated HH (HFE-HH) patients, identified the rs3811647 polymorphism in the TF gene as the only SNP significantly associated with iron metabolism through serum transferrin and iron levels. Because these two outcomes were clearly associated with the biochemical and clinical expression of the disease, an indirect link between the rs3811647 polymorphism and the phenotypic presentation of HFE-HH is likely.
Collapse
|
17
|
Dongiovanni P, Romeo S, Valenti L. Hepatocellular carcinoma in nonalcoholic fatty liver: Role of environmental and genetic factors. World J Gastroenterol 2014; 20:12945-12955. [PMID: 25278690 PMCID: PMC4177475 DOI: 10.3748/wjg.v20.i36.12945] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/28/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth cause of cancer related mortality, and its incidence is rapidly increasing. Viral hepatitis, alcohol abuse, and exposure to hepatotoxins are major risk factors, but nonalcoholic fatty liver disease (NAFLD) associated with obesity, insulin resistance, and type 2 diabetes, is an increasingly recognized trigger, especially in developed countries. Older age, severity of insulin resistance and diabetes, and iron overload have been reported to predispose to HCC in this context. Remarkably, HCCs have been reported in non-cirrhotic livers in a higher proportion of cases in NAFLD patients than in other etiologies. Inherited factors have also been implicated to explain the different individual susceptibility to develop HCC, and their role seems magnified in fatty liver, where only a minority of affected subjects progresses to cancer. In particular, the common I148M variant of the PNPLA3 gene influencing hepatic lipid metabolism influences HCC risk independently of its effect on the progression of liver fibrosis. Recently, rare loss-of-function mutations in Apolipoprotein B resulting in very low density lipoproteins hepatic retention and in Telomerase reverse transcriptase influencing cellular senescence have also been linked to HCC in NAFLD. Indeed, hepatic stellate cells senescence has been suggested to bridge tissue aging with alterations of the intestinal microbiota in the pathogenesis of obesity-related HCC. A deeper understanding of the mechanisms mediating hepatic carcinogenesis during insulin resistance, and the identification of its genetic determinants will hopefully provide new diagnostic and therapeutic tools.
Collapse
|
18
|
Husar-Memmer E, Stadlmayr A, Datz C, Zwerina J. HFE-related hemochromatosis: an update for the rheumatologist. Curr Rheumatol Rep 2014; 16:393. [PMID: 24264720 DOI: 10.1007/s11926-013-0393-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hereditary hemochromatosis is a frequent disease in Caucasian populations. It leads to progressive iron overload in a variety of organs. The most common cause is the C282Y homozygous mutation in the HFE gene. The classical triad of skin hyperpigmentation, diabetes, and liver cirrhosis is nowadays rare but musculoskeletal symptoms are common in HFE-related hemochromatosis. Typically the second and third metacarpophalangeal joints, and the wrist, hip, and ankle joints are affected. Clinical symptoms include osteoarthritis-like symptoms, pseudogout attacks, and synovitis sometimes resembling rheumatoid arthritis. Radiographs show degenerative changes with joint space narrowing, osteophytes, and subchondral cysts. Chondrocalcinosis in the wrist and knee joints is seen in up to 50 % of patients. Although most other organ manifestations regress during phlebotomy, musculoskeletal symptoms often persist or even become worse. Importantly, patients are at an increased risk of severe large-joint arthritis necessitating joint replacement surgery. Therefore, future research should focus on the pathogenesis and treatment options for HH arthropathy.
Collapse
Affiliation(s)
- Emma Husar-Memmer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich-Collin-Straße 30, 1140, Vienna, Austria
| | | | | | | |
Collapse
|
19
|
Abstract
Iron deficiency anemia is a common global problem whose etiology is typically attributed to acquired inadequate dietary intake and/or chronic blood loss. However, in several kindreds multiple family members are affected with iron deficiency anemia that is unresponsive to oral iron supplementation and only partially responsive to parenteral iron therapy. The discovery that many of these cases harbor mutations in the TMPRSS6 gene led to the recognition that they represent a single clinical entity: iron-refractory iron deficiency anemia (IRIDA). This article reviews clinical features of IRIDA, recent genetic studies, and insights this disorder provides into the regulation of systemic iron homeostasis.
Collapse
|
20
|
Wang CY, Meynard D, Lin HY. The role of TMPRSS6/matriptase-2 in iron regulation and anemia. Front Pharmacol 2014; 5:114. [PMID: 24966834 PMCID: PMC4053654 DOI: 10.3389/fphar.2014.00114] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/29/2014] [Indexed: 01/12/2023] Open
Abstract
Matriptase-2, encoded by the TMPRSS6 gene, is a member of the type II transmembrane serine protease family. Matriptase-2 has structural and enzymatic similarities to matriptase-1, which has been implicated in cancer progression. Matriptase-2 was later established to be essential in iron homeostasis based on the phenotypes of iron-refractory iron deficiency anemia identified in mouse models as well as in human patients with TMPRSS6 mutations. TMPRSS6 is expressed mainly in the liver and negatively regulates the production of hepcidin, the systemic iron regulatory hormone. This review focuses on the current understanding of matriptase-2 biochemistry, and its role in iron metabolism and cancer progression. In light of recent investigations, the function of matriptase-2 in hepcidin regulation, how it is being regulated, as well as the therapeutic potential of matriptase-2 are also discussed.
Collapse
Affiliation(s)
- Chia-Yu Wang
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA
| | - Delphine Meynard
- INSERM, U1043, CNRS, U5282, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan Toulouse, France
| | - Herbert Y Lin
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA
| |
Collapse
|
21
|
Adams PC. Hepcidin in hemochromatosis: the message or the messenger? Hepatology 2014; 59:749-50. [PMID: 23996780 DOI: 10.1002/hep.26715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/24/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Paul C Adams
- Department of Medicine, University Hospital, London, Ontario, Canada
| |
Collapse
|
22
|
Stickel F, Buch S, Zoller H, Hultcrantz R, Gallati S, Osterreicher C, Finkenstedt A, Stadlmayr A, Aigner E, Sahinbegovic E, Sarrazin C, Schafmayer C, Braun F, Erhart W, Nothnagel M, Lerch MM, Mayerle J, Volzke H, Schaller A, Kratzer W, Boehm BO, Sipos B, D'Amato M, Torkvist L, Stal P, Arlt A, Franke A, Becker T, Krawczak M, Zwerina J, Berg T, Hinrichsen H, Krones E, Dejaco C, Strasser M, Datz C, Hampe J. Evaluation of genome-wide loci of iron metabolism in hereditary hemochromatosis identifies PCSK7 as a host risk factor of liver cirrhosis. Hum Mol Genet 2014; 23:3883-90. [DOI: 10.1093/hmg/ddu076] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
23
|
Abstract
Iron is a micronutrient essential for almost all organisms: bacteria, plants, and animals. It is a metal that exists in multiple redox states, including the divalent ferrous (Fe(2+)) and the trivalent ferric (Fe(3+)) species. The multiple oxidation states of iron make it excellent for electron transfer, allowing iron to be selected during evolution as a cofactor for many proteins involved in central cellular processes including oxygen transport, mitochondrial respiration, and DNA synthesis. However, the redox cycling of ferrous and ferric iron in the presence of H2O2, which is physiologically present in the cells, also leads to the production of free radicals (Fenton reaction) that can attack and damage lipids, proteins, DNA, and other cellular components. To meet the physiological needs of the body, but to prevent cellular damage by iron, the amount of iron in the body must be tightly regulated. Here we review how the liver is the central conductor of systemic iron balance and show that this central role is related to the secretion of a peptide hormone hepcidin by hepatocytes. We then review how the liver receives and integrates the many signals that report the body's iron needs to orchestrate hepcidin production and maintain systemic iron homeostasis.
Collapse
|
24
|
Cooper DN, Krawczak M, Polychronakos C, Tyler-Smith C, Kehrer-Sawatzki H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum Genet 2013; 132:1077-130. [PMID: 23820649 PMCID: PMC3778950 DOI: 10.1007/s00439-013-1331-2] [Citation(s) in RCA: 423] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/15/2013] [Indexed: 02/06/2023]
Abstract
Some individuals with a particular disease-causing mutation or genotype fail to express most if not all features of the disease in question, a phenomenon that is known as 'reduced (or incomplete) penetrance'. Reduced penetrance is not uncommon; indeed, there are many known examples of 'disease-causing mutations' that fail to cause disease in at least a proportion of the individuals who carry them. Reduced penetrance may therefore explain not only why genetic diseases are occasionally transmitted through unaffected parents, but also why healthy individuals can harbour quite large numbers of potentially disadvantageous variants in their genomes without suffering any obvious ill effects. Reduced penetrance can be a function of the specific mutation(s) involved or of allele dosage. It may also result from differential allelic expression, copy number variation or the modulating influence of additional genetic variants in cis or in trans. The penetrance of some pathogenic genotypes is known to be age- and/or sex-dependent. Variable penetrance may also reflect the action of unlinked modifier genes, epigenetic changes or environmental factors. At least in some cases, complete penetrance appears to require the presence of one or more genetic variants at other loci. In this review, we summarize the evidence for reduced penetrance being a widespread phenomenon in human genetics and explore some of the molecular mechanisms that may help to explain this enigmatic characteristic of human inherited disease.
Collapse
Affiliation(s)
- David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN UK
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, 24105 Kiel, Germany
| | | | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | | |
Collapse
|
25
|
Abstract
Hepcidin is a key hormone that is involved in the control of iron homeostasis in the body. Physiologically, hepcidin is controlled by iron stores, inflammation, hypoxia, and erythropoiesis. The regulation of hepcidin expression by iron is a complex process that requires the coordination of multiple proteins, including hemojuvelin, bone morphogenetic protein 6 (BMP6), hereditary hemochromatosis protein, transferrin receptor 2, matriptase-2, neogenin, BMP receptors, and transferrin. Misregulation of hepcidin is found in many disease states, such as the anemia of chronic disease, iron refractory iron deficiency anemia, cancer, hereditary hemochromatosis, and ineffective erythropoiesis, such as β-thalassemia. Thus, the regulation of hepcidin is the subject of interest for the amelioration of the detrimental effects of either iron deficiency or overload.
Collapse
Affiliation(s)
- Ningning Zhao
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
26
|
Wiggs JL, Howell GR, Linkroum K, Abdrabou W, Hodges E, Braine CE, Pasquale LR, Hannon GJ, Haines JL, John SWM. Variations in COL15A1 and COL18A1 influence age of onset of primary open angle glaucoma. Clin Genet 2013; 84:167-74. [PMID: 23621901 DOI: 10.1111/cge.12176] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 11/29/2022]
Abstract
Primary open angle glaucoma (POAG) is a genetically and phenotypically complex disease that is a leading cause of blindness worldwide. Previously we completed a genome-wide scan for early-onset POAG that identified a locus on 9q22 (GLC1J). To identify potential causative variants underlying GLC1J, we used targeted DNA capture followed by high throughput sequencing of individuals from four GLC1J pedigrees, followed by Sanger sequencing to screen candidate variants in additional pedigrees. A mutation likely to cause early-onset glaucoma was not identified, however COL15A1 variants were found in the youngest affected members of 7 of 15 pedigrees with variable disease onset. In addition, the most common COL15A1 variant, R163H, influenced the age of onset in adult POAG cases. RNA in situ hybridization of mouse eyes shows that Col15a1 is expressed in the multiple ocular structures including ciliary body, astrocytes of the optic nerve and cells in the ganglion cell layer. Sanger sequencing of COL18A1, a related multiplexin collagen, identified a rare variant, A1381T, in members of three additional pedigrees with early-onset disease. These results suggest genetic variation in COL15A1 and COL18A1 can modify the age of onset of both early and late onset POAG.
Collapse
Affiliation(s)
- J L Wiggs
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pelusi S, Girelli D, Rametta R, Campostrini N, Alfieri C, Traglia M, Dongiovanni P, Como G, Toniolo D, Camaschella C, Messa P, Fargion S, Valenti L. The A736V TMPRSS6 polymorphism influences hepcidin and iron metabolism in chronic hemodialysis patients: TMPRSS6 and hepcidin in hemodialysis. BMC Nephrol 2013; 14:48. [PMID: 23433094 PMCID: PMC3585892 DOI: 10.1186/1471-2369-14-48] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 02/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aim of this study was to evaluate whether the A736V TMPRSS6 polymorphism, a major genetic determinant of iron metabolism in healthy subjects, influences serum levels of hepcidin, the hormone regulating iron metabolism, and erythropoiesis in chronic hemodialysis (CHD). METHODS To this end, we considered 199 CHD patients from Northern Italy (157 with hepcidin evaluation), and 188 healthy controls without iron deficiency, matched for age and gender. Genetic polymorphisms were evaluated by allele specific polymerase chain reaction assays, and hepcidin quantified by mass spectrometry. RESULTS Serum hepcidin levels were not different between the whole CHD population and controls (median 7.1, interquartile range (IQR) 0.55-17.1 vs. 7.4, 4.5-17.9 nM, respectively), but were higher in the CHD subgroup after exclusion of subjects with relative iron deficiency (p = 0.04). In CHD patients, the A736V TMPRSS6 polymorphism influenced serum hepcidin levels in individuals positive for mutations in the HFE gene of hereditary hemochromatosis (p < 0.0001). In particular, the TMPRSS6 736 V variant was associated with higher hepcidin levels (p = 0.017). At multivariate analysis, HFE and A736V TMPRSS6 genotypes predicted serum hepcidin independently of ferritin and C reactive protein (p = 0.048). In patients without acute inflammation and overt iron deficiency (C reactive protein <1 mg/dl and ferritin >30 ng/ml; n = 86), hepcidin was associated with lower mean corpuscular volume (p = 0.002), suggesting that it contributed to iron-restricted erythropoiesis. In line with previous results, in patients without acute inflammation and severe iron deficiency the "high hepcidin" 736 V TMPRSS6 variant was associated with higher erythropoietin maintenance dose (p = 0.016), independently of subclinical inflammation (p = 0.02). CONCLUSIONS The A736V TMPRSS6 genotype influences hepcidin levels, erythropoiesis, and anemia management in CHD patients. Evaluation of the effect of TMPRSS6 genotype on clinical outcomes in prospective studies in CHD may be useful to predict the outcomes of hepcidin manipulation, and to guide treatment personalization by optimizing anemia management.
Collapse
Affiliation(s)
- Serena Pelusi
- Department of Pathophysiology and Transplantation, Internal Medicine, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Roetto A, Porto G. A novel mutation in the CUB sequence of matriptase-2 (TMPRSS6) is implicated in iron-resistant iron deficiency anaemia - response to Jasperset al. Br J Haematol 2012; 160:566-7. [DOI: 10.1111/bjh.12145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Antonella Roetto
- Department of Clinical and Biological Sciences; University of Torino, AOU San Luigi Gonzaga; Orbassano; Torino; Italy
| | | |
Collapse
|
29
|
The A736V TMPRSS6 polymorphism influences hepatic iron overload in nonalcoholic fatty liver disease. PLoS One 2012; 7:e48804. [PMID: 23144979 PMCID: PMC3489825 DOI: 10.1371/journal.pone.0048804] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/05/2012] [Indexed: 12/17/2022] Open
Abstract
Background & Aims Hepatic iron accumulation due to altered trafficking is frequent in patients with nonalcoholic fatty liver disease (NAFLD), and is associated with more severe liver damage and hepatocellular carcinoma. The p.Ala736Val TMPRSS6 variant influences iron metabolism regulating the transcription of the hepatic hormone hepcidin, but its role in the pathogenesis of iron overload disorders is controversial. Aim of this study was to evaluate the whether the TMPRSS6 p.Ala736Val variant influences hepatic iron accumulation in a well-characterized series of Italian patients with histological NAFLD. Methods 216 patients with histological NAFLD. TMPRSS6 and HFE variants were assessed by allele specific PCR, liver histology by the NAFLD activity score and Perls' staining for iron. Results Homozygosity for the p.736Val allele previously linked to higher hepcidin did not influence transferrin saturation (TS), but was associated with lower hepatic iron stores (p = 0.01), and ferritin levels (median 223 IQR 102–449 vs. 308 IQR 141–618 ng/ml; p = 0.01). Homozygosity for TMPRSS6 p.736Val was nearly associated with lower ballooning (p = 0.05), reflecting hepatocellular damage related to oxidative stress. The influence of TMPRSS6 on hepatic iron accumulation was more marked in patients negative for HFE genotypes predisposing to iron overload (p.Cys282Tyr + and p.His63Asp +/+; p = 0.01), and the p.736Val variant was negatively associated with hepatic iron accumulation independently of age, gender, HFE genotype, and beta-thalassemia trait (OR 0.59, 0.39–0.88). Conclusions The p.Ala736Val TMPRSS6 variant influences secondary hepatic iron accumulation in patients with NAFLD.
Collapse
|