1
|
Dias LM, de Keijzer MJ, Ernst D, Sharifi F, de Klerk DJ, Kleijn TG, Desclos E, Kochan JA, de Haan LR, Franchi LP, van Wijk AC, Scutigliani EM, Fens MH, Barendrecht AD, Cavaco JEB, Huang X, Xu Y, Pan W, den Broeder MJ, Bogerd J, Schulz RW, Castricum KC, Thijssen VL, Cheng S, Ding B, Krawczyk PM, Heger M. Metallated phthalocyanines and their hydrophilic derivatives for multi-targeted oncological photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112500. [PMID: 35816857 DOI: 10.1016/j.jphotobiol.2022.112500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/27/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIM A photosensitizer (PS) delivery and comprehensive tumor targeting platform was developed that is centered on the photosensitization of key pharmacological targets in solid tumors (cancer cells, tumor vascular endothelium, and cellular and non-cellular components of the tumor microenvironment) before photodynamic therapy (PDT). Interstitially targeted liposomes (ITLs) encapsulating zinc phthalocyanine (ZnPC) and aluminum phthalocyanine (AlPC) were formulated for passive targeting of the tumor microenvironment. In previous work it was established that the PEGylated ITLs were taken up by cultured cholangiocarcinoma cells. The aim of this study was to verify previous results in cancer cells and to determine whether the ITLs can also be used to photosensitize cells in the tumor microenvironment and vasculature. Following positive results, rudimentary in vitro and in vivo experiments were performed with ZnPC-ITLs and AlPC-ITLs as well as their water-soluble tetrasulfonated derivatives (ZnPCS4 and AlPCS4) to assemble a research dossier and bring this platform closer to clinical transition. METHODS Flow cytometry and confocal microscopy were employed to determine ITL uptake and PS distribution in cholangiocarcinoma (SK-ChA-1) cells, endothelial cells (HUVECs), fibroblasts (NIH-3T3), and macrophages (RAW 264.7). Uptake of ITLs by endothelial cells was verified under flow conditions in a flow chamber. Dark toxicity and PDT efficacy were determined by cell viability assays, while the mode of cell death and cell cycle arrest were assayed by flow cytometry. In vivo systemic toxicity was assessed in zebrafish and chicken embryos, whereas skin phototoxicity was determined in BALB/c nude mice. A PDT efficacy pilot was conducted in BALB/c nude mice bearing human triple-negative breast cancer (MDA-MB-231) xenografts. RESULTS The key findings were that (1) photodynamically active PSs (i.e., all except ZnPCS4) were able to effectively photosensitize cancer cells and non-cancerous cells; (2) following PDT, photodynamically active PSs were highly toxic-to-potent as per anti-cancer compound classification; (3) the photodynamically active PSs did not elicit notable systemic toxicity in zebrafish and chicken embryos; (4) ITL-delivered ZnPC and ZnPCS4 were associated with skin phototoxicity, while the aluminum-containing PSs did not exert detectable skin phototoxicity; and (5) ITL-delivered ZnPC and AlPC were equally effective in their tumor-killing capacity in human tumor breast cancer xenografts and superior to other non-phthalocyanine PSs when appraised on a per mole administered dose basis. CONCLUSIONS AlPC(S4) are the safest and most effective PSs to integrate into the comprehensive tumor targeting and PS delivery platform. Pending further in vivo validation, these third-generation PSs may be used for multi-compartmental tumor photosensitization.
Collapse
Affiliation(s)
- Lionel Mendes Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Daniël Ernst
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Farangis Sharifi
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Emilie Desclos
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Jakub A Kochan
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Leonardo P Franchi
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB 2), Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Albert C van Wijk
- Department of Surgery, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Enzo M Scutigliani
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Marcel H Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - José E B Cavaco
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Xuan Huang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Ying Xu
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, PR China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, PR China
| | - Marjo J den Broeder
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, the Netherlands
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, the Netherlands
| | - Rüdiger W Schulz
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, the Netherlands
| | - Kitty C Castricum
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Victor L Thijssen
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, The Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, PR China
| | - Baoyue Ding
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China.
| | - Przemek M Krawczyk
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
2
|
van Golen RF, Reiniers MJ, Marsman G, Alles LK, van Rooyen DM, Petri B, Van der Mark VA, van Beek AA, Meijer B, Maas MA, Zeerleder S, Verheij J, Farrell GC, Luken BM, Teoh NC, van Gulik TM, Murphy MP, Heger M. The damage-associated molecular pattern HMGB1 is released early after clinical hepatic ischemia/reperfusion. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1192-1200. [PMID: 30658161 DOI: 10.1016/j.bbadis.2019.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE AND BACKGROUND Activation of sterile inflammation after hepatic ischemia/reperfusion (I/R) culminates in liver injury. The route to liver damage starts with mitochondrial oxidative stress and cell death during early reperfusion. The link between mitochondrial oxidative stress, damage-associate molecular pattern (DAMP) release, and sterile immune signaling is incompletely understood and lacks clinical validation. The aim of the study was to validate this relation in a clinical liver I/R cohort and to limit DAMP release using a mitochondria-targeted antioxidant in I/R-subjected mice. METHODS Plasma levels of the DAMPs high-mobility group box 1 (HMGB1), mitochondrial DNA, and nucleosomes were measured in 39 patients enrolled in an observational study who underwent a major liver resection with (N = 29) or without (N = 13) intraoperative liver ischemia. Circulating cytokine and neutrophil activation markers were also determined. In mice, the mitochondria-targeted antioxidant MitoQ was intravenously infused in an attempt to limit DAMP release, reduce sterile inflammation, and suppress I/R injury. RESULTS In patients, HMGB1 was elevated following liver resection with I/R compared to liver resection without I/R. HMGB1 levels correlated positively with ischemia duration and peak post-operative transaminase (ALT) levels. There were no differences in mitochondrial DNA, nucleosome, or cytokine levels between the two groups. In mice, MitoQ neutralized hepatic oxidative stress and decreased HMGB1 release by ±50%. MitoQ suppressed transaminase release, hepatocellular necrosis, and cytokine production. Reconstituting disulfide HMGB1 during reperfusion reversed these protective effects. CONCLUSION HMGB1 seems the most pertinent DAMP in clinical hepatic I/R injury. Neutralizing mitochondrial oxidative stress may limit DAMP release after hepatic I/R and reduce liver damage.
Collapse
Affiliation(s)
- Rowan F van Golen
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Megan J Reiniers
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Gerben Marsman
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Lindy K Alles
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Derrick M van Rooyen
- Liver Research Group, Australian National University at The Canberra Hospital, Canberra, Australia
| | - Björn Petri
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Vincent A Van der Mark
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Tytgat Institute for Gastrointestinal and Liver Research, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Adriaan A van Beek
- Department of Cell Biology and Immunology, Wageningen University, Wageningen, the Netherlands
| | - Ben Meijer
- Department of Cell Biology and Immunology, Wageningen University, Wageningen, the Netherlands
| | - Martinus A Maas
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, University of Bern, Switzerland
| | - Joanne Verheij
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Geoffrey C Farrell
- Liver Research Group, Australian National University at The Canberra Hospital, Canberra, Australia
| | - Brenda M Luken
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Narci C Teoh
- Liver Research Group, Australian National University at The Canberra Hospital, Canberra, Australia
| | - Thomas M van Gulik
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China.
| |
Collapse
|
3
|
Gabiatti G, Grezzana-Filho TDJM, Cerski CTS, Bofill C, Valle S, Corso CO. Topical hepatic hypothermia associated with ischemic preconditioning. Histopathological and biochemical analysis of ischemia reperfusion damage in a 24 hour model 1. Acta Cir Bras 2018; 33:924-934. [PMID: 30484502 DOI: 10.1590/s0102-865020180100000007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/09/2018] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To develop a new 24 hour extended liver ischemia and reperfusion (LIR) model analyzing the late biochemical and histopathological results of the isolated and combined application of recognized hepatoprotective mechanisms. In addition, we used a new stratification with zoning to classify the histological lesion. METHODS A modified animal model of severe hepatic damage produced through 90 minutes of segmental ischemia (70% of the organ) and posterior observation for 24 hours of reperfusion, submitted to ischemic preconditioning (IPC) and topical hypothermia (TH) at 26ºC, in isolation or in combination, during the procedure. Data from intraoperative biometric parameters, besides of late biochemical markers and histopathological findings, both at 24 hours evolution time, were compared with control (C) and normothermic ischemia (NI) groups. RESULTS All groups were homogeneous with respect to intraoperative physiological parameters. There were no losses once the model was stablished. Animals subjected to NI and IPC had worse biochemical (gamma-glutamyl transpeptidase, alkaline phosphatase, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, direct bilirubin, and total bilirubin) and histopathological scores (modified Suzuki score) compared to those of control groups and groups with isolated or associated TH (p < 0.05). CONCLUSION The new extended model demonstrates liver ischemia and reperfusion at 24 hour of evolution and, in this extreme scenario, only the groups subjected to topical hypothermia, combined with ischemic preconditioning or alone, had better outcomes than those subjected to only ischemic preconditioning and normothermic ischemia, reaching similar biochemical and histopathological scores to those of the control group.
Collapse
Affiliation(s)
- Gémerson Gabiatti
- Fellow PhD degree, Postgraduate Program of Surgical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre-RS, Brazil. Conception and design of the study, technical procedures, acquisition and analysis of data, manuscript writing
| | - Tomaz de Jesus Maria Grezzana-Filho
- PhD, Liver Transplantation Surgeon, Hospital de Clinicas de Porto Alegre (HCPA), Department of Surgery, UFRGS, Porto Alegre-RS, Brazil. Conception and design of the study, analysis of data, manuscript writing
| | - Carlos Thadeu Schmidt Cerski
- PhD, Associate Professor, Department of Pathology, UFRGS, Porto Alegre-RS, Brazil. Histopathological examinations
| | - Carlos Bofill
- Graduate student, Faculty of Medicine, UFRGS, Porto Alegre-RS, Brazil. Technical procedures, acquisition of data
| | - Stella Valle
- Coordinator, Laboratory of Veterinary Clinical Analysis (LACVet), Porto Alegre-RS, Brazil. Acquisition of data
| | - Carlos Otávio Corso
- PhD, Associate Professor, Postgraduate Program of Surgical Sciences, Department of Surgery, UFRGS, Porto Alegre-RS, Brazil. Manuscript writing, critical revision, final approval
| |
Collapse
|
4
|
Reiniers MJ, van Golen RF, Bonnet S, Broekgaarden M, van Gulik TM, Egmond MR, Heger M. Preparation and Practical Applications of 2',7'-Dichlorodihydrofluorescein in Redox Assays. Anal Chem 2017; 89:3853-3857. [PMID: 28224799 PMCID: PMC5382573 DOI: 10.1021/acs.analchem.7b00043] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Oxidative stress,
a state in which intra- or extracellular oxidant
production outweighs the antioxidative capacity, lies at the basis
of many diseases. DCFH2-DA (2′,7′-dichlorodihydrofluorescein
diacetate) is the most widely used fluorogenic probe for the detection
of general oxidative stress. However, the use of DCFH2-DA,
as many other fluorogenic redox probes, is mainly confined to the
detection of intracellular oxidative stress in vitro. To expand the
applicability of the probe, an alkaline hydrolysis and solvent extraction
procedure was developed to generate high-purity DCFH2 (2′,7′-dichlorodihydrofluorescein)
from DCFH2-DA using basic laboratory equipment. Next, the
utility of DCFH2 was exemplified in a variety of cell-free
and in vitro redox assay systems, including oxidant production by
transition metals, photodynamic therapy, activated macrophages, and
platelets, as well as the antioxidative capacity of different antioxidants.
In cells, the concomitant use of DCFH2-DA and DCFH2 enabled the measurement and compartmentalized analysis of
intra- and extracellularly produced oxidants, respectively, using
a single read-out parameter. Furthermore, hepatocyte-targeted liposomes
were developed to deliver the carboxylated derivative, 5(6)-carboxy-DCFH2, to hepatocytes in vivo. Liposome-delivered 5(6)-carboxy-DCFH2 enabled real-time visualization and measurement of hepatocellular
oxidant production during liver ischemia-reperfusion. The liposomal
5(6)-carboxy-DCFH2 can be targeted to other tissues where
oxidative stress is important, including cancer.
Collapse
Affiliation(s)
- Megan J Reiniers
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands.,Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University , Utrecht, The Netherlands
| | - Rowan F van Golen
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University , Leiden, The Netherlands
| | - Mans Broekgaarden
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| | - Thomas M van Gulik
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| | - Maarten R Egmond
- Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University , Utrecht, The Netherlands
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands.,Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University , Utrecht, The Netherlands
| |
Collapse
|
5
|
Comparable liver function and volume increase after portal vein embolization in rabbits and humans. Surgery 2017; 161:658-665. [DOI: 10.1016/j.surg.2016.08.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/13/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
|
6
|
Olthof PB, van Golen RF, Meijer B, van Beek AA, Bennink RJ, Verheij J, van Gulik TM, Heger M. Warm ischemia time-dependent variation in liver damage, inflammation, and function in hepatic ischemia/reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2016; 1863:375-385. [PMID: 27989959 DOI: 10.1016/j.bbadis.2016.10.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/19/2016] [Accepted: 10/25/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatic ischemia/reperfusion (I/R) injury is characterized by hepatocellular damage, sterile inflammation, and compromised postoperative liver function. Generally used mouse I/R models are too severe and poorly reflect the clinical injury profile. The aim was to establish a mouse I/R model with better translatability using hepatocellular injury, liver function, and innate immune parameters as endpoints. METHODS Mice (C57Bl/6J) were subjected to sham surgery, 30min, or 60min of partial hepatic ischemia. Liver function was measured after 24h using intravital microscopy and spectroscopy. Innate immune activity was assessed at 6 and 24h of reperfusion using mRNA and cytokine arrays. Liver inflammation and function were profiled in two patient cohorts subjected to I/R during liver resection to validate the preclinical results. RESULTS In mice, plasma ALT levels and the degree of hepatic necrosis were strongly correlated. Liver function was bound by a narrow damage threshold and was severely impaired following 60min of ischemia. Severe ischemia (60min) evoked a neutrophil-dominant immune response, whereas mild ischemia (30min) triggered a monocyte-driven response. Clinical liver I/R did not compromise liver function and displayed a cytokine profile similar to the mild I/R injury model. CONCLUSIONS Mouse models using ≤30min of ischemia best reflect the clinical liver I/R injury profile in terms of liver function dynamics and type of immune response. GENERAL SIGNIFICANCE This short duration of ischemia therefore has most translational value and should be used to increase the prospects of developing effective interventions for hepatic I/R.
Collapse
Affiliation(s)
- Pim B Olthof
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rowan F van Golen
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Meijer
- Department of Cell Biology and Immunology, Wageningen University, Wageningen, The Netherlands
| | - Adriaan A van Beek
- Department of Cell Biology and Immunology, Wageningen University, Wageningen, The Netherlands
| | - Roelof J Bennink
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Joanne Verheij
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas M van Gulik
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Zhang J, Xu P, Song P, Wang H, Zhang Y, Hu Q, Wang G, Zhang S, Yu Q, Billiar TR, Wang C, Zhang J. CCL2-CCR2 signaling promotes hepatic ischemia/reperfusion injury. J Surg Res 2016; 202:352-62. [PMID: 27229110 DOI: 10.1016/j.jss.2016.02.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/30/2016] [Accepted: 02/24/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND Liver ischemia/reperfusion (I/R) injury is a type of uncontrolled inflammatory cascade in which neutrophils, an early infiltrating immune cell population, elicit significant tissue damage. However, the precise mechanism for neutrophil recruitment and infiltration remains to be fully characterized. METHODS A hepatic partial I/R model was reproduced in wild-type, CCL2(-/-) and CCR2(-/-) mice. Tissue damage was evaluated by serum enzyme analysis, hematoxylin-eosin staining, and cytokine production measurement. Mobilization of neutrophils from the bone marrow and subsequent infiltration into the liver were measured by flow cytometry. C-C motif chemokine receptor 2 (CCR2) expression on neutrophils and C-C motif chemokine ligand 2 (CCL2) chemotaxis were measured using flow cytometry. The cellular source of CCL2 in the liver was determined by deleting specific cell groups and performing intracellular staining. RESULTS Liver damage was ameliorated, and neutrophil recruitment and accumulation were decreased in both CCL2(-/-) and CCR2(-/-) mice compared with wild-type mice. Neutrophils displayed upregulated expression of CCR2 during I/R, and these cells were required for CCL2-induced chemotaxis. Depletion of Kupffer cells protected the liver from I/R injury. Furthermore, genetic ablation of CCL2 reduced liver injury, as demonstrated by decreases in the levels of alanine aminotransferase and aspartate aminotransferase and subsequent reductions in neutrophil recruitment and accumulation. CONCLUSIONS Kupffer cells secrete CCL2 to promote CCR2-expressing neutrophil recruitment from the bone marrow and subsequent infiltration into the liver during I/R. These findings reveal a novel pro-inflammatory role of cell-mediated CCL2-CCR2 interactions during this sterile insult.
Collapse
Affiliation(s)
- Junbin Zhang
- Department of Emergency Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Xu
- Department of Emergency Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Song
- Department of Vascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Department of Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of General Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qinggang Hu
- Department of General Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Guoliang Wang
- Department of General Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qilin Yu
- The Center for Biomedical Research, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Congyi Wang
- The Center for Biomedical Research, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| | - Jinxiang Zhang
- Department of Emergency Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
van Riel WG, van Golen RF, Reiniers MJ, Heger M, van Gulik TM. How much ischemia can the liver tolerate during resection? Hepatobiliary Surg Nutr 2016; 5:58-71. [PMID: 26904558 DOI: 10.3978/j.issn.2304-3881.2015.07.05] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The use of vascular inflow occlusion (VIO, also known as the Pringle maneuver) during liver surgery prevents severe blood loss and the need for blood transfusion. The most commonly used technique for VIO entails clamping of the portal triad, which simultaneously occludes the proper hepatic artery and portal vein. Although VIO is an effective technique to reduce intraoperative blood loss, it also inevitably inflicts hepatic ischemia/reperfusion (I/R) injury as a side effect. I/R injury induces formation of reactive oxygen species that cause oxidative stress and cell death, ultimately leading to a sterile inflammatory response that causes hepatocellular damage and liver dysfunction that can result in acute liver failure in most severe cases. Since the duration of ischemia correlates positively with the severity of liver injury, there is a need to find the balance between preventing severe blood loss and inducing liver damage through the use of VIO. Although research on the maximum duration of hepatic ischemia has intensified since the beginning of the 1980s, there still is no consensus on the tolerable upper limit. Based on the available literature, it is concluded that intermittent and continuous VIO can both be used safely when ischemia times do not exceed 120 min. However, intermittent VIO should be the preferred technique in cases that require >120 min duration of ischemia.
Collapse
Affiliation(s)
- Wouter G van Riel
- Department of Surgery, Surgical Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rowan F van Golen
- Department of Surgery, Surgical Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Megan J Reiniers
- Department of Surgery, Surgical Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Michal Heger
- Department of Surgery, Surgical Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Thomas M van Gulik
- Department of Surgery, Surgical Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Vasques ER, Cunha JEM, Coelho AMM, Sampietre SN, Patzina RA, Abdo EE, Nader HB, Tersariol ILS, Lima MA, Godoy CMG, Rodrigues T, Chaib E, D’Albuquerque LAC. Trisulfate Disaccharide Decreases Calcium Overload and Protects Liver Injury Secondary to Liver Ischemia/Reperfusion. PLoS One 2016; 11:e0149630. [PMID: 26901764 PMCID: PMC4763191 DOI: 10.1371/journal.pone.0149630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/03/2016] [Indexed: 12/14/2022] Open
Abstract
Background Ischemia and reperfusion (I/R) causes tissue damage and intracellular calcium levels are a factor of cell death. Sodium calcium exchanger (NCX) regulates calcium extrusion and Trisulfated Disaccharide (TD) acts on NCX decreasing intracellular calcium through the inhibition of the exchange inhibitory peptide (XIP). Objectives The aims of this research are to evaluate TD effects in liver injury secondary to I/R in animals and in vitro action on cytosolic calcium of hepatocytes cultures under calcium overload. Methods Wistar rats submitted to partial liver ischemia were divided in groups: Control: (n = 10): surgical manipulation with no liver ischemia; Saline: (n = 15): rats receiving IV saline before reperfusion; and TD: (n = 15): rats receiving IV TD before reperfusion. Four hours after reperfusion, serum levels of AST, ALT, TNF-α, IL-6, and IL-10 were measured. Liver tissue samples were collected for mitochondrial function and malondialdehyde (MDA) content. Pulmonary vascular permeability and histologic parameters of liver were determined. TD effect on cytosolic calcium was evaluated in BRL3A hepatic rat cell cultures stimulated by thapsigargin pre and after treatment with TD. Results AST, ALT, cytokines, liver MDA, mitochondrial dysfunction and hepatic histologic injury scores were less in TD group when compared to Saline Group (p<0.05) with no differences in pulmonary vascular permeability. In culture cells, TD diminished the intracellular calcium raise and prevented the calcium increase pre and after treatment with thapsigargin, respectively. Conclusion TD decreases liver cell damage, preserves mitochondrial function and increases hepatic tolerance to I/R injury by calcium extrusion in Ca2+ overload situations.
Collapse
Affiliation(s)
- Enio Rodrigues Vasques
- Department of Gastroenterology (LIM 37), Medical School, University of Sao Paulo (USP), Sao Paulo, Brazil
- * E-mail:
| | | | - Ana Maria Mendonca Coelho
- Department of Gastroenterology (LIM 37), Medical School, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Sandra N. Sampietre
- Department of Gastroenterology (LIM 37), Medical School, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Rosely Antunes Patzina
- Department of Gastroenterology (LIM 37), Medical School, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Emilio Elias Abdo
- Department of Gastroenterology (LIM 37), Medical School, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Helena B. Nader
- Department of Biochemistry, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Ivarne L. S. Tersariol
- Department of Biochemistry, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Marcelo Andrade Lima
- Department of Biochemistry, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Carlos M. G. Godoy
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Tiago Rodrigues
- Center of Natural and Human Sciences, Federal University of ABC, Sao Paulo, Brazil
| | - Eleazar Chaib
- Department of Gastroenterology (LIM 37), Medical School, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Luiz A. C. D’Albuquerque
- Department of Gastroenterology (LIM 37), Medical School, University of Sao Paulo (USP), Sao Paulo, Brazil
| |
Collapse
|
10
|
Weijer R, Broekgaarden M, van Golen RF, Bulle E, Nieuwenhuis E, Jongejan A, Moerland PD, van Kampen AHC, van Gulik TM, Heger M. Low-power photodynamic therapy induces survival signaling in perihilar cholangiocarcinoma cells. BMC Cancer 2015; 15:1014. [PMID: 26705830 PMCID: PMC4691291 DOI: 10.1186/s12885-015-1994-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022] Open
Abstract
Background Photodynamic therapy (PDT) of solid cancers comprises the administration of a photosensitizer followed by illumination of the photosensitizer-replete tumor with laser light. This induces a state of local oxidative stress, culminating in the destruction of tumor tissue and microvasculature and induction of an anti-tumor immune response. However, some tumor types, including perihilar cholangiocarcinoma, are relatively refractory to PDT, which may be attributable to the activation of survival pathways in tumor cells following PDT (i.e., activator protein 1 (AP-1)-, nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB)-, hypoxia-inducible factor 1-alpha (HIF-1α)-, nuclear factor (erythroid-derived 2)-like 2 (NFE2L2)-, and unfolded protein response-mediated pathways). Methods To assess the activation of survival pathways after PDT, human perihilar cholangiocarcinoma (SK-ChA-1) cells were subjected to PDT with zinc phthalocyanine (ZnPC)-encapsulating liposomes. Following 30-minute incubation with liposomes, the cells were either left untreated or treated at low (50 mW) or high (500 mW) laser power (cumulative light dose of 15 J/cm2). Cells were harvested 90 min post-PDT and whole genome expression analysis was performed using Illumina HumanHT-12 v4 expression beadchips. The data were interpreted in the context of the survival pathways. In addition, the safety of ZnPC-encapsulating liposomes was tested both in vitro and in vivo. Results PDT-treated SK-ChA-1 cells exhibited activation of the hypoxia-induced stress response via HIF-1α and initiation of the pro-inflammatory response via NF-кB. PDT at low laser power in particular caused extensive survival signaling, as evidenced by the significant upregulation of HIF-1- (P < 0.001) and NF-кB-related (P < 0.001) genes. Low-power PDT was less lethal to SK-ChA-1 cells 90 min post-PDT, confirmed by annexin V/propidium iodide staining. In vitro toxicogenomics and toxicological testing in chicken embryos and mice revealed that the ZnPC-encapsulating liposomes are non-toxic. Conclusions PDT-treated perihilar cholangiocarcinoma cells exhibit extensive survival signaling that may translate to a suboptimal therapeutic response and possibly tumor recurrence. These findings encourage the development of photosensitizer delivery systems with co-encapsulated inhibitors of survival pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1994-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruud Weijer
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Mans Broekgaarden
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Rowan F van Golen
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Esther Bulle
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Esther Nieuwenhuis
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Aldo Jongejan
- Bioinformatics Laboratory, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Perry D Moerland
- Bioinformatics Laboratory, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Antoine H C van Kampen
- Bioinformatics Laboratory, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Thomas M van Gulik
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Olthof PB, Reiniers MJ, Dirkes MC, Gulik TMV, Golen RFV. Protective Mechanisms of Hypothermia in Liver Surgery and Transplantation. Mol Med 2015; 21:833-846. [PMID: 26552060 DOI: 10.2119/molmed.2015.00158] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/23/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury is a side effect of major liver surgery that often cannot be avoided. Prolonged periods of ischemia put a metabolic strain on hepatocytes and limit the tolerable ischemia and preservation times during liver resection and transplantation, respectively. In both surgical settings, temporarily lowering the metabolic demand of the organ by reducing organ temperature effectively counteracts the negative consequences of an ischemic insult. Despite its routine use, the application of liver cooling is predicated on an incomplete understanding of the underlying protective mechanisms, which has limited a uniform and widespread implementation of liver-cooling techniques. This review therefore addresses how hypothermia-induced hypometabolism modulates hepatocyte metabolism during ischemia and thereby reduces hepatic I/R injury. The mechanisms underlying hypothermia-mediated reduction in energy expenditure during ischemia and the attenuation of mitochondrial production of reactive oxygen species during early reperfusion are described. It is further addressed how hypothermia suppresses the sterile hepatic I/R immune response and preserves the metabolic functionality of hepatocytes. Lastly, a summary of the clinical status quo of the use of liver cooling for liver resection and transplantation is provided.
Collapse
Affiliation(s)
- Pim B Olthof
- Department of Surgery, Surgical Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Megan J Reiniers
- Department of Surgery, Surgical Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marcel C Dirkes
- Department of Surgery, Surgical Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Thomas M van Gulik
- Department of Surgery, Surgical Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rowan F van Golen
- Department of Surgery, Surgical Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
12
|
van Golen RF, Stevens KM, Colarusso P, Jaeschke H, Heger M. Platelet aggregation but not activation and degranulation during the acute post-ischemic reperfusion phase in livers with no underlying disease. J Clin Transl Res 2015; 1:107-115. [PMID: 26925465 DOI: 10.18053/jctres.201502.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Platelets and P-selectin (CD62P) play an unequivocal role in the pathology of hepatic ischemia/reperfusion (I/R) injury. Inhibition or knock-out of P-selectin or immunodepletion of platelets results in amelioration of post-ischemic inflammation, reduced hepatocellular damage, and improved survival. However, P-selectin expression on platelets and endothelial cells, which concurs with platelet activation, has never been clearly demonstrated in I/R-subjected livers. AIMS To determine whether platelets become activated and degranulate in the acute phase of liver I/R and whether the platelets interact with neutrophils. METHODS Hepatic I/R was induced in male C57BL/6J mice (N = 12) using 37.5-min ischemia time. Platelets, endothelial cells, and neutrophils were fluorescently labeled by systemic administration of non-blocking antibodies. Cell kinetics were monitored by intravital spinning disk confocal microscopy during 90 min of reperfusion. Image analysis and quantification was performed with dedicated software. RESULTS Platelets adhered to sinusoids more extensively in post-ischemic livers compared to livers not subjected to I/R and formed aggregates, which occurred directly after ischemia. Platelets and endothelial cells did not express P-selectin in post-ischemic livers. There was no interaction between platelets and neutrophils. CONCLUSIONS Platelets aggregate but do not become activated and do not degranulate in post-ischemic livers. There is no platelet-neutrophil interplay during the early reperfusion phase in a moderate model of hepatic I/R injury. The mechanisms underlying the biological effects of platelets and P-selectin in this setting warrant further investigation. RELEVANCE FOR PATIENTS I/R in surgical liver patients may compromise outcome due to post-ischemic oxidative stress and sterile inflammation. Both processes are mediated in part by platelets. Understanding platelet function during I/R is key to developing effective interventions for I/R injury and improving clinical outcomes.
Collapse
Affiliation(s)
- Rowan F van Golen
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katarzyna M Stevens
- Live Cell Imaging Facility, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Pina Colarusso
- Live Cell Imaging Facility, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, USA
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|