1
|
Pang G, Ye L, Jiang Y, Wu Y, Zhang R, Yang H, Yang Y. Unveiling the bidirectional role of MMP9: A key player in kidney injury. Cell Signal 2024; 122:111312. [PMID: 39074714 DOI: 10.1016/j.cellsig.2024.111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Matrix metalloproteinases (MMPs) are a group of zinc-dependent proteolytic metalloenzymes that are involved in numerous pathological conditions, including nephropathy. MMP9, a member of the MMPs family, is categorized as a constituent of the gelatinase B subgroup, and its involvement in extracellular matrix (ECM) remodeling and renal fibrosis highlights its importance in the development and progression of renal diseases. The exact role of MMP9 in the development of kidney diseases is still controversial. This study investigated the dual role of MMP9 in kidney injury, discussing its implications in the pathogenesis of kidney diseases and investigating the design and mechanism of MMP9 inhibitors based on previous studies. This study provides an effective basis for the development of novel and selective MMP9 inhibitors for treating renal diseases.
Collapse
Affiliation(s)
- Guiying Pang
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Ling Ye
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Yinxiao Jiang
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Yilin Wu
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Rufeng Zhang
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing 102609, People's Republic of China
| | - Hongxu Yang
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China.
| | - Yi Yang
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China.
| |
Collapse
|
2
|
Ahn CH, Kim JH, Shim HW, Shin WJ, Cho YA, Yoon HJ. Biological and prognostic significance of NDRG2 downregulation in oral squamous cell carcinoma. Oral Dis 2024; 30:4287-4302. [PMID: 38887830 DOI: 10.1111/odi.15045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVE Downregulation of N-myc downstream-regulated gene 2 (NDRG2), a tumor suppressor gene, has been associated with poor clinical outcomes in various cancers. However, the prognostic significance of NDRG2 in oral squamous cell carcinoma (OSCC) remains unknown. This study aimed to evaluate the prognostic value of NDRG2 downregulation in OSCC and to elucidate the mechanism by which NDRG2 is downregulated and the biological role of NDRG2 in tumor progression. METHODS Immunohistochemical and in silico analyses of NDRG2 expression were performed, and the correlation between NDRG2 expression and clinicopathological data was analyzed. The effect of NDRG2 knockdown on the biological behavior of OSCC cells was investigated and the effect of 5-aza-2'-deoxycytidine (5-aza-dC) on NDRG2 expression was determined. RESULTS NDRG2 expression was significantly downregulated and DNA hypermethylation of NDRG2 was frequently found in head and neck SCC, including OSCC. Low NDRG2 expression was significantly correlated with adverse clinicopathological features and worse survival in OSCC. NDRG2 knockdown could enhance the oncogenic properties of OSCC cells. NDRG2 mRNA levels in OSCC cells could be restored by 5-aza-dC. CONCLUSION Downregulation of NDRG2 promotes tumor progression and predicts poor prognosis in OSCC. Therefore, restoration of NDRG2 expression may be a potential therapeutic strategy in OSCC.
Collapse
Affiliation(s)
- Chi-Hyun Ahn
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Ji-Hoon Kim
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hye-Won Shim
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
- Department of Dentistry, Inje University Ilsan Paik Hospital, Goyang, South Korea
| | - Wui-Jung Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Young-Ah Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hye-Jung Yoon
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
- Department of Oral Pathology, Seoul National University Dental Hospital, Seoul, South Korea
| |
Collapse
|
3
|
Zhang L, Gu W, Liu T, Pei H, Ma Y, Zhao Y, Huang S, Chen M. NDRG2 Deficiency Exacerbates UVB-Induced Skin Inflammation and Oxidative Stress Damage. Inflammation 2024:10.1007/s10753-024-02121-3. [PMID: 39145786 DOI: 10.1007/s10753-024-02121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
UVB radiation induces inflammatory and oxidative stress responses, contributing to skin damage, yet the underlying mechanisms are not fully understood. N-Myc downstream-regulated gene 2 (NDRG2), an emerging stress-associated gene, remains unexplored in UVB-induced skin injury. In this study, we detected skin NDRG2 expression after UVB irradiation for the first time and further used Ndrg2 knockout mice to clarify the role of NDRG2 in UVB-induced skin injury. Three-month-old male Ndrg2+/+ and Ndrg2-/- mice (16-18g) were exposed to UVB to induce acute skin damage, and then dorsal skin samples were collected for subsequent analyses. UVB-induced skin damage was scored. Western Blot Analysis, immunofluorescence (IF) double labeling, and immunohistochemistry (IHC) were employed to assess NDRG2 expression and/or distribution. The concentrations of TNF-α, IL-6, IL-1β, MPO, MMP8, superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) were quantitatively assessed using enzyme-linked immunosorbent assay (ELISA). Hematoxylin and eosin (HE) staining were employed to determine pathological changes. RNA sequencing and analysis were performed to estimate transcript expression levels and analyze mRNA expression. DESeq2 software was employed to identify differentially expressed genes (DEGs). DEGs were visualized using volcanic and heat maps. Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed to identify primary biological functions, metabolic pathways, or signal transduction pathways associated with DEGs. UVB-challenged Ndrg2-/- mice exhibited significantly exacerbated skin damage (erythema, edema, and erosion), neutrophil infiltration, and apoptosis compared to Ndrg2+/+ mice. Furthermore, UVB-challenged Ndrg2-/- mice displayed significantly elevated pro-inflammatory cytokines, myeloperoxidase (MPO), matrix metalloproteinase-8 (MMP8), and reduced antioxidant expression. RNA sequencing identified 1091 significantly differentially expressed genes enriched in inflammation, immune response, and oxidative stress pathways. In conclusion, the deficiency of Ndrg2 markedly exacerbated UVB-induced skin damage by promoting inflammatory responses and inhibiting antioxidant responses. This suggests that stabilizing NDRG2 expression holds promise as a therapeutic strategy for protecting against UVB-induced skin damage.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Plastic and Reconstructive Surgery, Senior Department of Burn and Plastic Surgery, The Fourth Medical Center of Chinese, PLA General Hospital and PLA Medical College, Beijing, 100048, China
| | - Weijie Gu
- Department of Dermatology, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Tian Liu
- Senior Department of Burn and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital and PLA Medical College, Beijing, 100048, China
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, 510010, China
| | - Haina Pei
- Department of Plastic and Reconstructive Surgery, Senior Department of Burn and Plastic Surgery, The Fourth Medical Center of Chinese, PLA General Hospital and PLA Medical College, Beijing, 100048, China
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Yi Zhao
- Department of Dermatology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China.
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, PLA Medical College, Beijing, 100853, China.
| | - Minliang Chen
- Department of Plastic and Reconstructive Surgery, Senior Department of Burn and Plastic Surgery, The Fourth Medical Center of Chinese, PLA General Hospital and PLA Medical College, Beijing, 100048, China.
| |
Collapse
|
4
|
Wang G, Zou X, Chen Q, Nong W, Miao W, Luo H, Qu S. The relationship and clinical significance of lactylation modification in digestive system tumors. Cancer Cell Int 2024; 24:246. [PMID: 39010066 PMCID: PMC11251390 DOI: 10.1186/s12935-024-03429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
Lactylation, an emerging post-translational modification, plays a pivotal role in the initiation and progression of digestive system tumors. This study presents a comprehensive review of lactylation in digestive system tumors, underscoring its critical involvement in tumor development and progression. By focusing on metabolic reprogramming, modulation of the tumor microenvironment, and the molecular mechanisms regulating tumor progression, the potential of targeting lactylation as a therapeutic strategy is highlighted. The research reveals that lactylation participates in gene expression regulation and cell signaling by affecting the post-translational states of histones and non-histone proteins, thereby influencing metabolic pathways and immune evasion mechanisms in tumor cells. Furthermore, this study assesses the feasibility of lactylation as a therapeutic target, providing insights for clinical treatment of gastrointestinal cancers. Future research should concentrate on elucidating the mechanisms of lactylation, developing efficient lactylation inhibitors, and validating their therapeutic efficacy in clinical trials, which could transform current cancer treatment and immunotherapy approaches. In summary, this review emphasizes the crucial role of lactylation in tumorigenesis and progression through a detailed analysis of its molecular mechanisms and clinical significance.
Collapse
Affiliation(s)
- Gang Wang
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Xiaosu Zou
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Qicong Chen
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Wenqian Nong
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Weiwei Miao
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Honglin Luo
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China.
| | - Shenhong Qu
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China.
- Department of Otolaryngology & Head and Neck, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| |
Collapse
|
5
|
Yan T, Yang H, Meng Y, Li H, Jiang Q, Liu J, Xu C, Xue Y, Xu J, Song Y, Chu X, Wang L, Chen X, Che F. Targeting copper death genotyping associated gene RARRES2 suppresses glioblastoma progression and macrophages infiltration. Cancer Cell Int 2023; 23:105. [PMID: 37246211 DOI: 10.1186/s12935-023-02950-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Copper homeostasis is associated with malignant biological behavior in various tumors. The excessive accumulation of copper can induce tumor death, which is named cuproptosis, and it is also closely related to tumor progression and the formation of the immune microenvironment. However, the associations of cuproptosis with glioblastoma (GBM) prognosis and microenvironment construction are poorly understood. METHOD First, TCGA and GEO (GSE83300, GSE74187) merged datasets were used to analyze the association of cuproptosis-related genes (CRGs) with GBM. Then, we performed cluster analysis of CRGs in GBM from the GEO (GSE83300, GSE74187) and TCGA merged datasets. Subsequently, the prognostic risk model was constructed by least absolute shrinkage and selection operator (LASSO) according to gene expression features in CRG clusters. Next, we performed a series of in-depth analyses, including tumor mutational burden (TMB) analysis, cluster analysis, and GBM IDH status prediction. Finally, RARRES2 was identified as a target gene for GBM treatment, especially IDH wild-type GBM. In addition, we further analyzed the correlation of CRG clusters and RARRES2 expression with the GBM immune microenvironment by ESTIMATE and CIBERSORT analyses. In vitro experiments were conducted to demonstrate that targeting RARRES2 inhibits glioblastoma progression and macrophage infiltration, particularly IDH wild-type GBM. RESULTS In the present study, we demonstrated that the CRG cluster was closely related to GBM prognosis and immune cell infiltration. Moreover, the prognostic risk model constructed with the three genes (MMP19, G0S2, RARRES2) associated with the CRG clusters could well evaluate the prognosis and immune cell infiltration in GBM. Subsequently, after further analyzing the tumor mutational burden (TMB) in GBM, we confirmed that RARRES2 in the prognostic risk model could be used as a crucial gene signature to predict the prognosis, immune cell infiltration and IDH status of GBM patients. CONCLUSION This study fully revealed the potential clinical impact of CRGs on GBM prognosis and the microenvironment, and determined the effect of the crucial gene (RARRES2) on the prognosis and tumor microenvironment construction of GBM, meanwhile, our study also revealed over-expressed RARRES2 is related to the IDH satus of GBM, which provides a novel strategy for the treatment of GBM, particularly IDH wild-type GBM.
Collapse
Affiliation(s)
- Tao Yan
- Central Laboratory, Linyi People's Hospital, Guangzhou University of Chinese Medicine, Linyi, 276000, Shandong Province, China
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - He Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Yun Meng
- Central Laboratory, Linyi People's Hospital, Guangzhou University of Chinese Medicine, Linyi, 276000, Shandong Province, China
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Huadong Li
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Qing Jiang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Junsi Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Caixia Xu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Yanpeng Xue
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Jiayi Xu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Yan Song
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Xiaojie Chu
- Department of Clinical Pharmacy, Daqing Oilfield General Hospital, Daqing, 163001, Heilongjiang Province, China
| | - Lijuan Wang
- Central Laboratory, Linyi People's Hospital, Guangzhou University of Chinese Medicine, Linyi, 276000, Shandong Province, China.
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, 276000, Shandong Province, China.
- Department of Hematology, Linyi People's Hospital, Guangzhou University of Chinese Medicine, Linyi, 276000, Shandong Province, China.
| | - Xin Chen
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China.
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.
| | - Fengyuan Che
- Central Laboratory, Linyi People's Hospital, Guangzhou University of Chinese Medicine, Linyi, 276000, Shandong Province, China.
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, 276000, Shandong Province, China.
- Department of Neurology, Linyi People's Hospital, Guangzhou University of Chinese Medicine, Linyi, 276000, Shandong Province, China.
| |
Collapse
|
6
|
The Function of N-Myc Downstream-Regulated Gene 2 (NDRG2) as a Negative Regulator in Tumor Cell Metastasis. Int J Mol Sci 2022; 23:ijms23169365. [PMID: 36012631 PMCID: PMC9408851 DOI: 10.3390/ijms23169365] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a tumor-suppressor gene that suppresses tumorigenesis and metastasis of tumors and increases sensitivity to anti-cancer drugs. In this review, we summarize information on the clinicopathological characteristics of tumor patients according to NDRG2 expression in various tumor tissues and provide information on the metastasis inhibition-related cell signaling modulation by NDRG2. Loss of NDRG2 expression is a prognostic factor that correlates with TNM grade and tumor metastasis and has an inverse relationship with patient survival in various tumor patients. NDRG2 inhibits cell signaling, such as AKT-, NF-κB-, STAT3-, and TGF-β-mediated signaling, to induce tumor metastasis, and induces activation of GSK-3β which has anti-tumor effects. Although NDRG2 operates as an adaptor protein to mediate the interaction between kinases and phosphatases, which is essential in regulating cell signaling related to tumor metastasis, the molecular mechanism of NDRG2 as an adapter protein does not seem to be fully elucidated. This review aims to assist the research design regarding NDRG2 function as an adaptor protein and suggests NDRG2 as a molecular target to inhibit tumor metastasis and improve the prognosis in tumor patients.
Collapse
|
7
|
Zhang Y, Li H, Lv C, Wu B, Yu Y, Zhong C, Lang Q, Liang Z, Li Y, Shi Y, Jian J, Xu F, Tian Y. HHLA2 promotes tumor progression by long non‑coding RNA H19 in human gallbladder cancer. Int J Oncol 2022; 61:112. [PMID: 35920182 PMCID: PMC9374468 DOI: 10.3892/ijo.2022.5402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Advanced gallbladder cancer (GBC) is one of the most malignant of all types of biliary tract cancers that is associated with poor prognosis and high mortality. Accumulating evidence suggest that the B7 family of proteins serve an essential role in various types of cancers, including GBC. However, the potential function and regulatory mechanism of human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2; also known as B7-H7 or B7H5) in GBC remain poorly understood. In the present study, immunohistochemistry was used to examine the expression pattern of HHLA2 in samples from 89 patients with GBC. The possible association between HHLA2 expression and the clinicopathological parameters, including prognosis, were then assessed. Using lentiviruses, overexpression of HHLA2 plasmid or short-hairpin RNA (shRNA) of HHLA2 were transfected into GBC-SD cells to overexpress or knock down HHLA2 expression, respectively. The effects of HHLA2 overexpression and knockdown on the epithelial-mesenchymal transition (EMT) process on GBC-SD cells were measured by the western blotting and immunofluorescence staining of collagen I, N-cadherin, E-cadherin, vimentin and α-SMA. By contrast, changes in cell proliferation were measured using EdU assay. Cell invasion and migration were assessed using Transwell and wound-healing assays, respectively. In addition, a xenograft mouse model was established to evaluate the tumorigenic ability of the GBC cell line in vivo after stable transfection with lentivirus for HHLA2 overexpression or shRNA for HHLA2 knockdown. The regulatory relationships among TGF-β1, long non-coding RNA (lncRNA) H19 (H19) and HHLA2 were then investigated. The mRNA expression of lncRNA H19 were assessed using reverse transcription-quantitative PCR, whereas the expression levels of HHLA2 were detected by western blotting and immunofluorescence staining. HHLA2 expression was found to gradually increase as the stages of the GBC samples become more advanced. In addition, the expression level of HHLA2 was calculated to be positively associated with the Nevin stage, American Joint Committee on Cancer stage, tumor invasion and regional lymph node metastasis but was negatively associated with the overall patient survival (OS). In vitro experiments demonstrated that overexpression of HHLA2 promoted GBC migration, invasion, proliferation and EMT, whereas in vivo experiments found a promoting role of HHLA2 overexpression on GBC tumor growth. After transfection with lentiviruses encoding the overexpression plasmid of lncRNA H19, GBC migration, invasion, proliferation and EMT were increased. By contrast, knocking down HHLA2 expression suppressed TGF-β1- or lncRNA H19 overexpression-induced GBC migration, invasion, proliferation and EMT. In addition, HHLA2 knockdown significantly reduced the sizes of the GBC tumors in vivo. These results suggest that HHLA2 overexpression can promote GBC progression. Conversely, ablation of HHLA2 expression inhibited both TGF-β1- and lncRNA H19-induced GBC progression, suggesting that HHLA2 is a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Hanrong Li
- Department of Ophthalmology, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110005, P.R. China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yang Yu
- Department of Surgery, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qi Lang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yu Shi
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jian Jian
- Department of Oncology, Liaoyang Central Hospital of China Medical University, Liaoyang, Liaoning 111010, P.R. China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
8
|
Si C, Zhou X, Deng J, Ye S, Kong L, Zhang B, Wang W. Role of ferroptosis in gastrointestinal tumors: From mechanisms to therapies. Cell Biol Int 2022; 46:997-1008. [PMID: 35476364 DOI: 10.1002/cbin.11804] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/16/2022] [Accepted: 03/24/2022] [Indexed: 01/01/2023]
Abstract
Ferroptosis is an iron-dependent nonapoptotic regulated cell death, which is mainly caused by an abnormal increase in lipid oxygen free radicals and an imbalance in redox homeostasis. Recently, ferroptosis has been shown to have implications in various gastrointestinal cancers, such as gastric carcinoma, hepatocellular carcinoma, and pancreatic cancer. This review summarises the latest research on ferroptosis, its mechanism of action, and its role in the progression of different gastrointestinal tumors to provide more information regarding the prevention and treatment of these tumors.
Collapse
Affiliation(s)
- Chenli Si
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Xiang Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shijie Ye
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Lingming Kong
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Baofu Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Weiming Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Zheng B, Wang J, Fan K, Sun W, Wan W, Gao Z, Ni X, Zhang D, Ni X, Suo T, Liu H, Liu H, Shen S. lncRNA RP11-147L13.8 suppresses metastasis and chemo-resistance by modulating the phosphorylation of c-Jun protein in GBC. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:124-137. [PMID: 34703881 PMCID: PMC8507201 DOI: 10.1016/j.omto.2021.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as critical contributors in tumor progression for many types of cancer. However, their functions in gallbladder cancer (GBC) have not been systematically clarified. In this study, the clinical significance, biological function, and underlying mechanism of lncRNA RP11-147L13.8 in GBC were investigated. The quantitative real-time PCR result indicated that lncRNA RP11-147L13.8 was found to be recurrently downregulated in GBC tumor samples. Kaplan-Meier analysis revealed that decreased lncRNA RP11-147L13.8 expression level was associated with poor survival of GBC patients (p = 0.025). Then, both in vitro and in vivo experiments elucidated that the overexpression of lncRNA RP11-147L13.8 suppressed the migration and invasion abilities of GBC cells and promoted the sensitivity to gemcitabine of GBC cells. Furthermore, we found that lncRNA RP11-147L13.8 physically interacted with c-Jun protein and decreased the phosphorylation on serine-73 (c-Jun-Ser73), which might cause the enhancement of the migration, invasion, and sensitivity to gemcitabine of GBC tumor cells. In conclusion, our study identified lncRNA RP11-147L13.8 as a promising prognostic indicator for patients with GBC, providing insights into the molecular pathogenesis of GBC. lncRNA RP11-147L13.8 is a potential therapeutic combination for gemcitabine in GBC treatment.
Collapse
Affiliation(s)
- Bohao Zheng
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China.,Shanghai Biliary Tract Minimal Invasive Surgery and Materials Engineering Research Center, Shanghai 200032, China
| | - Jiwen Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China.,Shanghai Biliary Tract Minimal Invasive Surgery and Materials Engineering Research Center, Shanghai 200032, China
| | - Kun Fan
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China.,Shanghai Biliary Tract Minimal Invasive Surgery and Materials Engineering Research Center, Shanghai 200032, China.,Department of General Surgery, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Wentao Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China.,Shanghai Biliary Tract Minimal Invasive Surgery and Materials Engineering Research Center, Shanghai 200032, China
| | - Wenze Wan
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China.,Shanghai Biliary Tract Minimal Invasive Surgery and Materials Engineering Research Center, Shanghai 200032, China
| | - Zhihui Gao
- Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaojian Ni
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China.,Shanghai Biliary Tract Minimal Invasive Surgery and Materials Engineering Research Center, Shanghai 200032, China
| | - Dexiang Zhang
- Shanghai Biliary Tract Minimal Invasive Surgery and Materials Engineering Research Center, Shanghai 200032, China.,Department of General Surgery, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoling Ni
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China.,Shanghai Biliary Tract Minimal Invasive Surgery and Materials Engineering Research Center, Shanghai 200032, China
| | - Tao Suo
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China.,Shanghai Biliary Tract Minimal Invasive Surgery and Materials Engineering Research Center, Shanghai 200032, China
| | - Han Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China.,Shanghai Biliary Tract Minimal Invasive Surgery and Materials Engineering Research Center, Shanghai 200032, China
| | - Houbao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China.,Shanghai Biliary Tract Minimal Invasive Surgery and Materials Engineering Research Center, Shanghai 200032, China.,Department of General Surgery, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Sheng Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China.,Shanghai Biliary Tract Minimal Invasive Surgery and Materials Engineering Research Center, Shanghai 200032, China.,Department of General Surgery, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Tang H, Shi X, Zhu P, Guo W, Li J, Yan B, Zhang S. Melatonin inhibits gallbladder cancer cell migration and invasion via ERK-mediated induction of epithelial-to-mesenchymal transition. Oncol Lett 2021; 22:609. [PMID: 34188711 PMCID: PMC8227585 DOI: 10.3892/ol.2021.12870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Melatonin is a naturally occurring molecule secreted by the pineal gland that exhibits antitumor properties and prevents the development of human cancer. However, little is known regarding the effects of melatonin on gallbladder cancer (GBC) cells. The present study aimed to investigate the role of melatonin on the prevention of GBC cell invasion. The GBC cell line, GBC-SD, was treated with different concentrations of melatonin for different time periods, and the data indicated that melatonin markedly inhibited the invasion of GBC cells. Following treatment of GBC cells with melatonin, the protein levels of the epithelial marker, E-cadherin, significantly increased, while the expression levels of the mesenchymal markers, N-cadherin, Snail and vimentin, notably decreased. In addition, melatonin inhibited the phosphorylation of ERK1/2. Following treatment of the cells with the ERK activator, tert-Butylhydroquinone, the anti-invasive effects of melatonin were reversed by rescuing epithelial-to-mesenchymal transition in GBC cells. Taken together, these results suggest that melatonin inhibits GBC invasiveness by blocking the ERK signaling pathway. Thus, melatonin may be used as a potential novel cancer therapeutic drug for the treatment of GBC.
Collapse
Affiliation(s)
- Hongwei Tang
- ZhengZhou Engineering Laboratory of Organ Transplantation Technique and Application, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Henan Engineering Technology Research Center of Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Pengfei Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Bing Yan
- ZhengZhou Engineering Laboratory of Organ Transplantation Technique and Application, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Henan Engineering Technology Research Center of Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuijun Zhang
- ZhengZhou Engineering Laboratory of Organ Transplantation Technique and Application, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Henan Engineering Technology Research Center of Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
11
|
Ruan Y, Wang L, Lu Y. HDAC6 inhibitor, ACY1215 suppress the proliferation and induce apoptosis of gallbladder cancer cells and increased the chemotherapy effect of gemcitabine and oxaliplatin. Drug Dev Res 2021; 82:598-604. [PMID: 33428788 DOI: 10.1002/ddr.21780] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022]
Abstract
As an anti-tumor agent, histone deacetylases (HDACs) inhibitors have attracted wide attention. ACY1215 is a highly effective selective inhibitor of HDAC6, which can inhibit many kinds of tumors. Whether the expression of HDAC6 and its new inhibitor ACY1215 can inhibit the proliferation of gallbladder cancer cells and induce their apoptosis remains to be further studied. The purpose of this study was to explore the effects of ACY1215 on the gallbladder cancer cells. Cell proliferation of GBC-SD and SGC-996 was assessed by cell counting kit-8 assay and colony formation assay. Flow cytometry was used to detect the apoptosis of gallbladder cancer cells. Western blot was used to detect the expressions of PCNA,KI67, and apoptosis-related proteins of gallbladder cancer cells. The HDAC6 inhibitor ACY1215 suppressed the proliferation of GBC-SD and SDC-996 cells and promoted the apoptosis of gallbladder cancer cells. The HDAC6 inhibitor ACY1215 increases the chemotherapy effect of gemcitabine and oxaliplatin. ACY1215 could suppress cell proliferation and induce apoptosis of GBC-SD and SGC-996, and increased the chemotherapy effect of gemcitabine and oxaliplatin, which provides a rationale for the combination of HDAC6 selective inhibitors with other anticancer agents in treating gallbladder cancer.
Collapse
Affiliation(s)
- Yi Ruan
- Department of Minimal Invasive Surgery, Ninbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Luoluo Wang
- Department of Minimal Invasive Surgery, Ninbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Yeting Lu
- Department of Minimal Invasive Surgery, Ninbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
12
|
Morishita K, Nakahata S, Ichikawa T. Pathophysiological significance of N-myc downstream-regulated gene 2 in cancer development through protein phosphatase 2A phosphorylation regulation. Cancer Sci 2021; 112:22-30. [PMID: 33128318 PMCID: PMC7780046 DOI: 10.1111/cas.14716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a candidate tumor suppressor in various cancers, including adult T-cell leukemia/lymphoma (ATLL). NDRG2, as a stress-responsive protein, is induced by several stress-related signaling pathways and NDRG2 negatively regulates various signal transduction pathways. Although it has not been found to function alone, NDRG2 binds serine/threonine protein phosphatase 2A (PP2A), generating a complex that is involved in the regulation of various target proteins. The main function of NDRG2 is to maintain cell homeostasis by suppressing stress-induced signal transduction; however, in cancer, genomic deletions and/or promoter methylation may inhibit the expression of NDRG2, resulting in enhanced tumor development through overactivated signal transduction pathways. A wide variety of tumors develop in Ndrg2-deficient mice, including T-cell lymphoma, liver, lung and other tumors, the characteristics of which are similar to those in Pten-deficient mice. In particular, PTEN is a target molecule of the NDRG2/PP2A complex, which enhances PTEN phosphatase activity by dephosphorylating residues in the PTEN C-terminal region. In ATLL cells, loss of NDRG2 expression leads to the failed recruitment of PP2A to PTEN, resulting in the inactivation of PTEN phosphatase with phosphorylation, ultimately leading to the activation of PI3K/AKT. Thus, NDRG2, as a PP2A adaptor, regulates the global phosphorylation of important signaling molecules. Moreover, the downregulation of NDRG2 expression by long-term stress-induced methylation is directly correlated with the development of ATLL and other cancers. Thus, NDRG2 might be important for the development of stress-induced leukemia and other cancers and has become an important target for novel molecular therapies.
Collapse
Affiliation(s)
| | - Shingo Nakahata
- Medical SciencesFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Tomonaga Ichikawa
- Medical SciencesFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| |
Collapse
|
13
|
Takarada-Iemata M. Roles of N-myc downstream-regulated gene 2 in the central nervous system: molecular basis and relevance to pathophysiology. Anat Sci Int 2020; 96:1-12. [PMID: 33174183 DOI: 10.1007/s12565-020-00587-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022]
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a member of the NDRG family, whose members have multiple functions in cell proliferation, differentiation, and stress responses. NDRG2 is widely distributed in the central nervous system and is uniquely expressed by astrocytes; however, its role in brain function remains elusive. The clinical relevance of NDRG2 and the molecular mechanisms in which it participates have been reported by studies using cultured cells and specimens of patients with neurological disorders. In recent years, genetic tools, including several lines of Ndrg2-knockout mice and virus-mediated gene transfer, have improved understanding of the roles of NDRG2 in vivo. This review aims to provide an update of recent growing in vivo evidence that NDRG2 is involved in brain function, focusing on research of Ndrg2-knockout mice with neurological disorders such as brain tumors, chronic neurodegenerative diseases, and acute brain insults including brain injury and cerebral stroke. These studies demonstrate that NDRG2 plays diverse roles in the regulation of astrocyte reactivity, blood-brain barrier integrity, and glutamate excitotoxicity. Further elucidation of the roles of NDRG2 and their molecular basis may provide novel therapeutic approaches for various neurological disorders.
Collapse
Affiliation(s)
- Mika Takarada-Iemata
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
14
|
Qin S, Jiang J, Lu Y, Nice EC, Huang C, Zhang J, He W. Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduct Target Ther 2020; 5:228. [PMID: 33028808 PMCID: PMC7541492 DOI: 10.1038/s41392-020-00313-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023] Open
Abstract
Resistance to cancer therapy is a major barrier to cancer management. Conventional views have proposed that acquisition of resistance may result from genetic mutations. However, accumulating evidence implicates a key role of non-mutational resistance mechanisms underlying drug tolerance, the latter of which is the focus that will be discussed here. Such non-mutational processes are largely driven by tumor cell plasticity, which renders tumor cells insusceptible to the drug-targeted pathway, thereby facilitating the tumor cell survival and growth. The concept of tumor cell plasticity highlights the significance of re-activation of developmental programs that are closely correlated with epithelial-mesenchymal transition, acquisition properties of cancer stem cells, and trans-differentiation potential during drug exposure. From observations in various cancers, this concept provides an opportunity for investigating the nature of anticancer drug resistance. Over the years, our understanding of the emerging role of phenotype switching in modifying therapeutic response has considerably increased. This expanded knowledge of tumor cell plasticity contributes to developing novel therapeutic strategies or combination therapy regimens using available anticancer drugs, which are likely to improve patient outcomes in clinical practice.
Collapse
Affiliation(s)
- Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology Shenzhen, Shenzhen, Guangdong, 518055, People's Republic of China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Road, 611137, Chengdu, People's Republic of China.
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology Shenzhen, Shenzhen, Guangdong, 518055, People's Republic of China.
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, People's Republic of China.
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, People's Republic of China.
| |
Collapse
|
15
|
von Itzstein MS, Burke MC, Brekken RA, Aguilera TA, Zeh HJ, Beg MS. Targeting TAM to Tame Pancreatic Cancer. Target Oncol 2020; 15:579-588. [PMID: 32996059 DOI: 10.1007/s11523-020-00751-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is expected to become the second leading cause of cancer-related death within the next few years. Current therapeutic strategies have limited effectiveness and therefore there is an urgency to develop novel effective therapies. The receptor tyrosine kinase subfamily TAM (Tyro3, Axl, MerTK) is directly implicated in the pathogenesis of the metastatic, chemoresistant, and immunosuppressive phenotype in pancreatic cancer. TAM inhibitors are promising investigational therapies for pancreatic cancer due to their potential to target multiple aspects of pancreatic cancer biology. Specifically, recent mechanistic investigations and therapeutic combinations in the preclinical setting suggest that TAM inhibition with chemotherapy, targeted therapy, and immunotherapy should be evaluated clinically.
Collapse
Affiliation(s)
- Mitchell S von Itzstein
- Division of Hematology/Oncology, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8852, USA
- Division of Hematology and Medical Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael C Burke
- Division of Hematology/Oncology, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8852, USA
- Division of Hematology and Medical Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rolf A Brekken
- Division of Surgical Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Todd A Aguilera
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Herbert J Zeh
- Division of Surgical Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Muhammad Shaalan Beg
- Division of Hematology/Oncology, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8852, USA.
- Division of Hematology and Medical Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
16
|
Chen K, Tang H, Zhu P, Ye J, Liu D, Pu Y, Zhang L, Zhai W. Interleukin 17A promotes gallbladder cancer invasiveness via ERK/NF-κB signal pathway mediated epithelial-to-mesenchymal transition. J Cancer 2020; 11:4406-4412. [PMID: 32489459 PMCID: PMC7255371 DOI: 10.7150/jca.40656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/27/2020] [Indexed: 01/17/2023] Open
Abstract
As a pro-inflammatory cytokine, Interleukin 17A (IL-17A) plays an important role in pathology of tumor microenvironment and inflammatory diseases. In this study, we intend to investigate the role of IL-17A on the metastasis of gallbladder cancer (GBC) and related mechanisms. The serum levels of IL-17A were associated with node metastasis and advanced stage. We also found the pro-invasion effect of IL-17A on GBC cells. When treated with IL-17A, the protein level of epithelial marker E-cadherin in GBC cells was significantly down-regulated, while the protein level of the mesenchymal phenotype marker vimentin was significantly increased. IL-17A increased the expression of transcription factor slug, the phosphorylation of ERK1/2 and the nuclear translocation of NF-κB/p50 and p65 in a concentration-dependent manner. Pretreatment of cells with U0126 could reverse the nuclear translocation of NF-κB/p50 and p65 and EMT induced by IL-17A. IL-17A promotes gallbladder cancer invasiveness via ERK/NF-κB signal pathway mediated epithelial-to-mesenchymal transition. As a new therapeutic targets and diagnostic marker, IL-17A may play an important role in the treatment of GBC.
Collapse
Affiliation(s)
- Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hongwei Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Pengfei Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jianwen Ye
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Dong Liu
- Departments of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Yansong Pu
- Departments of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Lei Zhang
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Bililary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
17
|
Zhu D, Gu X, Lin Z, Yu D, Wang J, Li L. HASPIN is involved in the progression of gallbladder carcinoma. Exp Cell Res 2020; 390:111863. [PMID: 31987787 DOI: 10.1016/j.yexcr.2020.111863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gallbladder carcinoma (GBC) is a common malignant tumor of the biliary system, but the current treatment of GBC is unsatisfactory. Therefore, new treatment targets and strategies are urgently needed. METHODS The expression of HASPIN in GBC was detected by immunohistochemical staining. HASPIN knockdown cell model was constructed by lentivirus infection, and the infection efficiency of lentivirus and knockdown efficiency of shHASPIN were verified by fluorescence immunoassay, qRT-PCR and Western blot. The effects of HASPIN knockdown on cell proliferation, clone-formation ability and apoptosis were determined by MTT, clone formation assay, flow cytometry and Human Apoptosis Antibody Array in vitro. Besides, the effect of HASPIN knockdown on the growth of GBC solid tumors was demonstrated in vivo. RESULTS The expression of HASPIN in GBC was up-regulated and positively correlated with the pathological grade of GBC. ShHASPIN significantly down-regulated the mRNA and protein levels of HASPIN, suggesting that HASPIN knockdown cell model was successfully constructed in vitro. After HASPIN knockdown, the proliferation and clone-formation ability of GBC cells were observably inhibited, the apoptotic levels were markedly increased, and the expression of Caspase 3, IGFBP-5, p21 and sTNF-R1 related to apoptotic pathway was up-regulated. Furthermore, HASPIN knockdown inhibited the growth of GBC in vivo. CONCLUSION HASPIN was up-regulated in GBC and played an important role in promoting the progress of GBC.
Collapse
MESH Headings
- Aged
- Animals
- Apoptosis
- Carcinoma/genetics
- Carcinoma/metabolism
- Carcinoma/pathology
- Carcinoma/therapy
- Caspase 3/genetics
- Caspase 3/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Clone Cells
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Female
- Gallbladder Neoplasms/genetics
- Gallbladder Neoplasms/metabolism
- Gallbladder Neoplasms/pathology
- Gallbladder Neoplasms/therapy
- Gene Expression Regulation, Neoplastic
- Humans
- Insulin-Like Growth Factor Binding Protein 5/genetics
- Insulin-Like Growth Factor Binding Protein 5/metabolism
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Mice
- Mice, Nude
- Middle Aged
- Protein Array Analysis
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Dawei Zhu
- Department of Gynaecology and Obstetrics, Daping Hospital, Army Medical University, China
| | - Xing Gu
- Department of Gynaecology and Obstetrics, Daping Hospital, Army Medical University, China
| | - Zhenyu Lin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Dandan Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jing Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Li Li
- Department of Gynaecology and Obstetrics, Daping Hospital, Army Medical University, China.
| |
Collapse
|
18
|
Genome-wide CRISPR screen identifies ELP5 as a determinant of gemcitabine sensitivity in gallbladder cancer. Nat Commun 2019; 10:5492. [PMID: 31792210 PMCID: PMC6889377 DOI: 10.1038/s41467-019-13420-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023] Open
Abstract
Gemcitabine is the first-line treatment for locally advanced and metastatic gallbladder cancer (GBC), but poor gemcitabine response is universal. Here, we utilize a genome-wide CRISPR screen to identify that loss of ELP5 reduces the gemcitabine-induced apoptosis in GBC cells in a P53-dependent manner through the Elongator complex and other uridine 34 (U34) tRNA-modifying enzymes. Mechanistically, loss of ELP5 impairs the integrity and stability of the Elongator complex to abrogate wobble U34 tRNA modification, and directly impedes the wobble U34 modification-dependent translation of hnRNPQ mRNA, a validated P53 internal ribosomal entry site (IRES) trans-acting factor. Downregulated hnRNPQ is unable to drive P53 IRES-dependent translation, but rescuing a U34 modification-independent hnRNPQ mutant could restore P53 translation and gemcitabine sensitivity in ELP5-depleted GBC cells. GBC patients with lower ELP5, hnRNPQ, or P53 expression have poor survival outcomes after gemcitabine chemotherapy. These results indicate that the Elongator/hnRNPQ/P53 axis controls gemcitabine sensitivity in GBC cells. Gemcitabine is used to treat gallbaldder cancer but patient responses are variable. Here, the authors use a genome-wide CRISPR screen and identify the translational elongator protein ELP5 as a protein that is important for mediating gemcitabine-induced apoptosis.
Collapse
|
19
|
Kim N, Ryu H, Kim S, Joo M, Jeon HJ, Lee MW, Song IC, Kim MN, Kim JM, Lee HJ. CXCR7 promotes migration and invasion in head and neck squamous cell carcinoma by upregulating TGF-β1/Smad2/3 signaling. Sci Rep 2019; 9:18100. [PMID: 31792315 PMCID: PMC6889124 DOI: 10.1038/s41598-019-54705-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/18/2019] [Indexed: 01/04/2023] Open
Abstract
The chemokine receptor CXCR7 has been suggested to play important roles in the progression of several types of cancers. However, few studies have investigated the biological roles of CXCR7 in head and neck squamous cell carcinoma (HNSCC). CXCR7 expression and its clinical implications were examined in 103 HNSCC tissues using immunohistochemistry (IHC). The biological roles and mechanisms of CXCR7-mediated signaling pathways were investigated in HNSCC cells through CXCR7 overexpression in vitro and in vivo. High expression of CXCR7 was significantly associated with tumor size (P = 0.007), lymph node metastasis (P = 0.004), and stage (P = 0.020) in HNSCC. Overexpression of CXCR7 in HNSCC cells enhanced cell migration and invasion in vitro and promoted lymph node metastasis in vivo. CXCR7 also induced epithelial-mesenchymal transition through PI3K/AKT. CXCR7 increased secretion of transforming growth factor-β1 (TGF-β1) and promoted EMT through phosphorylated Smad2/3. Taken together, our results provide functional and mechanistic roles of CXCR7 as a master regulator of oncogenic TGF-β1/Smad2/3 signaling in HNSCC, suggesting that CXCR7 might be a therapeutic target for the treatment of HNSCC.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Hyewon Ryu
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Solbi Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Mina Joo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Heung Jin Jeon
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Cancer Research Institute, Chungnam National University, Daejeon, 35015, Korea
| | - Myung-Won Lee
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Ik-Chan Song
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Mi-Na Kim
- Department of Pathology, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Pathology, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Hyo Jin Lee
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea. .,Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, 35015, Korea.
| |
Collapse
|
20
|
Lee NG, Jeung IC, Heo SC, Song J, Kim W, Hwang B, Kwon MG, Kim YG, Lee J, Park JG, Shin MG, Cho YL, Son MY, Bae KH, Lee SH, Kim JH, Min JK. Ischemia-induced Netrin-4 promotes neovascularization through endothelial progenitor cell activation via Unc-5 Netrin receptor B. FASEB J 2019; 34:1231-1246. [PMID: 31914695 DOI: 10.1096/fj.201900866rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 11/11/2022]
Abstract
Endothelial progenitor cells (EPCs) promote neovascularization and tissue repair by migrating to vascular injury sites; therefore, factors that enhance EPC homing to damaged tissues are of interest. Here, we provide evidence of the prominent role of the Netrin-4 (NTN4)-Unc-5 Netrin receptor B (UNC5B) axis in EPC-specific promotion of ischemic neovascularization. Our results showed that NTN4 promoted the proliferation, chemotactic migration, and paracrine effects of small EPCs (SEPCs) and significantly increased the incorporation of large EPCs (LEPCs) into tubule networks. Additionally, NTN4 prominently augmented neovascularization in mice with hindlimb ischemia by increasing the homing of exogenously transplanted EPCs to the ischemic limb and incorporating EPCs into vessels. Moreover, silencing of UNC5B, an NTN4 receptor, abrogated the NTN4-induced cellular activities of SEPCs in vitro and blood-flow recovery and neovascularization in vivo in ischemic muscle by reducing EPC homing and incorporation. These findings suggest NTN4 as an EPC-based therapy for treating angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Na Geum Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - In Cheul Jeung
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Soon Chul Heo
- Department of Physiology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jinhoi Song
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Wooil Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Byungtae Hwang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Min-Gi Kwon
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Min-Gyeong Shin
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Young-Lai Cho
- Research Center for Metabolic Regulation, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Mi-Young Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Kwang-Hee Bae
- Research Center for Metabolic Regulation, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Sang-Hyun Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jae Ho Kim
- Department of Physiology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
21
|
Li X, He M, Guo J, Cao T. Upregulation of circular RNA circ-ERBB2 predicts unfavorable prognosis and facilitates the progression of gastric cancer via miR-503/CACUL1 and miR-637/MMP-19 signaling. Biochem Biophys Res Commun 2019; 511:926-930. [DOI: 10.1016/j.bbrc.2019.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/02/2019] [Indexed: 12/30/2022]
|
22
|
Tian L, Lu Y, Yang T, Deng Z, Xu L, Yao W, Ma C, Li X, Zhang J, Liu Y, Wang J. aPKCι promotes gallbladder cancer tumorigenesis and gemcitabine resistance by competing with Nrf2 for binding to Keap1. Redox Biol 2019; 22:101149. [PMID: 30822690 PMCID: PMC6395946 DOI: 10.1016/j.redox.2019.101149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Gallbladder cancer (GBC) is a highly malignant bile duct cancer with poor prognosis characterized by its insensitivity to chemotherapy. Emerging evidence indicates that cytoprotective antioxidation is involved in drug resistance of various cancers; however, the underlying molecular mechanisms remain obscure. Here, we demonstrated that atypical protein kinase Cι (aPKCι) mediated reactive oxygen species (ROS) inhibition in a kinase-independent manner, which played a crucial role in tumorigenesis and chemoresistance. Mechanistically, we found that aPKCι facilitated nuclear factor erythroid 2-related factor 2 (Nrf2) accumulation, nuclear translocation and activated its target genes by competing with Nrf2 for binding to Kelch-like ECH-associated protein 1 (Keap1) through a highly conserved DLL motif. In addition, the aPKCι-Keap1 interaction was required for antioxidant effect, cell growth and gemcitabine resistance in GBC. Importantly, we further confirmed that aPKCι was frequently upregulated and correlated with poor prognosis in patients with GBC. Collectively, our findings suggested that aPKCι positively modulated the Keap1-Nrf2 pathway to enhance GBC growth and gemcitabine resistance, implying that the aPKCι-Keap1-Nrf2 axis may be a potential approach to overcome the drug resistance for the treatment of GBC. aPKCι inhibits ROS in a kinase-independent manner. aPKCι competes with Nrf2 for binding to Keap1 via a DLL motif. The aPKCι-Keap1 interaction promotes cell growth and gemcitabine resistance. Upregulation of aPKCι was linked to poor prognosis in patients with GBC. aPKCι-Keap1-Nrf2 axis may be a potential therapeutic target for GBC.
Collapse
Affiliation(s)
- Li Tian
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yun Lu
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tao Yang
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhengdong Deng
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lei Xu
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Yao
- Department of Oncology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chaoqun Ma
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiangyu Li
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jian Zhang
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yan Liu
- Department of Geriatrics, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
23
|
Guo L, Ma L, Liu C, Lei Y, Tang N, Huang Y, Huang G, Li D, Wang Q, Liu G, Tang M, Jing Z, Deng Y. ERp29 counteracts the suppression of malignancy mediated by endoplasmic reticulum stress and promotes the metastasis of colorectal cancer. Oncol Rep 2018; 41:1603-1615. [PMID: 30569094 PMCID: PMC6365697 DOI: 10.3892/or.2018.6943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/29/2018] [Indexed: 01/11/2023] Open
Abstract
Endoplasmic reticulum protein 29 (ERp29), an endoplasmic reticulum (ER) protein, participates in ER stress (ERS), but little is known about the association of ERp29 with ERS in the metastasis and prognosis of cancerous diseases. The present study revealed that ERp29 was important to ERS and interfered with the malignant behaviors of colorectal cancer (CRC). Experiments in in vitro and in animal models revealed that ERS inhibited the cell growth and suppressed the metastatic capacity of CRC cells, but ERp29 counteracted these effects. Furthermore, it was demonstrated that ERp29 recovered the migration and metastatic behaviors of CRC cells suppressed by ERS, mediated only when it combined with cullin5 (CUL5). ERp29 also relied on CUL5 to promote epithelial-mesenchymal transition. From the immunohistochemical examination of CRC tissues, the high expression of ERp29 was revealed to predict the poor prognosis of 457 CRC cases. The retrospective analysis of the clinicopathological data of patients with CRC was consistent with the results of the in vitro and in vivo experiments. Thus, ERp29 protected CRC cells from ERS-mediated reduction of malignancy to promote metastasis and may be a potential target of medical intervention for CRC therapy.
Collapse
Affiliation(s)
- Lili Guo
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lili Ma
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chao Liu
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yan Lei
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Na Tang
- Department of Pathology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Yingxin Huang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guan Huang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Dazhou Li
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qi Wang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guanglong Liu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Minshan Tang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhiliang Jing
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yongjian Deng
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
24
|
Tian L, Deng Z, Xu L, Yang T, Yao W, Ji L, Lu Y, Zhang J, Liu Y, Wang J. Downregulation of ASPP2 promotes gallbladder cancer metastasis and macrophage recruitment via aPKC-ι/GLI1 pathway. Cell Death Dis 2018; 9:1115. [PMID: 30389910 PMCID: PMC6214900 DOI: 10.1038/s41419-018-1145-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/28/2018] [Accepted: 10/09/2018] [Indexed: 12/28/2022]
Abstract
Gallbladder cancer (GBC) is a highly malignant bile duct cancer with poor prognosis due to early invasion and metastasis. However, the molecular mechanisms through which GBC cells interact with the tumor microenvironment (TME) remain poorly understood. Here, we examined the role of the tumor suppressor apoptosis-stimulating of p53 protein 2 (ASPP2) in regulating GBC invasion and metastasis and macrophage recruitment. The clinicopathological significance of ASPP2 expression was measured by immunohistochemical analysis in 72 patients with GBC. Lentivirus-mediated knockdown or overexpression of ASPP2 was used to investigate the biological functions and molecular mechanisms of ASPP2 in GBC cells. Our data showed that downregulation of ASPP2 in patients with GBC was linked to poor prognosis. Knockdown of ASPP2 induced epithelial–mesenchymal transition (EMT) in GBC cells and influenced the TME. Mechanistically, we further confirmed that ASPP2 affected the expression and protein binding between atypical protein kinase C (aPKC)-ι and glioma-associated oncogene homolog 1 (GLI1). ASPP2 also induced C−C motif chemokine ligand (CCL) 2, CCL5, and tumor necrosis factor-α secretion by cancer cells, thereby promoting macrophage recruitment. The latter also induced EMT-like changes in GBC. Furthermore, ASPP2 deficiency regulated GLI1 transcriptional activity via the noncanonical Hedgehog (Hh) pathway and aPKC-ι/GLI1 signaling loop and promoted GLI1 nuclear localization and binding to the promoters of target genes. Our findings revealed that downregulation of ASPP2 promoted GBC invasion and metastasis through the aPKC-ι/GLI1 pathway and enhanced macrophage recruitment. Thus, ASPP2/aPKC-ι/GLI1 pathway may be a potential therapeutic target for the treatment of GBC.
Collapse
Affiliation(s)
- Li Tian
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Zhengdong Deng
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Lei Xu
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Tao Yang
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Wei Yao
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Lei Ji
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Yun Lu
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Jian Zhang
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Yan Liu
- Department of Geriatrics, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| |
Collapse
|
25
|
Park J, Son Y, Lee NG, Lee K, Lee DG, Song J, Lee J, Kim S, Cho MJ, Jang JH, Lee J, Park JG, Kim YG, Kim JS, Lee J, Cho YS, Park YJ, Han BS, Bae KH, Han S, Kang B, Haam S, Lee SH, Lee SC, Min JK. DSG2 Is a Functional Cell Surface Marker for Identification and Isolation of Human Pluripotent Stem Cells. Stem Cell Reports 2018; 11:115-127. [PMID: 29910125 PMCID: PMC6117473 DOI: 10.1016/j.stemcr.2018.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 11/28/2022] Open
Abstract
Pluripotent stem cells (PSCs) represent the most promising clinical source for regenerative medicine. However, given the cellular heterogeneity within cultivation and safety concerns, the development of specific and efficient tools to isolate a pure population and eliminate all residual undifferentiated PSCs from differentiated derivatives is a prerequisite for clinical applications. In this study, we raised a monoclonal antibody and identified its target antigen as desmoglein-2 (DSG2). DSG2 co-localized with human PSC (hPSC)-specific cell surface markers, and its expression was rapidly downregulated upon differentiation. The depletion of DSG2 markedly decreased hPSC proliferation and pluripotency marker expression. In addition, DSG2-negative population in hPSCs exhibited a notable suppression in embryonic body and teratoma formation. The actions of DSG2 in regulating the self-renewal and pluripotency of hPSCs were predominantly exerted through the regulation of β-catenin/Slug-mediated epithelial-to-mesenchymal transition. Our results demonstrate that DSG2 is a valuable PSC surface marker that is essential for the maintenance of PSC self-renewal. DSG2 is a valuable cell surface marker for defining the state of pluripotency in PSCs DSG2 is essential for the maintenance of PSC self-renewal and pluripotency DSG2 regulates β-catenin-mediated EMT signaling in PSCs DSG2 is essential for the acquisition of pluripotency during reprogramming
Collapse
Affiliation(s)
- Jongjin Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Yeonsung Son
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Na Geum Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Kyungmin Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Dong Gwang Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Jinhoi Song
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Jaemin Lee
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Seokho Kim
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Min Ji Cho
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Ju-Hong Jang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Jang-Seong Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Jungwoon Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Yee Sook Cho
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Young-Jun Park
- Research Center for Metabolic Regulation, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Baek Soo Han
- Research Center for Metabolic Regulation, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Kwang-Hee Bae
- Research Center for Metabolic Regulation, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Seungmin Han
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Korea
| | - Byunghoon Kang
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Korea
| | - Sang-Hyun Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
| | - Sang Chul Lee
- Research Center for Metabolic Regulation, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea.
| |
Collapse
|
26
|
Brivio S, Cadamuro M, Fabris L, Strazzabosco M. Molecular Mechanisms Driving Cholangiocarcinoma Invasiveness: An Overview. Gene Expr 2018; 18:31-50. [PMID: 29070148 PMCID: PMC5860940 DOI: 10.3727/105221617x15088670121925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The acquisition of invasive functions by tumor cells is a first and crucial step toward the development of metastasis, which nowadays represents the main cause of cancer-related death. Cholangiocarcinoma (CCA), a primary liver cancer originating from the biliary epithelium, typically develops intrahepatic or lymph node metastases at early stages, thus preventing the majority of patients from undergoing curative treatments, consistent with their very poor prognosis. As in most carcinomas, CCA cells gradually adopt a motile, mesenchymal-like phenotype, enabling them to cross the basement membrane, detach from the primary tumor, and invade the surrounding stroma. Unfortunately, little is known about the molecular mechanisms that synergistically orchestrate this proinvasive phenotypic switch. Autocrine and paracrine signals (cyto/chemokines, growth factors, and morphogens) permeating the tumor microenvironment undoubtedly play a prominent role in this context. Moreover, a number of recently identified signaling systems are currently drawing attention as putative mechanistic determinants of CCA cell invasion. They encompass transcription factors, protein kinases and phosphatases, ubiquitin ligases, adaptor proteins, and miRNAs, whose aberrant expression may result from either stochastic mutations or the abnormal activation of upstream pro-oncogenic pathways. Herein we sought to summarize the most relevant molecules in this field and to discuss their mechanism of action and potential prognostic relevance in CCA. Hopefully, a deeper knowledge of the molecular determinants of CCA invasiveness will help to identify clinically useful biomarkers and novel druggable targets, with the ultimate goal to develop innovative approaches to the management of this devastating malignancy.
Collapse
Affiliation(s)
- Simone Brivio
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Massimiliano Cadamuro
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
| | - Luca Fabris
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
- ‡Department of Molecular Medicine, University of Padua, Padua, Italy
- §Liver Center, School of Medicine Section of Digestive Diseases, Yale University, New Haven, CT, USA
| | - Mario Strazzabosco
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
- §Liver Center, School of Medicine Section of Digestive Diseases, Yale University, New Haven, CT, USA
| |
Collapse
|
27
|
Lee Y, Ko D, Min HJ, Kim SB, Ahn HM, Lee Y, Kim S. TMPRSS4 induces invasion and proliferation of prostate cancer cells through induction of Slug and cyclin D1. Oncotarget 2018; 7:50315-50332. [PMID: 27385093 PMCID: PMC5226585 DOI: 10.18632/oncotarget.10382] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 06/17/2016] [Indexed: 11/25/2022] Open
Abstract
TMPRSS4 is a novel type II transmembrane serine protease found at the cell surface that is highly expressed in pancreatic, colon, and other cancer tissues. Previously, we demonstrated that TMPRSS4 mediates tumor cell invasion, migration, and metastasis. We also found that TMPRSS4 activates the transcription factor activating protein-1 (AP-1) to induce cancer cell invasion. Here, we explored TMPRSS4-mediated cellular functions and the underlying mechanisms. TMPRSS4 induced Slug, an epithelial-mesenchymal transition (EMT)-inducing transcription factor, and cyclin D1 through activation of AP-1, composed of c-Jun and activating transcription factor (ATF)-2, which resulted in enhanced invasion and proliferation of PC3 prostate cancer cells. In PC3 cells, not only c-Jun but also Slug was required for TMPRSS4-mediated proliferation and invasion. Interestingly, Slug induced phosphorylation of c-Jun and ATF-2 to activate AP-1 through upregulation of Axl, establishing a positive feedback loop between Slug and AP-1, and thus induced cyclin D1, leading to enhanced proliferation. Using data from The Cancer Genome Atlas, we found that Slug expression positively correlated with that of c-Jun and cyclin D1 in human prostate cancers. Expression of Slug was positively correlated with that of cyclin D1 in various cancer cell lines, whereas expression of other EMT-inducing transcription factors was not. This study demonstrates that TMPRSS4 modulates both invasion and proliferation via Slug and cyclin D1, which is a previously unrecognized pathway that may regulate metastasis and cancer progression.
Collapse
Affiliation(s)
- Yunhee Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon 34141, Korea.,Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea
| | - Dongjoon Ko
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejon 34113, Korea
| | - Hye-Jin Min
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea
| | - Sol Bi Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejon 34113, Korea
| | - Hye-Mi Ahn
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea
| | - Younghoon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon 34141, Korea
| | - Semi Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon 34141, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejon 34113, Korea
| |
Collapse
|
28
|
Li M, Lai X, Zhao Y, Zhang Y, Li M, Li D, Kong J, Zhang Y, Jing P, Li H, Qin H, Shen L, Yao L, Li J, Dou K, Zhang J. Loss of NDRG2 in liver microenvironment inhibits cancer liver metastasis by regulating tumor associate macrophages polarization. Cell Death Dis 2018; 9:248. [PMID: 29445150 PMCID: PMC5833557 DOI: 10.1038/s41419-018-0284-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023]
Abstract
The liver is the predominant metastatic site for several types of malignancies. Tumor-associated macrophages (TAMs) in the liver play crucial roles in the metastasis process. Shifting tumor-promoting M2-like TAMs toward the M1-like phenotype, which exerts tumor suppressor functions via phagocytosis and the secretion of inhibitory factors, may be a potential therapeutic strategy for liver cancer metastasis treatment. We first cloned NDRG2 (N-myc downstream-regulated gene 2) and verified its tumor suppressor role in multiple solid tumors, including colorectal cancer and hepatocellular carcinoma. However, its role in the tumor-associated liver microenvironment, especially in TAMs, has not been illustrated. By establishing a liver cancer metastasis model in wild-type (WT) and Ndrg2 knockout (Ndrg2−/−) mice, we found that the loss of the tumor suppressor Ndrg2 in liver microenvironment significantly suppressed the growth of liver colonies. In addition, this process was accompanied by a higher proportion of M1-like TAM infiltration in Ndrg2−/− mice. Interestingly, bone marrow (BM) transplantation revealed that BM-derived macrophages (BMDMs) rather than liver resident Kupffer cells were responsible for the inhibitory effect. We further demonstrated that loss of Ndrg2 influenced TAM polarization via the NF-κB pathway. Inhibition of IκBα phosphorylation in cancer cell-conditioned medium-stimulated BMDMs decreased M1 marker expression in Ndrg2−/− macrophages. Finally, in vitro, invasion, migration, and proliferation assays confirmed that NF-κB participated in the tumor suppressor function of Ndrg2−/− macrophages. Collectively, our findings highlight the role of NDRG2 in the regulation of TAM polarization and its function in promoting cancer liver metastasis.
Collapse
Affiliation(s)
- Mengyang Li
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.,Department of Hepatobiliary and Pancreas Surgery, Xijing Hospital Fourth Military Medical University, Xi'an, China
| | - Xiaofeng Lai
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Ying Zhao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital The Fourth Military Medical University, Xi'an, China
| | - Yuan Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Minghui Li
- Department of Orthopedics, Xijing Hospital Fourth Military Medical University, Xi'an, China
| | - Danxiu Li
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Jing Kong
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital Fourth Military Medical University, Xi'an, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Xijing Hospital Fourth Military Medical University, Xi'an, China
| | - Pengyu Jing
- Department of Thoracic Surgery, Tangdu Hospital Fourth Military Medical University, Xi'an, China
| | - Huichen Li
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Hongyan Qin
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Liangliang Shen
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Libo Yao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Jipeng Li
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital The Fourth Military Medical University, Xi'an, China.
| | - Kefeng Dou
- Department of Hepatobiliary and Pancreas Surgery, Xijing Hospital Fourth Military Medical University, Xi'an, China.
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
29
|
Ling L, Chen L, Zhang C, Gui S, Zhao H, Li Z. High glucose induces podocyte epithelial‑to‑mesenchymal transition by demethylation‑mediated enhancement of MMP9 expression. Mol Med Rep 2018; 17:5642-5651. [PMID: 29436620 PMCID: PMC5866005 DOI: 10.3892/mmr.2018.8554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 10/30/2017] [Indexed: 01/13/2023] Open
Abstract
Abnormal expression of matrix metalloproteinase 9 (MMP9) is correlated with podocyte epithelial-to-mesenchymal transition (EMT) in diabetic nephropathy (DN). However, the mechanisms underlying this process are not well defined. Site-specific demethylation may sustain high expression levels of target genes. In the present study, in order to investigate the association between DNA demethylation of MMP9 promoter and podocyte EMT in DN, human podocytes were cultured in high-glucose (HG) medium and a rat model of DN was established by intraperitoneal injection of streptozotocin (STZ) to determine whether site-specific demethylation of the MMP9 promoter was involved in regulating podocyte EMT in DN. The MTT assay was used to assess the effects of HG culture on the growth of podocytes, and the demethylation status of the MMP9 promoter was assessed by bisulfite sequencing polymerase chain reaction. mRNA and protein expression levels of MMP9, α-smooth muscle actin (α-SMA), podocalyxin and fibronectin-1 in podocytes were assessed by reverse transcription-quantitative PCR (RT-qPCR) and western blot analyses. The results demonstrated that HG treatment up regulated the expression of MMP9, α-SMA and fibronectin-1, but down regulated the expression of podocalyxin in podocytes. The MMP9 promoter region was revealed to contain a variety of demethylated CpG sites, and HG treatment reduced the rate of MMP9 promotermethylation, which, in turn, enhanced its promoter activity. In summary, these data suggested that demethylation of the MMP9 promoter may serve an important role in podocyte EMT in DN. The demethylation status of the MMP9 promoter maybe used as an important prognostic marker of DN in clinic.
Collapse
Affiliation(s)
- Li Ling
- Department of Endocrinology, Guangdong Medical College Affiliated Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Libo Chen
- Department of Endocrinology, Guangdong Medical College Affiliated Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Changning Zhang
- Department of Endocrinology, Guangdong Medical College Affiliated Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Shuyan Gui
- Department of Endocrinology, Guangdong Medical College Affiliated Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Haiyan Zhao
- Department of Endocrinology, Guangdong Medical College Affiliated Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Zhengzhang Li
- Department of Endocrinology, Guangdong Medical College Affiliated Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, P.R. China
| |
Collapse
|
30
|
Hu W, Yang Y, Fan C, Ma Z, Deng C, Li T, Lv J, Yao W, Gao J. Clinical and pathological significance of N-Myc downstream-regulated gene 2 (NDRG2) in diverse human cancers. Apoptosis 2018; 21:675-82. [PMID: 27113371 DOI: 10.1007/s10495-016-1244-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human N-Myc downstream-regulated gene 2 (NDRG2), located at chromosome 14q11.2, has been reported to be down-regulated and associated with the progression and prognosis of diverse cancers. Collectively, previous studies suggest that NDRG2 functions as a candidate tumor-suppressor gene; thus, up-regulation of NDRG2 protein might act as a promising therapeutic strategy for malignant tumors. The aim of this review was to comprehensively present the clinical and pathological significance of NDRG2 in human cancers.
Collapse
Affiliation(s)
- Wei Hu
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China.,Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Chao Deng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Jianjun Lv
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Weiwei Yao
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Jianyuan Gao
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
31
|
Tantai J, Pan X, Hu D. RNF4-mediated SUMOylation is essential for NDRG2 suppression of lung adenocarcinoma. Oncotarget 2018; 7:26837-43. [PMID: 27072586 PMCID: PMC5042018 DOI: 10.18632/oncotarget.8663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/06/2016] [Indexed: 01/05/2023] Open
Abstract
N-Myc downstream-regulated gene 2 (NDRG2) protein is a tumor suppressor that inhibits cancer growth, metastasis and invasion. The ubiquitin ligase RNF4 integrates signaling by SUMO and ubiquitin through its selective recognition and ubiquitination of SUMO-modified proteins. We evaluated NDRG2 SUMOylation in lung adenocarcinoma cells and its underlying molecular mechanism. The results showed that NDRG2 is covalently modified by SUMO1 at K333, which suppressed anchorage independent adenocarcinoma cell proliferation and tumor growth. In human lung adenocarcinomas cells, RNF4 targeted NDRG2 to proteasomal degradation by stimulating its SUMOylation. Endogenous RNF4 expression was increased in human lung adenocarcinomas cells, and there was a concomitant upregulation of SUMO. These findings indicate that SUMOylation of NDRG2 is necessary for its tumor suppressor function in lung adenocarcinoma and that RNF4 increases the efficiency of this process.
Collapse
Affiliation(s)
- Jicheng Tantai
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xufeng Pan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dingzhong Hu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Epithelial-to-mesenchymal transition in gallbladder cancer: from clinical evidence to cellular regulatory networks. Cell Death Discov 2017; 3:17069. [PMID: 29188076 PMCID: PMC5702855 DOI: 10.1038/cddiscovery.2017.69] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/19/2017] [Accepted: 08/23/2017] [Indexed: 02/08/2023] Open
Abstract
Gallbladder cancer (GBC), with late diagnosis, rapid disease progression and early metastasis, is a highly aggressive malignant tumor found worldwide. Patients with GBC have poor survival, low curative resection rates and early recurrence. For such a lethal tumor, uncovering the mechanisms and exploring new strategies to prevent tumor progression and metastasis are critically important. Epithelial-to-mesenchymal transition (EMT) has a prominent role in the early steps of tumor progression and metastasis by initiating polarized epithelial cell transition into motile mesenchymal cells. Accumulating evidence suggests that EMT can be modulated by the cooperation of multiple mechanisms affecting common targets. Signaling pathways, transcriptional and post-transcriptional regulation and epigenetic alterations are involved in the stepwise EMT regulatory network in GBC. Loss of epithelial markers, acquisition of mesenchymal markers and dysregulation of EMT-inducing transcription factors (EMT-TFs) have been observed and are associated with the clinicopathology and prognosis of GBC patients. Therefore, EMT may be a detectable and predictable event for predicting GBC progression and metastasis in the clinic. In this review, we will provide an overview of EMT from the clinical evidence to cellular regulatory networks that have been studied thus far in clinical and basic GBC studies.
Collapse
|
33
|
NDRG2 knockdown promotes fibrosis in renal tubular epithelial cells through TGF-β1/Smad3 pathway. Cell Tissue Res 2017. [DOI: 10.1007/s00441-017-2643-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
The preterm cervix reveals a transcriptomic signature in the presence of premature prelabor rupture of membranes. Am J Obstet Gynecol 2017; 216:602.e1-602.e21. [PMID: 28209491 DOI: 10.1016/j.ajog.2017.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Premature prelabor rupture of fetal membranes accounts for 30% of all premature births and is associated with detrimental long-term infant outcomes. Premature cervical remodeling, facilitated by matrix metalloproteinases, may trigger rupture at the zone of the fetal membranes overlying the cervix. The similarities and differences underlying cervical remodeling in premature prelabor rupture of fetal membranes and spontaneous preterm labor with intact membranes are unexplored. OBJECTIVES We aimed to perform the first transcriptomic assessment of the preterm human cervix to identify differences between premature prelabor rupture of fetal membranes and preterm labor with intact membranes and to compare the enzymatic activities of matrix metalloproteinases-2 and -9 between premature prelabor rupture of fetal membranes and preterm labor with intact membranes. STUDY DESIGN Cervical biopsies were collected following preterm labor with intact membranes (n = 6) and premature prelabor rupture of fetal membranes (n = 5). Biopsies were also collected from reference groups at term labor (n = 12) or term not labor (n = 5). The Illumina HT-12 version 4.0 BeadChips microarray was utilized, and a novel network graph approach determined the specificity of changes between premature prelabor rupture of fetal membranes and preterm labor with intact membranes. Quantitative reverse transcription-polymerase chain reaction and Western blotting confirmed the microarray findings. Immunofluorescence was used for localization studies and gelatin zymography to assess matrix metalloproteinase activity. RESULTS PML-RARA-regulated adapter molecule 1, FYVE-RhoGEF and PH domain-containing protein 3 and carcinoembryonic antigen-ralated cell adhesion molecule 3 were significantly higher, whereas N-myc downstream regulated gene 2 was lower in the premature prelabor rupture of fetal membranes cervix when compared with the cervix in preterm labor with intact membranes, term labor, and term not labor. PRAM1 and CEACAM3 were localized to immune cells at the cervical stroma and NDRG2 and FGD3 were localized to cervical myofibroblasts. The activity of matrix metalloproteinase-9 was higher (1.22 ± 4.403-fold, P < .05) in the cervix in premature prelabor rupture of fetal membranes compared with preterm labor with intact membranes. CONCLUSION We identified 4 novel proteins with a potential role in the regulation of cervical remodeling leading to premature prelabor rupture of fetal membranes. Our findings contribute to the studies dissecting the mechanisms underlying premature prelabor rupture of fetal membranes and inspire further investigations toward the development of premature prelabor rupture of fetal membranes therapeutics.
Collapse
|
35
|
Biochemical and Biological Attributes of Matrix Metalloproteinases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:1-73. [PMID: 28413025 DOI: 10.1016/bs.pmbts.2017.02.005] [Citation(s) in RCA: 774] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that are involved in the degradation of various proteins in the extracellular matrix (ECM). Typically, MMPs have a propeptide sequence, a catalytic metalloproteinase domain with catalytic zinc, a hinge region or linker peptide, and a hemopexin domain. MMPs are commonly classified on the basis of their substrates and the organization of their structural domains into collagenases, gelatinases, stromelysins, matrilysins, membrane-type (MT)-MMPs, and other MMPs. MMPs are secreted by many cells including fibroblasts, vascular smooth muscle (VSM), and leukocytes. MMPs are regulated at the level of mRNA expression and by activation of their latent zymogen form. MMPs are often secreted as inactive pro-MMP form which is cleaved to the active form by various proteinases including other MMPs. MMPs cause degradation of ECM proteins such as collagen and elastin, but could influence endothelial cell function as well as VSM cell migration, proliferation, Ca2+ signaling, and contraction. MMPs play a role in tissue remodeling during various physiological processes such as angiogenesis, embryogenesis, morphogenesis, and wound repair, as well as in pathological conditions such as myocardial infarction, fibrotic disorders, osteoarthritis, and cancer. Increases in specific MMPs could play a role in arterial remodeling, aneurysm formation, venous dilation, and lower extremity venous disorders. MMPs also play a major role in leukocyte infiltration and tissue inflammation. MMPs have been detected in cancer, and elevated MMP levels have been associated with tumor progression and invasiveness. MMPs can be regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio often determines the extent of ECM protein degradation and tissue remodeling. MMPs have been proposed as biomarkers for numerous pathological conditions and are being examined as potential therapeutic targets in various cardiovascular and musculoskeletal disorders as well as cancer.
Collapse
|
36
|
Identification of sennoside A as a novel inhibitor of the slingshot (SSH) family proteins related to cancer metastasis. Pharmacol Res 2017; 119:422-430. [PMID: 28274853 DOI: 10.1016/j.phrs.2017.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/26/2017] [Accepted: 03/03/2017] [Indexed: 02/06/2023]
Abstract
Phospho-cofilin (p-cofilin), which has a phosphate group on Ser-3, is involved in actin polymerization. Its dephosphorylated form promotes filopodia formation and cell migration by enhancing actin depolymerization. Protein phosphatase slingshot homologs (SSHs), known as dual-specificity phosphatases, catalyze hydrolytic removal of the Ser-3 phosphate group from phospho-cofilin. Aberrant SSH activity results in cancer metastasis, implicating SSHs as potential therapeutic targets for cancer metastasis. In this study, we screened 658 natural products purified from traditional oriental medicinal plants to identify three potent SSH inhibitors with submicromolar or single-digit micromolar Ki values: gossypol, hypericin, and sennoside A. The three compounds were purified from cottonseed, Saint John's wort, and rhubarb, respectively. Sennoside A markedly increased cofilin phosphorylation in pancreatic cancer cells, leading to impaired actin dynamics in pancreatic cancer cells with or without EGF stimulation and reduced motility and invasiveness in vitro and in vivo. Collaboratively, these results demonstrate that sennoside A is a novel inhibitor of SSHs and suggest that it may be valuable in the development of pharmaceutical drugs for treating cancer metastasis.
Collapse
|
37
|
Tamura T, Ichikawa T, Nakahata S, Kondo Y, Tagawa Y, Yamamoto K, Nagai K, Baba T, Yamaguchi R, Futakuchi M, Yamashita Y, Morishita K. Loss of NDRG2 Expression Confers Oral Squamous Cell Carcinoma with Enhanced Metastatic Potential. Cancer Res 2017; 77:2363-2374. [PMID: 28209617 DOI: 10.1158/0008-5472.can-16-2114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/04/2016] [Accepted: 01/16/2017] [Indexed: 11/16/2022]
Abstract
Loss of the tumor suppressor NDRG2 has been implicated in the development of oral squamous cell carcinoma (OSCC), acting by modulating PI3K/AKT-mediated dephosphorylation of PTEN at S380/S382/T383 (STT). Here, we show that the majority of OSCC tumors with lymph node metastasis, a major prognostic factor, exhibit high levels of phosphorylated AKT-S473 and PTEN-STT and low levels of NDRG2 expression. In Ndrg2-deficient mice, which develop a wide range of tumors, we developed a model of OSCC by treatment with the tobacco surrogate 4-nitroquinoline-1-oxide (4-NQO). In this model, both the number and size of OSCC tumors were increased significantly by Ndrg2 deficiency, which also increased invasion of cervical lymph nodes. 4-NQO treatment of human OSCC cell lines exhibiting low NDRG2 expression induced epithelial-mesenchymal transition via activation of NF-κB signaling. Conversely, ectopic expression of NDRG2 reversed the EMT phenotype and inhibited NF-κB signaling via suppression of PTEN-STT and AKT-S473 phosphorylation. Our results show how NDRG2 expression serves as a critical determinant of the invasive and metastatic capacity of OSCC. Cancer Res; 77(9); 2363-74. ©2017 AACR.
Collapse
Affiliation(s)
- Tomohiro Tamura
- Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tomonaga Ichikawa
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shingo Nakahata
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yudai Kondo
- Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuri Tagawa
- Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Koji Yamamoto
- Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kentaro Nagai
- Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takashi Baba
- Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ryoji Yamaguchi
- Laboratory of Veterinary Pathology, Department of Veterinary, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Mitsuru Futakuchi
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshihiro Yamashita
- Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
38
|
Lango-Chavarría M, Chimal-Ramírez GK, Ruiz-Tachiquín ME, Espinoza-Sánchez NA, Suárez-Arriaga MC, Fuentes-Pananá EM. A 22q11.2 amplification in the region encoding microRNA-650 correlates with the epithelial to mesenchymal transition in breast cancer primary cultures of Mexican patients. Int J Oncol 2017; 50:432-440. [PMID: 28101578 PMCID: PMC5238778 DOI: 10.3892/ijo.2017.3842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/29/2016] [Indexed: 01/11/2023] Open
Abstract
Breast cancer ranks first in incidence and mortality in working age women. Cancer initiation and progression relies on accumulation of genetic and epigenetic aberrations that alter cellular processes, among them, epithelial to mesenchymal transition (EMT) denotes particularly aggressive neoplasias given its capacity to invade and metastasize. Several microRNAs (miRNA) have been found able to regulate gene expression at the core of EMT. In this study, the Affymetrix CytoScan HD array was used to analyze three different primary tumor cell isolates from Mexican breast cancer patients. We found an amplification in band 22q11.2 shared by the three samples, in the region that encodes miRNA-650. Overexpression of this miRNA has been associated with downregulation of tumor suppressors ING4 and NDRG2, which have been implicated in cancer progression. Using the Pathway Linker platform the ING4 and NDRG2 interaction networks showed a significant association with signaling pathways commonly deregulated in cancer. Also, several studies support their participation in the EMT. Supporting the latter, we found that the three primary isolates were E-cadherin negative, vimentin positive, presented a cancer stem cell-like phenotype CD44+CD24−/low and were invasive in Transwell invasion assays. This evidence suggests that the gain of region 22q11.2 contributes to trigger EMT. This is the first evidence linking miR-650 and breast cancer.
Collapse
Affiliation(s)
- M Lango-Chavarría
- Research Unit on Virology and Cancer, Children's Hospital of Mexico 'Federico Gómez', C.P. 06720 Mexico City, Mexico
| | - G K Chimal-Ramírez
- Research Unit on Virology and Cancer, Children's Hospital of Mexico 'Federico Gómez', C.P. 06720 Mexico City, Mexico
| | - M E Ruiz-Tachiquín
- Medical Research Unit on Human Genetics, Pediatric's Hospital, Mexican Institute of Social Security XXI Century, Del. Cuauhtemoc, C.P. 06720 Mexico City, Mexico
| | - N A Espinoza-Sánchez
- Research Unit on Virology and Cancer, Children's Hospital of Mexico 'Federico Gómez', C.P. 06720 Mexico City, Mexico
| | - M C Suárez-Arriaga
- Research Unit on Virology and Cancer, Children's Hospital of Mexico 'Federico Gómez', C.P. 06720 Mexico City, Mexico
| | - E M Fuentes-Pananá
- Research Unit on Virology and Cancer, Children's Hospital of Mexico 'Federico Gómez', C.P. 06720 Mexico City, Mexico
| |
Collapse
|
39
|
Mittal R, Patel AP, Debs LH, Nguyen D, Patel K, Grati M, Mittal J, Yan D, Chapagain P, Liu XZ. Intricate Functions of Matrix Metalloproteinases in Physiological and Pathological Conditions. J Cell Physiol 2016; 231:2599-621. [PMID: 27187048 DOI: 10.1002/jcp.25430] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Amit P. Patel
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Luca H. Debs
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Desiree Nguyen
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Kunal Patel
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - M'hamed Grati
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Jeenu Mittal
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Denise Yan
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Prem Chapagain
- Department of Physics; Florida International University; Miami Florida
- Biomolecular Science Institute; Florida International University; Miami Florida
| | - Xue Zhong Liu
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
- Department of Biochemistry; University of Miami Miller School of Medicine; Miami Florida
| |
Collapse
|
40
|
Chen L, Yang H, Xiao Y, Tang X, Li Y, Han Q, Fu J, Yang Y, Zhu Y. LncRNA GAS5 is a critical regulator of metastasis phenotype of melanoma cells and inhibits tumor growth in vivo. Onco Targets Ther 2016; 9:4075-87. [PMID: 27445498 PMCID: PMC4938146 DOI: 10.2147/ott.s98203] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The present study intended to demonstrate the effects of long noncoding RNA growth arrest-specific transcript 5 (GAS5) on the migration and invasion of melanoma cells. We first detected the expression of GAS5 among four kinds of melanoma cell lines, followed by constructing GAS5-knocked down and overexpressed stable cells. Next, we evaluated the effects of GAS5 on cell migration and invasion using wound healing and gelatin zymography assays. Finally, melanoma cells with different GAS5 expression were injected into nude mice, and the tumor volumes were recorded and tumor tissues were analyzed after sacrificing the mice. This study systematically examined the function of GAS5 in mediating melanoma metastasis and revealed that GAS5 plays an anticancer role in melanoma via regulating gelatinase A and B, both in vitro and in vivo.
Collapse
Affiliation(s)
- Long Chen
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, Yunnan, People's Republic of China; PET/CT Center, Yunan Tumor Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Huixin Yang
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Yanbin Xiao
- Department of Orthopaedics, Yunan Tumor Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Xiaoxia Tang
- Department of Pharmacy, the Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Yuqian Li
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Qiaoqiao Han
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Junping Fu
- Department of Orthopaedics, Yunan Tumor Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Yuye Yang
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
41
|
Brivio S, Cadamuro M, Fabris L, Strazzabosco M. Epithelial-to-Mesenchymal Transition and Cancer Invasiveness: What Can We Learn from Cholangiocarcinoma? J Clin Med 2015; 4:2028-41. [PMID: 26703747 PMCID: PMC4693158 DOI: 10.3390/jcm4121958] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/04/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022] Open
Abstract
In addition to its well-established role in embryo development, epithelial-to-mesenchymal transition (EMT) has been proposed as a general mechanism favoring tumor metastatization in several epithelial malignancies. Herein, we review the topic of EMT in cholangiocarcinoma (CCA), a primary liver cancer arising from the epithelial cells lining the bile ducts (cholangiocytes) and characterized by an abundant stromal reaction. CCA carries a dismal prognosis, owing to a pronounced invasiveness and scarce therapeutic opportunities. In CCA, several reports indicate that cancer cells acquire a number of EMT biomarkers and functions. These phenotypic changes are likely induced by both autocrine and paracrine signals released in the tumor microenvironment (cytokines, growth factors, morphogens) and intracellular stimuli (microRNAs, oncogenes, tumor suppressor genes) variably associated with specific disease mechanisms, including chronic inflammation and hypoxia. Nevertheless, evidence supporting a complete EMT of neoplastic cholangiocytes into stromal cells is lacking, and the gain of EMT-like changes by CCA cells rather reflects a shift towards an enhanced pro-invasive phenotype, likely induced by the tumor stroma. This concept may help to identify new biomarkers of early metastatic behavior along with potential therapeutic targets.
Collapse
Affiliation(s)
- Simone Brivio
- School of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy.
| | - Massimiliano Cadamuro
- School of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy.
- Department of Molecular Medicine, University of Padua School of Medicine, Viale Colombo 3, 35131 Padua, Italy.
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Viale Colombo 3, 35131 Padua, Italy.
- Liver Center, Section of Digestive Diseases, Yale University, TAC Building, 333 Cedar Street, New Haven, CT 06520, USA.
| | - Mario Strazzabosco
- School of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy.
- Liver Center, Section of Digestive Diseases, Yale University, TAC Building, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|