1
|
Chen H, Lin Y, Chen J, Luo X, Kan Y, He Y, Zhu R, Jin J, Li D, Wang Y, Han Z. Targeting caspase-8: a new strategy for combating hepatocellular carcinoma. Front Immunol 2024; 15:1501659. [PMID: 39726605 PMCID: PMC11669555 DOI: 10.3389/fimmu.2024.1501659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents the most prevalent form of primary liver cancer and has a high mortality rate. Caspase-8 plays a pivotal role in an array of cellular signaling pathways and is essential for the governance of programmed cell death mechanisms, inflammatory responses, and the dynamics of the tumor microenvironment. Dysregulation of caspase-8 is intricately linked to the complex biological underpinnings of HCC. In this manuscript, we provide a comprehensive review of the regulatory roles of caspase-8 in apoptosis, necroptosis, pyroptosis, and PANoptosis, as well as its impact on inflammatory reactions and the intricate interplay with critical immune cells within the tumor microenvironment, such as tumor-associated macrophages, T cells, natural killer cells, and dendritic cells. Furthermore, we emphasize how caspase-8 plays pivotal roles in the development, progression, and drug resistance observed in HCC, and explore the potential of targeting caspase-8 as a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Haoran Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jie Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Xuemei Luo
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yubo Kan
- Sichuan Provincial Woman’s and Children’s Hospital/The Affiliated Women’s and Children’s Hospital of Chengdu Medical College, Chengdu, China
| | - Yuqi He
- Department of Blood Transfusion, Lu’an People’s Hospital, the Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Renhe Zhu
- Department of Blood Transfusion, Lu’an People’s Hospital, the Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Jiahui Jin
- Department of gastroenterology, Baoji Central Hospital, Baoji, China
| | - Dongxuan Li
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yi Wang
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhongyu Han
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
2
|
Tanabe M, Hosono K, Yamashita A, Ito Y, Majima M, Narumiya S, Kusano C, Amano H. Deletion of TP signaling in macrophages delays liver repair following APAP-induced liver injury by reducing accumulation of reparative macrophage and production of HGF. Inflamm Regen 2024; 44:43. [PMID: 39363292 PMCID: PMC11451145 DOI: 10.1186/s41232-024-00356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Acetaminophen (APAP)-induced liver injury is the most common cause of acute liver failure. Macrophages are key players in liver restoration following APAP-induced liver injury. Thromboxane A2 (TXA2) and its receptor, thromboxane prostanoid (TP) receptor, have been shown to be involved in tissue repair. However, whether TP signaling plays a role in liver repair after APAP hepatotoxicity by affecting macrophage function remains unclear. METHODS Male TP knockout (TP-/-) and C57BL/6 wild-type (WT) mice were treated with APAP (300 mg/kg). In addition, macrophage-specific TP-knockout (TP△mac) and control WT mice were treated with APAP. We explored changes in liver inflammation, liver repair, and macrophage accumulation in mice treated with APAP. RESULTS Compared with WT mice, TP-/- mice showed aggravated liver injury as indicated by increased levels of alanine transaminase (ALT) and necrotic area as well as delayed liver repair as indicated by decreased expression of proliferating cell nuclear antigen (PCNA). Macrophage deletion exacerbated APAP-induced liver injury and impaired liver repair. Transplantation of TP-deficient bone marrow (BM) cells to WT or TP-/- mice aggravated APAP hepatotoxicity with suppressed accumulation of macrophages, while transplantation of WT-BM cells to WT or TP-/- mice attenuated APAP-induced liver injury with accumulation of macrophages in the injured regions. Macrophage-specific TP-/- mice exacerbated liver injury and delayed liver repair, which was associated with increased pro-inflammatory macrophages and decreased reparative macrophages and hepatocyte growth factor (HGF) expression. In vitro, TP signaling facilitated macrophage polarization to a reparative phenotype. Transfer of cultured BM-derived macrophages from control mice to macrophage-specific TP-/- mice attenuated APAP-induced liver injury and promoted liver repair. HGF treatment mitigated APAP-induced inflammation and promoted liver repair after APAP-induced liver injury. CONCLUSIONS Deletion of TP signaling in macrophages delays liver repair following APAP-induced liver injury, which is associated with reduced accumulation of reparative macrophages and the hepatotrophic factor HGF. Specific activation of TP signaling in macrophages may be a potential therapeutic target for liver repair and regeneration after APAP hepatotoxicity.
Collapse
Affiliation(s)
- Mina Tanabe
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Atsushi Yamashita
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Masataka Majima
- Department of Medical Therapeutics, Kanagawa Institute of Technology, Atsugi, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chika Kusano
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.
| |
Collapse
|
3
|
Qiang E, Xu H. PGE 2 synthesis and signaling in the liver physiology and pathophysiology: An update. Prostaglandins Other Lipid Mediat 2024; 174:106875. [PMID: 39019102 DOI: 10.1016/j.prostaglandins.2024.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
The liver plays a central role in systemic metabolism and drug degradation. However, it is highly susceptible to damage due to various factors, including metabolic imbalances, excessive alcohol consumption, viral infections, and drug influences. These factors often result in conditions such as fatty liver, hepatitis, and acute or chronic liver injury. Failure to address these injuries could promptly lead to the development of liver cirrhosis and potentially hepatocellular carcinoma (HCC). Prostaglandin E2 (PGE2) is a metabolite of arachidonic acid that belongs to the class of polyunsaturated fatty acids (PUFA) and is synthesized via the cyclooxygenase (COX) pathway. By binding to its G protein coupled receptors (i.e., EP1, EP2, EP3 and EP4), PGE2 has a wide range of physiological and pathophysiology effects, including pain, inflammation, fever, cardiovascular homeostasis, etc. Recently, emerging studies showed that PGE2 plays an indispensable role in liver health and disease. This review focus on the research progress of the role of PGE2 synthase and its receptors in liver physiological and pathophysiological processes and discuss the possibility of developing liver protective drugs targeting the COXs/PGESs/PGE2/EPs axis.
Collapse
Affiliation(s)
- Erjiao Qiang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Hu Xu
- Health Science Center, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
4
|
Kholodenko IV, Kholodenko RV, Yarygin KN. The Crosstalk between Mesenchymal Stromal/Stem Cells and Hepatocytes in Homeostasis and under Stress. Int J Mol Sci 2023; 24:15212. [PMID: 37894893 PMCID: PMC10607347 DOI: 10.3390/ijms242015212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Liver diseases, characterized by high morbidity and mortality, represent a substantial medical problem globally. The current therapeutic approaches are mainly aimed at reducing symptoms and slowing down the progression of the diseases. Organ transplantation remains the only effective treatment method in cases of severe liver pathology. In this regard, the development of new effective approaches aimed at stimulating liver regeneration, both by activation of the organ's own resources or by different therapeutic agents that trigger regeneration, does not cease to be relevant. To date, many systematic reviews and meta-analyses have been published confirming the effectiveness of mesenchymal stromal cell (MSC) transplantation in the treatment of liver diseases of various severities and etiologies. However, despite the successful use of MSCs in clinical practice and the promising therapeutic results in animal models of liver diseases, the mechanisms of their protective and regenerative action remain poorly understood. Specifically, data about the molecular agents produced by these cells and mediating their therapeutic action are fragmentary and often contradictory. Since MSCs or MSC-like cells are found in all tissues and organs, it is likely that many key intercellular interactions within the tissue niches are dependent on MSCs. In this context, it is essential to understand the mechanisms underlying communication between MSCs and differentiated parenchymal cells of each particular tissue. This is important both from the perspective of basic science and for the development of therapeutic approaches involving the modulation of the activity of resident MSCs. With regard to the liver, the research is concentrated on the intercommunication between MSCs and hepatocytes under normal conditions and during the development of the pathological process. The goals of this review were to identify the key factors mediating the crosstalk between MSCs and hepatocytes and determine the possible mechanisms of interaction of the two cell types under normal and stressful conditions. The analysis of the hepatocyte-MSC interaction showed that MSCs carry out chaperone-like functions, including the synthesis of the supportive extracellular matrix proteins; prevention of apoptosis, pyroptosis, and ferroptosis; support of regeneration; elimination of lipotoxicity and ER stress; promotion of antioxidant effects; and donation of mitochondria. The underlying mechanisms suggest very close interdependence, including even direct cytoplasm and organelle exchange.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
5
|
Mishima T, Hosono K, Tanabe M, Ito Y, Majima M, Narumiya S, Miyaji K, Amano H. Thromboxane prostanoid signaling in macrophages attenuates lymphedema and facilitates lymphangiogenesis in mice : TP signaling and lymphangiogenesis. Mol Biol Rep 2023; 50:7981-7993. [PMID: 37540456 PMCID: PMC10520203 DOI: 10.1007/s11033-023-08620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/21/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Accumulating evidence suggests that prostaglandin E2, an arachidonic acid (AA) metabolite, enhances lymphangiogenesis in response to inflammation. However, thromboxane A2 (TXA2), another AA metabolite, is not well known. Thus, this study aimed to determine the role of thromboxane prostanoid (TP) signaling in lymphangiogenesis in secondary lymphedema. METHODS AND RESULTS Lymphedema was induced by the ablation of lymphatic vessels in mouse tails. Compared with wild-type mice, tail lymphedema in Tp-deficient mice was enhanced, which was associated with suppressed lymphangiogenesis as indicated by decreased lymphatic vessel area and pro-lymphangiogenesis-stimulating factors. Numerous macrophages were found in the tail tissues of Tp-deficient mice. Furthermore, the deletion of TP in macrophages increased tail edema and decreased lymphangiogenesis and pro-lymphangiogenic cytokines, which was accompanied by increased numbers of macrophages and gene expression related to a pro-inflammatory macrophage phenotype in tail tissues. In vivo microscopic studies revealed fluorescent dye leakage in the lymphatic vessels in the wounded tissues. CONCLUSIONS The results suggest that TP signaling in macrophages promotes lymphangiogenesis and prevents tail lymphedema. TP signaling may be a therapeutic target for improving lymphedema-related symptoms by enhancing lymphangiogenesis.
Collapse
Affiliation(s)
- Toshiaki Mishima
- Department of Cardiovascular Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kanako Hosono
- Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| | - Mina Tanabe
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoshiya Ito
- Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan.
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan.
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Masataka Majima
- Department of Medical Therapeutics, Kanagawa Institute of Technology, Atsugi, Kanagawa, 243-0292, Japan
| | - Shuh Narumiya
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Kagami Miyaji
- Department of Cardiovascular Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hideki Amano
- Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
6
|
Wen Y. The Role of Immune Cells in Liver Regeneration. LIVERS 2023; 3:383-396. [DOI: 10.3390/livers3030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The liver is the only organ that can regenerate and regain its original tissue-to-body weight ratio within a short period of time after tissue loss. Insufficient liver regeneration in patients after partial hepatectomy or liver transplantation with partial liver grafts often leads to post-hepatectomy liver failure or small-for-size syndrome, respectively. Enhancing liver regeneration after liver injury might improve outcomes and increase patient survival. Liver regeneration comprises hepatocyte proliferation, and hepatic progenitor cell expansion and differentiation into hepatocytes. The immune system is intensively involved in liver regeneration. The current review provides a comprehensive overview of the diverse roles played by immune cells in liver regeneration. Macrophages, neutrophils, eosinophils, basophils, mast cells, platelets, dendritic cells, type 1 innate lymphoid cells, B cells, and T cells are implicated in promoting liver regeneration, while natural killer cells and overactivated natural killer T cells are supposed to inhibit hepatocyte proliferation. We also highlight the predominant underlying mechanisms mediated by immune cells, which may contribute to the development of novel strategies for promoting liver regeneration in patients with liver diseases.
Collapse
Affiliation(s)
- Yankai Wen
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
7
|
Zhong D, Cai J, Hu C, Chen J, Zhang R, Fan C, Li S, Zhang H, Xu Z, Jia Z, Guo D, Sun Y. Inhibition of mPGES-2 ameliorates NASH by activating NR1D1 via heme. Hepatology 2023; 78:547-561. [PMID: 35839302 DOI: 10.1002/hep.32671] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD), a complex metabolic syndrome, has limited therapeutic options. Microsomal prostaglandin E synthase-2 (mPGES-2) was originally discovered as a prostaglandin E 2 (PGE 2 ) synthase; however, it does not produce PGE 2 in the liver. Moreover, the role of mPGES-2 in NAFLD remains undefined. Herein, we aimed to determine the function and mechanism of mPGES-2 in liver steatosis and steatohepatitis. APPROACH AND RESULTS To evaluate the role of mPGES-2 in NAFLD, whole-body or hepatocyte-specific mPGES-2-deficient mice fed a high-fat or methionine-choline-deficient diet were used. Compared with control mice, mPGES-2-deficient mice showed reduced hepatic lipid accumulation, along with ameliorated liver injury, inflammation, and fibrosis. Furthermore, the protective effect of mPGES-2 deficiency against NAFLD was dependent on decreased cytochrome P450 4A14 and increased acyl-CoA thioesterase 4 levels regulated by the heme receptor nuclear receptor subfamily 1 group D member 1 (NR1D1), but not PGE 2 . Heme regulated the increased NR1D1 activity mediated by mPGES-2 deficiency. Further, we confirmed the protective role of the mPGES-2 inhibitor SZ0232 in NAFLD therapy. CONCLUSION Our study indicates the pathogenic role of mPGES-2 and outlines the mechanism in mediating NAFLD, thereby highlighting the therapeutic potential of mPGES-2 inhibition in liver steatosis and steatohepatitis.
Collapse
Affiliation(s)
- Dandan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Jie Cai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
- Nanjing Key Laboratory of Pediatrics , Nanjing Children's Hospital , Nanjing Medical University , Nanjing , Jiangsu , P. R. China
- Public Experimental Research Center of Xuzhou Medical University , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Cheng Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Jingshuo Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
- Public Experimental Research Center of Xuzhou Medical University , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Rumeng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
- Department of Pharmacology , Xuzhou Central Hospital , Xuzhou , Jiangsu , China
| | - Chenyu Fan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Shanshan Li
- Jiangsu Medical Engineering Research Center of Gene Detection , Xuzhou , Jiangsu , China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
- Public Experimental Research Center of Xuzhou Medical University , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
- Nanjing Key Laboratory of Pediatrics , Nanjing Children's Hospital , Nanjing Medical University , Nanjing , Jiangsu , P. R. China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| |
Collapse
|
8
|
Fuertes-Agudo M, Luque-Tévar M, Cucarella C, Martín-Sanz P, Casado M. Advances in Understanding the Role of NRF2 in Liver Pathophysiology and Its Relationship with Hepatic-Specific Cyclooxygenase-2 Expression. Antioxidants (Basel) 2023; 12:1491. [PMID: 37627486 PMCID: PMC10451723 DOI: 10.3390/antiox12081491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative stress and inflammation play an important role in the pathophysiological changes of liver diseases. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that positively regulates the basal and inducible expression of a large battery of cytoprotective genes, thus playing a key role in protecting against oxidative damage. Cyclooxygenase-2 (COX-2) is a key enzyme in prostaglandin biosynthesis. Its expression has always been associated with the induction of inflammation, but we have shown that, in addition to possessing other benefits, the constitutive expression of COX-2 in hepatocytes is beneficial in reducing inflammation and oxidative stress in multiple liver diseases. In this review, we summarized the role of NRF2 as a main agent in the resolution of oxidative stress, the crucial role of NRF2 signaling pathways during the development of chronic liver diseases, and, finally we related its action to that of COX-2, where it appears to operate as its partner in providing a hepatoprotective effect.
Collapse
Affiliation(s)
- Marina Fuertes-Agudo
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; (M.F.-A.); (M.L.-T.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - María Luque-Tévar
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; (M.F.-A.); (M.L.-T.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Carme Cucarella
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; (M.F.-A.); (M.L.-T.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Paloma Martín-Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas (IIB) “Alberto Sols”, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Marta Casado
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; (M.F.-A.); (M.L.-T.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
9
|
Steinmetz-Späh J, Jakobsson PJ. The anti-inflammatory and vasoprotective properties of mPGES-1 inhibition offer promising therapeutic potential. Expert Opin Ther Targets 2023; 27:1115-1123. [PMID: 38015194 DOI: 10.1080/14728222.2023.2285785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Prostaglandin E2 (PGE2) is produced by cyclooxygenases (COX-1/2) and the microsomal prostaglandin E synthase 1 (mPGES-1). PGE2 is pro-inflammatory in diseases such as rheumatoid arthritis, cardiovascular disorders, and cancer. While Nonsteroidal anti-inflammatory drugs (NSAIDs) targeting COX can effectively reduce inflammation, their use is limited by gastrointestinal and cardiovascular side effects resulting from the blockade of all prostanoids. To overcome this limitation, selective inhibition of mPGES-1 is being explored as an alternative therapeutic strategy to inhibit PGE2 production while sparing or even upregulating other prostaglandins. However, the exact timing and location of PGH2 conversion to PGD2, PGI2, TXB2 or PGF2α, and whether it hinders or supports the therapeutic effect of mPGES-1 inhibition, is not fully understood. AREAS COVERED The article briefly describes prostanoid history and metabolism with a strong focus on the vascular effects of prostanoids. Recent advances in mPGES-1 inhibitor development and results from pre-clinical and clinical studies are presented. Prostanoid shunting after mPGES-1 inhibition is highlighted and particularly discussed in the context of cardiovascular diseases. EXPERT OPINION The newest research demonstrates that inhibition of mPGES-1 is a potent anti-inflammatory treatment strategy and beneficial and safer regarding cardiovascular side effects compared to NSAIDs. Inhibitors of mPGES-1 hold great potential to advance to the clinic and there are ongoing phase-II trials in endometriosis.
Collapse
Affiliation(s)
- Julia Steinmetz-Späh
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Ito Y, Hosono K, Amano H. Responses of hepatic sinusoidal cells to liver ischemia–reperfusion injury. Front Cell Dev Biol 2023; 11:1171317. [PMID: 37082623 PMCID: PMC10112669 DOI: 10.3389/fcell.2023.1171317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
The liver displays a remarkable regenerative capacity in response to acute liver injury. In addition to the proliferation of hepatocytes during liver regeneration, non-parenchymal cells, including liver macrophages, liver sinusoidal endothelial cells (LSECs), and hepatic stellate cells (HSCs) play critical roles in liver repair and regeneration. Liver ischemia–reperfusion injury (IRI) is a major cause of increased liver damage during liver resection, transplantation, and trauma. Impaired liver repair increases postoperative morbidity and mortality of patients who underwent liver surgery. Successful liver repair and regeneration after liver IRI requires coordinated interplay and synergic actions between hepatic resident cells and recruited cell components. However, the underlying mechanisms of liver repair after liver IRI are not well understood. Recent technological advances have revealed the heterogeneity of each liver cell component in the steady state and diseased livers. In this review, we describe the progress in the biology of liver non-parenchymal cells obtained from novel technological advances. We address the functional role of each cell component in response to liver IRI and the interactions between diverse immune repertoires and non-hematopoietic cell populations during the course of liver repair after liver IRI. We also discuss how these findings can help in the design of novel therapeutic approaches. Growing insights into the cellular interactions during liver IRI would enhance the pathology of liver IRI understanding comprehensively and further develop the strategies for improvement of liver repair.
Collapse
|
11
|
Liao K, Cui Z, Wang Z, Peng Y, Tang S, Chen J. Hyperosmolar Potassium Inhibits Corneal Myofibroblast Transformation and Prevent Corneal Scar. Curr Eye Res 2023; 48:238-250. [PMID: 36149345 DOI: 10.1080/02713683.2022.2129072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Corneal myofibroblasts play a crucial role in the process of corneal scarring. Potassium has been documented to reduce skin scar tissue formation. Herein, we investigated the ability of potassium to prevent corneal fibrosis in cell culture and in vivo. METHODS Corneal fibroblasts (CFs) were isolated from the corneal limbus and treated with TGF-β1 to transform into corneal myofibroblasts. Corneal myofibroblast markers were detected by quantitative real-time PCR, Western blot, and immunofluorescence. The contractive functions of corneal myofibroblast were evaluated by the scratch assay and the collagen gel contraction assay. RNA sequencing in corneal fibroblasts was performed to explore the mechanisms underlying hyperosmolar potassium treatment. GO and KEGG analysis were performed to explore the underlying mechanism by hyperosmolar potassium treatment. The ATP detection assay assessed the level of cell metabolism. KCl eye drops four times per day were administered to mice models of corneal injury to evaluate the ability to prevent corneal scar formation. Corneal opacity area was evaluated by Image J software. RESULTS Treatment with hyperosmolar potassium could suppress corneal myofibroblast transformation and collagen I synthesis induced by TGF-β1 in cell culture. Hyperosmolar potassium could inhibit wound healing and gel contraction in CFs. RNA sequencing results suggested that genes involved in the metabolic pathway were downregulated after KCl treatment. ATP levels were significantly decreased in the KCl group compared with the control group. Hyperosmolar potassium could prevent corneal myofibroblast transformation after corneal injury and corneal scar formation in mice. CONCLUSION Potassium can suppress corneal myofibroblast transformation and collagen I protein synthesis. Moreover, given that KCl eye drops can prevent corneal scar formation, it has been suggested to have huge prospects as a novel treatment approach during clinical practice.
Collapse
Affiliation(s)
- Kai Liao
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Zekai Cui
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Zhijie Wang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Yu Peng
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan Province, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan Province, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Kotsos D, Tziomalos K. Microsomal Prostaglandin E Synthase-1 and -2: Emerging Targets in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24033049. [PMID: 36769370 PMCID: PMC9918023 DOI: 10.3390/ijms24033049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects a substantial proportion of the general population and is even more prevalent in obese and diabetic patients. NAFLD, and particularly the more advanced manifestation of the disease, nonalcoholic steatohepatitis (NASH), increases the risk for both liver-related and cardiovascular morbidity. The pathogenesis of NAFLD is complex and multifactorial, with many molecular pathways implicated. Emerging data suggest that microsomal prostaglandin E synthase-1 and -2 might participate in the development and progression of NAFLD. It also appears that targeting these enzymes might represent a novel therapeutic approach for NAFLD. In the present review, we discuss the association between microsomal prostaglandin E synthase-1 and -2 and NAFLD.
Collapse
|
13
|
Alba MM, Ebright B, Hua B, Slarve I, Zhou Y, Jia Y, Louie SG, Stiles BL. Eicosanoids and other oxylipins in liver injury, inflammation and liver cancer development. Front Physiol 2023; 14:1098467. [PMID: 36818443 PMCID: PMC9932286 DOI: 10.3389/fphys.2023.1098467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Liver cancer is a malignancy developed from underlying liver disease that encompasses liver injury and metabolic disorders. The progression from these underlying liver disease to cancer is accompanied by chronic inflammatory conditions in which liver macrophages play important roles in orchestrating the inflammatory response. During this process, bioactive lipids produced by hepatocytes and macrophages mediate the inflammatory responses by acting as pro-inflammatory factors, as well as, playing roles in the resolution of inflammation conditions. Here, we review the literature discussing the roles of bioactive lipids in acute and chronic hepatic inflammation and progression to cancer.
Collapse
Affiliation(s)
- Mario M. Alba
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Brandon Ebright
- Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Brittney Hua
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Ielyzaveta Slarve
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Yiren Zhou
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Yunyi Jia
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Stan G. Louie
- Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Bangyan L. Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
- Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, Unites States
| |
Collapse
|
14
|
Obed A, Alsakarneh S, Abuassi M, Bashir A, Ahmad BA, Jarrad A, Lorf T, Almeqdadi M. Ischemic Reperfusion Injury After Liver Transplantation: Is There a Place for Conservative Management? Gastroenterology Res 2023; 16:50-55. [PMID: 36895702 PMCID: PMC9990530 DOI: 10.14740/gr1584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/15/2022] [Indexed: 03/11/2023] Open
Abstract
Ischemic reperfusion injury (IRI) after liver transplantation is a common cause of early allograft dysfunction with high mortality. The purpose of this case report series is to highlight an unusual clinical course in which complete recovery can occur following the identification of severe hepatic IRI post-transplantation and the implications of this finding on management strategies in patients with IRI post-transplant. Here, we include three cases of severe IRI following liver transplantation that are putatively resolved without retransplantation or definitive therapeutic intervention. All patients recovered until their final follow-up visits to our institution and developed no significant complications from their injury throughout the course of patient care by our institution after discharge from the hospital.
Collapse
Affiliation(s)
- Aiman Obed
- Department of Hepatobiliary and Transplant Surgery, Jordan Hospital, Amman, Jordan
| | - Saqr Alsakarneh
- Department of Internal Medicine, University of Missouri - Kansas City, Kansas City, MO, USA
| | | | - Abdalla Bashir
- Department of General Surgery, Jordan Hospital, Amman, Jordan
| | | | - Anwar Jarrad
- Department of Hepatology, Gastroenterology and Hepatobiliary, Jordan Hospital, Amman, Jordan
| | - Thomas Lorf
- Department of Surgery, University of Gottingen, Gottingen, Germany
| | - Mohammad Almeqdadi
- Department of Transplant and Hepatobiliary Surgery, Lahey Hospital and Medical Center, Burlington, MA, USA.,Department of Surgery, Tufts University School of Medicine, Boston MA, USA
| |
Collapse
|
15
|
Huang M, Jiao J, Cai H, Zhang Y, Xia Y, Lin J, Shang Z, Qian Y, Wang F, Wu H, Kong X, Gu J. C-C motif chemokine ligand 5 confines liver regeneration by down-regulating reparative macrophage-derived hepatocyte growth factor in a forkhead box O 3a-dependent manner. Hepatology 2022; 76:1706-1722. [PMID: 35288960 PMCID: PMC9790589 DOI: 10.1002/hep.32458] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Liver regeneration (LR) is vital for the recovery of liver function after hepatectomy. Limited regeneration capacity, together with insufficient remnant liver volume, is a risk factor for posthepatectomy liver failure (PHLF) resulting from small-for-size syndrome. Although inflammation plays an important role in controlling LR, the underlying mechanisms still remain obscure. APPROACH AND RESULTS We identified C-C motif chemokine ligand (CCL) 5 as an important negative regulator for LR. CCL5 levels were elevated after partial hepatectomy (PHx), both in healthy donors of living donor liver transplantation (LT) and PHx mouse models. Ccl5 knockout mice displayed improved survival after 90% PHx and enhanced LR 36 h after 70% PHx. However, primary hepatocytes from Ccl5-/- mice exposed to growth factors in vitro showed no proliferation advantage compared to those from wild-type (WT) mice. Flow cytometry analysis showed that proportions of Ly6Clo macrophages were significantly increased in Ccl5-/- mice after 70% PHx. RNA-sequencing analysis revealed that sorted macrophages (CD11b+ Ly6Clo&hi ) manifested enhanced expression of reparative genes in Ccl5-/- mice compared to WT mice. Mechanistically, CCL5 induced macrophages toward proinflammatory Ly6Chi phenotype, thereby inhibiting the production of hepatocyte growth factor (HGF) through the C-C motif chemokine receptor (CCR) 1- and CCR5-mediated forkhead box O (FoxO) 3a pathways. Finally, blockade of CCL5 greatly optimized survival and boosted LR in the mouse PHx model. CONCLUSIONS Our findings suggest that inhibition of CCL5 is a promising strategy to improve regeneration restoration by enhancing HGF secretion from reparative macrophages through the FoxO3a pathway, which may potentially reduce the mortality of PHLF.
Collapse
Affiliation(s)
- Miao Huang
- Department of TransplantationXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina.,Central LaboratoryDepartment of Liver DiseasesShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Junzhe Jiao
- Central LaboratoryDepartment of Liver DiseasesShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hao Cai
- Department of TransplantationXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yichi Zhang
- Department of TransplantationXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuhan Xia
- Department of TransplantationXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiacheng Lin
- Central LaboratoryDepartment of Liver DiseasesShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhi Shang
- Central LaboratoryDepartment of Liver DiseasesShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yihan Qian
- Central LaboratoryDepartment of Liver DiseasesShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Fang Wang
- Central LaboratoryDepartment of Liver DiseasesShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hailong Wu
- 191610Shanghai Key Laboratory of Molecular ImagingShanghai University of Medicine and Health SciencesShanghaiChina
| | - Xiaoni Kong
- Central LaboratoryDepartment of Liver DiseasesShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jinyang Gu
- Department of TransplantationXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
16
|
Steinmetz-Späh J, Liu J, Singh R, Ekoff M, Boddul S, Tang X, Bergqvist F, Idborg H, Heitel P, Rönnberg E, Merk D, Wermeling F, Haeggström JZ, Nilsson G, Steinhilber D, Larsson K, Korotkova M, Jakobsson PJ. Biosynthesis of prostaglandin 15dPGJ 2 -glutathione and 15dPGJ 2-cysteine conjugates in macrophages and mast cells via MGST3. J Lipid Res 2022; 63:100310. [PMID: 36370807 PMCID: PMC9792570 DOI: 10.1016/j.jlr.2022.100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Inhibition of microsomal prostaglandin E synthase-1 (mPGES-1) results in decreased production of proinflammatory PGE2 and can lead to shunting of PGH2 into the prostaglandin D2 (PGD2)/15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) pathway. 15dPGJ2 forms Michael adducts with thiol-containing biomolecules such as GSH or cysteine residues on target proteins and is thought to promote resolution of inflammation. We aimed to elucidate the biosynthesis and metabolism of 15dPGJ2 via conjugation with GSH, to form 15dPGJ2-glutathione (15dPGJ2-GS) and 15dPGJ2-cysteine (15dPGJ2-Cys) conjugates and to characterize the effects of mPGES-1 inhibition on the PGD2/15dPGJ2 pathway in mouse and human immune cells. Our results demonstrate the formation of PGD2, 15dPGJ2, 15dPGJ2-GS, and 15dPGJ2-Cys in RAW264.7 cells after lipopolysaccharide stimulation. Moreover, 15dPGJ2-Cys was found in lipopolysaccharide-activated primary murine macrophages as well as in human mast cells following stimulation of the IgE-receptor. Our results also suggest that the microsomal glutathione S-transferase 3 is essential for the formation of 15dPGJ2 conjugates. In contrast to inhibition of cyclooxygenase, which leads to blockage of the PGD2/15dPGJ2 pathway, we found that inhibition of mPGES-1 preserves PGD2 and its metabolites. Collectively, this study highlights the formation of 15dPGJ2-GS and 15dPGJ2-Cys in mouse and human immune cells, the involvement of microsomal glutathione S-transferase 3 in their biosynthesis, and their unchanged formation following inhibition of mPGES-1. The results encourage further research on their roles as bioactive lipid mediators.
Collapse
Affiliation(s)
- Julia Steinmetz-Späh
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jianyang Liu
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Rajkumar Singh
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Maria Ekoff
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sanjaykumar Boddul
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Xiao Tang
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Filip Bergqvist
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Helena Idborg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Elin Rönnberg
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Fredrik Wermeling
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Z. Haeggström
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Nilsson
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Karin Larsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Marina Korotkova
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,For correspondence: Per-Johan Jakobsson
| |
Collapse
|
17
|
Hepatocyte-Derived Prostaglandin E2-Modulated Macrophage M1-Type Polarization via mTOR-NPC1 Axis-Regulated Cholesterol Transport from Lysosomes to the Endoplasmic Reticulum in Hepatitis B Virus x Protein-Related Nonalcoholic Steatohepatitis. Int J Mol Sci 2022; 23:ijms231911660. [PMID: 36232960 PMCID: PMC9569602 DOI: 10.3390/ijms231911660] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Lipid metabolic dysregulation and liver inflammation have been reported to be associated with nonalcoholic steatohepatitis (NASH), but the underlying mechanisms remain unclear. Hepatitis B virus x protein (HBx) is a risk factor for NASH. Based on metabolomic and transcriptomic screens and public database analysis, we found that HBx-expressing hepatocyte-derived prostaglandin E2 (PGE2) induced macrophage polarization imbalance via prostaglandin E2 receptor 4 (EP4) through in vitro, ex vivo, and in vivo models. Here, we revealed that the M1-type polarization of macrophages induced by endoplasmic reticulum oxidoreductase-1-like protein α (ERO1α)-dependent endoplasmic reticulum stress was associated with the HBx-related hepatic NASH phenotype. Mechanistically, HBx promoted Niemann-Pick type C1 (NPC1)/oxysterol-binding protein-related protein 5 (ORP5)-mediated cholesterol transport from the lysosome to the endoplasmic reticulum via mammalian target of rapamycin (mTOR) activation. This study provides a novel basis for screening potential biomarkers in the macrophage mTOR-cholesterol homeostasis-polarization regulatory signaling pathway and evaluating targeted interventions for HBx-associated NASH.
Collapse
|
18
|
Wen H, He R, Wang H, Zhao S, Zheng J, Wu J, Xie M. Effects of small molecule inhibitor SW033291 on hepatic ischemia-reperfusion injury in mice. Biochem Biophys Res Commun 2022; 615:70-74. [PMID: 35605408 DOI: 10.1016/j.bbrc.2022.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022]
|
19
|
Chen H, Lu D, Yang X, Hu Z, He C, Li H, Lin Z, Yang M, Xu X. One Shoot, Two Birds: Alleviating Inflammation Caused by Ischemia/Reperfusion Injury to Reduce the Recurrence of Hepatocellular Carcinoma. Front Immunol 2022; 13:879552. [PMID: 35634295 PMCID: PMC9130551 DOI: 10.3389/fimmu.2022.879552] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is crucial to tumorigenesis and the development of metastasis. Hepatic ischemia/reperfusion injury (IRI) is an unresolved problem in liver resection and transplantation which often establishes and remodels the inflammatory microenvironment in liver. More and more experimental and clinical evidence unmasks the role of hepatic IRI and associated inflammation in promoting the recurrence of hepatocellular carcinoma (HCC). Meanwhile, approaches aimed at alleviating hepatic IRI, such as machine perfusion, regulating the gut-liver axis, and targeting key inflammatory components, have been proved to prevent HCC recurrence. This review article highlights the underlying mechanisms and promising therapeutic strategies to reduce tumor recurrence through alleviating inflammation induced by hepatic IRI.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Di Lu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Xinyu Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Zhihang Hu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Chiyu He
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Huigang Li
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Zuyuan Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Modan Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, China
| |
Collapse
|
20
|
Li YH, Zhang Y, Pan G, Xiang LX, Luo DC, Shao JZ. Occurrences and Functions of Ly6Chi and Ly6Clo Macrophages in Health and Disease. Front Immunol 2022; 13:901672. [PMID: 35707538 PMCID: PMC9189283 DOI: 10.3389/fimmu.2022.901672] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022] Open
Abstract
Macrophages originating from the yolk sac or bone marrow play essential roles in tissue homeostasis and disease. Bone marrow-derived monocytes differentiate into Ly6Chi and Ly6Clo macrophages according to the differential expression of the surface marker protein Ly6C. Ly6Chi and Ly6Clo cells possess diverse functions and transcriptional profiles and can accelerate the disease process or support tissue repair and reconstruction. In this review, we discuss the basic biology of Ly6Chi and Ly6Clo macrophages, including their origin, differentiation, and phenotypic switching, and the diverse functions of Ly6Chi and Ly6Clo macrophages in homeostasis and disease, including in injury, chronic inflammation, wound repair, autoimmune disease, and cancer. Furthermore, we clarify the differences between Ly6Chi and Ly6Clo macrophages and their connections with traditional M1 and M2 macrophages. We also summarize the limitations and perspectives for Ly6Chi and Ly6Clo macrophages. Overall, continued efforts to understand these cells may provide therapeutic approaches for disease treatment.
Collapse
Affiliation(s)
- Yuan-hui Li
- Department of Oncological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Zhang
- Department of Oncological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Pan
- Department of Oncological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-xin Xiang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
- *Correspondence: Jian-zhong Shao, ; Ding-cun Luo, ; Li-xin Xiang,
| | - Ding-cun Luo
- Department of Oncological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jian-zhong Shao, ; Ding-cun Luo, ; Li-xin Xiang,
| | - Jian-zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Jian-zhong Shao, ; Ding-cun Luo, ; Li-xin Xiang,
| |
Collapse
|
21
|
Artru F, McPhail MJW, Triantafyllou E, Trovato FM. Lipids in Liver Failure Syndromes: A Focus on Eicosanoids, Specialized Pro-Resolving Lipid Mediators and Lysophospholipids. Front Immunol 2022; 13:867261. [PMID: 35432367 PMCID: PMC9008479 DOI: 10.3389/fimmu.2022.867261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 12/30/2022] Open
Abstract
Lipids are organic compounds insoluble in water with a variety of metabolic and non-metabolic functions. They not only represent an efficient energy substrate but can also act as key inflammatory and anti-inflammatory molecules as part of a network of soluble mediators at the interface of metabolism and the immune system. The role of endogenous bioactive lipid mediators has been demonstrated in several inflammatory diseases (rheumatoid arthritis, inflammatory bowel disease, atherosclerosis, cancer). The liver is unique in providing balanced immunotolerance to the exposure of bacterial components from the gut transiting through the portal vein and the lymphatic system. This balance is abruptly deranged in liver failure syndromes such as acute liver failure and acute-on-chronic liver failure. In these syndromes, researchers have recently focused on bioactive lipid mediators by global metabonomic profiling and uncovered the pivotal role of these mediators in the immune dysfunction observed in liver failure syndromes explaining the high occurrence of sepsis and subsequent organ failure. Among endogenous bioactive lipids, the mechanistic actions of three classes (eicosanoids, pro-resolving lipid mediators and lysophospholipids) in the pathophysiological modulation of liver failure syndromes will be the topic of this narrative review. Furthermore, the therapeutic potential of lipid-immune pathways will be described.
Collapse
Affiliation(s)
- Florent Artru
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Mark J W McPhail
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | | |
Collapse
|
22
|
Assessment of hepatic prostaglandin E 2 level in carbamazepine induced liver injury. Endocr Regul 2022; 56:22-30. [PMID: 35180822 DOI: 10.2478/enr-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective. Carbamazepine (CBZ), a widely used antiepileptic drug, is one major cause of the idiosyncratic liver injury along with immune reactions. Conversely, prostaglandin E2 (PGE2) demonstrates a hepatoprotective effect by regulating immune reactions and promoting liver repair in various types of liver injury. However, the amount of hepatic PGE2 during CBZ-induced liver injury remains elusive. In this study, we aimed to evaluate the hepatic PGE2 levels during CBZ-induced liver injury using a mouse model. Methods. Mice were orally administered with CBZ at a dose of 400 mg/kg for 4 days, and 800 mg/kg on the 5th day. Results. Plasma alanine transaminase (ALT) level increased in some of mice 24 h after the last CBZ administration. Although median value of hepatic PGE2 amount in the CBZ-treated mice showed same extent as vehicle-treated control mice, it exhibited significant elevated level in mice with severe liver injury presented by a plasma ALT level >1000 IU/L. According to these results, mice had a plasma ALT level >1000 IU/L were defined as responders and the others as non-responders in this study. Even though, the hepatic PGE2 levels increased in responders, the hepatic expression and enzyme activity related to PGE2 production were not upregulated when compared with vehicle-treated control mice. However, the hepatic 15-hydroxyprostaglandin dehydrogenase (15-PGDH) expression and activity decreased significantly in responders when compared with control mice. Conclusions. These results indicate that elevated hepatic PGE2 levels can be attributed to the downregulation of 15-PGDH expression under CBZ-induced liver injury.
Collapse
|
23
|
Modulation of Prostanoids Profile and Counter-Regulation of SDF-1α/CXCR4 and VIP/VPAC2 Expression by Sitagliptin in Non-Diabetic Rat Model of Hepatic Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 22:ijms222313155. [PMID: 34884960 PMCID: PMC8658172 DOI: 10.3390/ijms222313155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Molecular mechanisms underlying the beneficial effect of sitagliptin repurposed for hepatic ischemia-reperfusion injury (IRI) are poorly understood. We aimed to evaluate the impact of IRI and sitagliptin on the hepatic profile of eicosanoids (LC-MS/MS) and expression/concentration (RTqPCR/ELISA) of GLP-1/GLP-1R, SDF-1α/CXCR4 and VIP/VPAC1, VPAC2, and PAC1 in 36 rats. Animals were divided into four groups and subjected to ischemia (60 min) and reperfusion (24 h) with or without pretreatment with sitagliptin (5 mg/kg) (IR and SIR) or sham-operated with or without sitagliptin pretreatment (controls and sitagliptin). PGI2, PGE2, and 13,14-dihydro-PGE1 were significantly upregulated in IR but not SIR, while sitagliptin upregulated PGD2 and 15-deoxy-12,14-PGJ2. IR and sitagliptin non-significantly upregulated GLP-1 while Glp1r expression was borderline detectable. VIP concentration and Vpac2 expression were downregulated in IR but not SIR, while Vpac1 was significantly downregulated solely in SIR. IRI upregulated both CXCR4 expression and concentration, and sitagliptin pretreatment abrogated receptor overexpression and downregulated Sdf1. In conclusion, hepatic IRI is accompanied by an elevation in proinflammatory prostanoids and overexpression of CXCR4, combined with downregulation of VIP/VPAC2. Beneficial effects of sitagliptin during hepatic IRI might be mediated by drug-induced normalization of proinflammatory prostanoids and upregulation of PGD2 and by concomitant downregulation of SDF-1α/CXCR4 and reinstating VIP/VCAP2 signaling.
Collapse
|
24
|
Goto T, Ito Y, Satoh M, Nakamoto S, Nishizawa N, Hosono K, Naitoh T, Eshima K, Iwabuchi K, Hiki N, Amano H. Activation of iNKT Cells Facilitates Liver Repair After Hepatic Ischemia Reperfusion Injury Through Acceleration of Macrophage Polarization. Front Immunol 2021; 12:754106. [PMID: 34691073 PMCID: PMC8526965 DOI: 10.3389/fimmu.2021.754106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
Macrophage polarization is critical for liver tissue repair following acute liver injury. However, the underlying mechanisms of macrophage phenotype switching are not well defined. Invariant natural killer T (iNKT) cells orchestrate tissue inflammation and tissue repair by regulating cytokine production. Herein, we examined whether iNKT cells played an important role in liver repair after hepatic ischemia-reperfusion (I/R) injury by affecting macrophage polarization. To this end, we subjected male C57BL/6 mice to hepatic I/R injury, and mice received an intraperitoneal (ip) injection of α-galactosylceramide (α-GalCer) or vehicle. Compared with that of the vehicle, α-GalCer administration resulted in the promotion of liver repair accompanied by acceleration of macrophage differentiation and by increases in the numbers of Ly6Chigh pro-inflammatory macrophages and Ly6Clow reparative macrophages. iNKT cells activated with α-GalCer produced interleukin (IL)-4 and interferon (IFN)-γ. Treatment with anti-IL-4 antibodies delayed liver repair, which was associated with an increased number of Ly6Chigh macrophages and a decreased number of Ly6Clow macrophages. Treatment with anti-IFN-γ antibodies promoted liver repair, associated with reduced the number of Ly6Chigh macrophages, but did not change the number of Ly6Clow macrophages. Bone marrow-derived macrophages up-regulated the expression of genes related to both a pro-inflammatory and a reparative phenotype when co-cultured with activated iNKT cells. Anti-IL-4 antibodies increased the levels of pro-inflammatory macrophage-related genes and decreased those of reparative macrophage-related genes in cultured macrophages, while anti-IFN-γ antibodies reversed the polarization of macrophages. Cd1d-deficient mice showed delayed liver repair and suppressed macrophage switching, compared with that in wild-type mice. These results suggest that the activation of iNKT cells by α-GalCer facilitated liver repair after hepatic I/R injury by both IL-4-and IFN-γ-mediated acceleration of macrophage polarization. Therefore, the activation of iNKT cells may represent a therapeutic tool for liver repair after hepatic I/R injury.
Collapse
Affiliation(s)
- Takuya Goto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshiya Ito
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masashi Satoh
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Shuji Nakamoto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of General Pediatric Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Nobuyuki Nishizawa
- Department of General Pediatric Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kanako Hosono
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takeshi Naitoh
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Koji Eshima
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kazuya Iwabuchi
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Naoki Hiki
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hideki Amano
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
25
|
Cheng H, Huang H, Guo Z, Chang Y, Li Z. Role of prostaglandin E2 in tissue repair and regeneration. Am J Cancer Res 2021; 11:8836-8854. [PMID: 34522214 PMCID: PMC8419039 DOI: 10.7150/thno.63396] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue regeneration following injury from disease or medical treatment still represents a challenge in regeneration medicine. Prostaglandin E2 (PGE2), which involves diverse physiological processes via E-type prostanoid (EP) receptor family, favors the regeneration of various organ systems following injury for its capabilities such as activation of endogenous stem cells, immune regulation, and angiogenesis. Understanding how PGE2 modulates tissue regeneration and then exploring how to elevate the regenerative efficiency of PGE2 will provide key insights into the tissue repair and regeneration processes by PGE2. In this review, we summarized the application of PGE2 to guide the regeneration of different tissues, including skin, heart, liver, kidney, intestine, bone, skeletal muscle, and hematopoietic stem cell regeneration. Moreover, we introduced PGE2-based therapeutic strategies to accelerate the recovery of impaired tissue or organs, including 15-hydroxyprostaglandin dehydrogenase (15-PGDH) inhibitors boosting endogenous PGE2 levels and biomaterial scaffolds to control PGE2 release.
Collapse
|
26
|
Otaka F, Ito Y, Goto T, Kojo K, Tanabe M, Hosono K, Majima M, Koizumi W, Amano H. Recovery of Liver Sinusoidal Endothelial Cells Following Monocrotaline-induced Liver Injury. In Vivo 2021; 35:2577-2587. [PMID: 34410945 DOI: 10.21873/invivo.12540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND/AIM Although the pathology of sinusoidal obstruction syndrome (SOS) is characterized by damage to liver sinusoidal endothelial cells (LSECs), the processes underlying LSEC repair are incompletely understood. The angiopoietin (Ang)/Tie system contributes to angiogenesis. The present study aimed to examine the processes of LSEC repair and the involvement of the Ang/Tie pathway in LSEC recovery. MATERIALS AND METHODS Experimentally, SOS was induced by intraperitoneal injection of monocrotaline (MCT) to C57/BL6 mice. RESULTS Levels of LSEC markers were up-regulated during the repair phase of MCT-induced hepatotoxicity. The damaged LSECs recovered from the injury by expanding LSECs expressing lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) in the peri-central area of MCT-injured livers, while LSECs in the same area of uninjured livers lacked LYVE-1 expression. Bone marrow (BM)-derived cells did not incorporate into the restored LSECs. Tie2 expression was related to LSEC recovery in MCT-injured liver tissue. CONCLUSION The resident LSECs neighboring uninjured tissue replace damaged LSECs in MCT-injured livers. Tie2 is involved in LSEC recovery from MCT-induced hepatotoxicity.
Collapse
Affiliation(s)
- Fumisato Otaka
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshiya Ito
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan; .,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takuya Goto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Ken Kojo
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Mina Tanabe
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kanako Hosono
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masataka Majima
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Medical Therapeutics, Kanagawa Institute of Technology, Atsugi, Japan
| | - Wasaburo Koizumi
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hideki Amano
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
27
|
Liu H, Man K. New Insights in Mechanisms and Therapeutics for Short- and Long-Term Impacts of Hepatic Ischemia Reperfusion Injury Post Liver Transplantation. Int J Mol Sci 2021; 22:ijms22158210. [PMID: 34360975 PMCID: PMC8348697 DOI: 10.3390/ijms22158210] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Liver transplantation has been identified as the most effective treatment for patients with end-stage liver diseases. However, hepatic ischemia reperfusion injury (IRI) is associated with poor graft function and poses a risk of adverse clinical outcomes post transplantation. Cell death, including apoptosis, necrosis, ferroptosis and pyroptosis, is induced during the acute phase of liver IRI. The release of danger-associated molecular patterns (DAPMs) and mitochondrial dysfunction resulting from the disturbance of metabolic homeostasis initiates graft inflammation. The inflammation in the short term exacerbates hepatic damage, leading to graft dysfunction and a higher incidence of acute rejection. The subsequent changes in the graft immune environment due to hepatic IRI may result in chronic rejection, cancer recurrence and fibrogenesis in the long term. In this review, we mainly focus on new mechanisms of inflammation initiated by immune activation related to metabolic alteration in the short term during liver IRI. The latest mechanisms of cancer recurrence and fibrogenesis due to the long-term impact of inflammation in hepatic IRI is also discussed. Furthermore, the development of therapeutic strategies, including ischemia preconditioning, pharmacological inhibitors and machine perfusion, for both attenuating acute inflammatory injury and preventing late-phase disease recurrence, will be summarized in the context of clinical, translational and basic research.
Collapse
|
28
|
Xu D, Cai J, Wan ZK, Gao H, Sun Y. Pathophysiological role of prostaglandin E synthases in liver diseases. Prostaglandins Other Lipid Mediat 2021; 154:106552. [PMID: 33930567 DOI: 10.1016/j.prostaglandins.2021.106552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/11/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Prostaglandin E synthases (PGESs) convert cyclooxygenase (COX)-derived prostaglandin H2 (PGH2) into prostaglandin E2 (PGE2) and comprise at least three types of structurally and biologically distinct enzymes. Two of these, namely microsomal prostaglandin E synthase-1 (mPGES-1) and mPGES-2, are membrane-bound enzymes. mPGES-1 is an inflammation-inducible enzyme that converts PGH2 into PGE2. mPGES-2 is a bifunctional enzyme that generally forms a complex with haem in the presence of glutathione. This enzyme can metabolise PGH2 into malondialdehyde and can produce PGE2 after its separation from haem. In this review, we discuss the role of PGESs, particularly mPGES-1 and mPGES-2, in the pathogenesis of liver diseases. A better understanding of the roles of PGESs in liver disease may aid in the development of treatments for patients with liver diseases.
Collapse
Affiliation(s)
- Delong Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Jie Cai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Zhi-Kang Wan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Hang Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.
| |
Collapse
|
29
|
Otaka F, Ito Y, Nakamoto S, Nishizawa N, Hyodo T, Hosono K, Majima M, Koizumi W, Amano H. Macrophages contribute to liver repair after monocrotaline-induced liver injury via SDF-1/CXCR4. Exp Ther Med 2021; 22:668. [PMID: 33986833 PMCID: PMC8112113 DOI: 10.3892/etm.2021.10100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Monocrotaline (MCT) administration induces liver injury in rodents that mimics the pathology of human sinusoidal obstruction syndrome. MCT-induced SOS models are used to investigate the mechanism of injury and optimize treatment strategies. However, the processes underlying liver repair are largely unknown. Specifically, the role of macrophages, the key drivers of liver repair, has not been elucidated. The current study aimed to examine the role of macrophages in the repair of MCT-induced liver injury in male C57/BL6 mice. Maximal liver injury occurred at 48 h post-MCT treatment, followed by repair at 120 h post-treatment. Immunofluorescence analysis revealed that CD68+ macrophages were recruited to the injured regions after MCT treatment. This was associated with the decreased expression of genes related to a pro-inflammatory macrophage phenotype and the increased expression of those associated with a reparative macrophage phenotype during the repair phase. The results also revealed that stromal cell-derived factor-1 (SDF-1) and its receptor C-X-C chemokine receptor-4 (CXCR4) were upregulated, and CD68+ macrophages were co-localized with CXCR4 expression. Treatment of mice with AMD3100, a CXCR4 antagonist, delayed liver repair and increased the expression of genes related to a pro-inflammatory macrophage phenotype. In contrast, SDF-1 treatment stimulated liver repair and increased the expression of genes related to a reparative macrophage phenotype. The results suggested that macrophages accumulate in the liver and repair damaged tissue after MCT treatment, and that the SDF-1-CXCR4 axis is involved in this process.
Collapse
Affiliation(s)
- Fumisato Otaka
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan.,Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshiya Ito
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Shuji Nakamoto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan.,Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Nobuyuki Nishizawa
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan.,Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Tetsuya Hyodo
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan.,Department of Plastic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Kanako Hosono
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan.,Department of Medical Therapeutics, Kanagawa Institute of Technology, Atsugi, Kanagawa 243-0292, Japan
| | - Wasaburo Koizumi
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Hideki Amano
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
30
|
Dery KJ, Nakamura K, Kadono K, Hirao H, Kageyama S, Ito T, Kojima H, Kaldas FM, Busuttil RW, Kupiec‐Weglinski JW. Human Antigen R (HuR): A Regulator of Heme Oxygenase-1 Cytoprotection in Mouse and Human Liver Transplant Injury. Hepatology 2020; 72:1056-1072. [PMID: 31879990 PMCID: PMC8330638 DOI: 10.1002/hep.31093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/10/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND AIMS Ischemia-reperfusion injury (IRI) represents a risk factor in liver transplantation (LT). We have shown that overexpression of heme oxygenase-1 (HO-1) mitigates hepatic IRI in LT recipients. Here, we hypothesized that human antigen R (HuR), the stabilizer of adenylate-uridylate (AU)-rich mRNAs, is required for hepatoprotection in LT. APPROACH AND RESULTS In an experimental arm, HuR/HO-1 protein expression was correlated with hepatic IRI phenotype. In an in vitro inflammation mimic model of hepatic warm IRI, induction of HuR/HO-1 and cytoplasmic localization following cytokine preconditioning were detected in primary hepatocyte cultures, whereas HuR silencing caused negative regulation of HO-1, followed by enhanced cytotoxicity. Using the HuR-inhibitor, we showed that HuR likely regulates HO-1 through its 3' untranslated region and causes neutrophil activation (CD69+/lymphocyte antigen 6 complex locus G [Ly6-G]). HuR silencing in bone marrow-derived macrophages decreased HO-1 expression, leading to the induction of proinflammatory cytokines/chemokines. RNA sequencing of HuR silenced transcripts under in vitro warm IRI revealed regulation of genes thymus cell antigen 1 (THY1), aconitate decarboxylase 1 (ACOD1), and Prostaglandin E Synthase (PTGES). HuR, but not hypoxia-inducible protein alpha, positively regulated HO-1 in warm, but not cold, hypoxia/reoxygenation conditions. HuR modulated HO-1 in primary hepatocytes, neutrophils, and macrophages under reperfusion. Adjunctive inhibition of HuR diminished microtubule-associated proteins 1A/1B light chain 3B (LC3B), a marker for autophagosome, under HO-1 regulation, suggesting a cytoprotective mechanism in hepatic IR. In a clinical arm, hepatic biopsies from 51 patients with LT were analyzed at 2 hours after reperfusion. Graft HuR expression was negatively correlated with macrophage (CD80/CD86) and neutrophil (Cathepsin G) markers. Hepatic IRI increased HuR/HO-1 expression and inflammatory genes. High HuR-expressing liver grafts showed lower serum alanine aminotransferase/serum aspartate aminotransferase levels and improved LT survival. CONCLUSIONS This translational study identifies HuR as a regulator of HO-1-mediated cytoprotection in sterile liver inflammation and a biomarker of ischemic stress resistance in LT.
Collapse
Affiliation(s)
- Kenneth J. Dery
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Kojiro Nakamura
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA,Department of SurgeryKyoto UniversityKyotoJapan,Department of SurgeryNishi‐Kobe Medical CenterKobeJapan
| | - Kentaro Kadono
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Hirofumi Hirao
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Shoichi Kageyama
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Takahiro Ito
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Hidenobu Kojima
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Fady M. Kaldas
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Ronald W. Busuttil
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Jerzy W. Kupiec‐Weglinski
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| |
Collapse
|
31
|
Lymphangiogenesis induced by vascular endothelial growth factor receptor 1 signaling contributes to the progression of endometriosis in mice. J Pharmacol Sci 2020; 143:255-263. [DOI: 10.1016/j.jphs.2020.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 12/30/2022] Open
|
32
|
Zhou J, Chen J, Wei Q, Saeb-Parsy K, Xu X. The Role of Ischemia/Reperfusion Injury in Early Hepatic Allograft Dysfunction. Liver Transpl 2020; 26:1034-1048. [PMID: 32294292 DOI: 10.1002/lt.25779] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/15/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
Liver transplantation (LT) is the only available curative treatment for patients with end-stage liver disease. Early allograft dysfunction (EAD) is a life-threatening complication of LT and is thought to be mediated in large part through ischemia/reperfusion injury (IRI). However, the underlying mechanisms linking IRI and EAD after LT are poorly understood. Most previous studies focused on the clinical features of EAD, but basic research on the underlying mechanisms is insufficient, due, in part, to a lack of suitable animal models of EAD. There is still no consensus on definition of EAD, which hampers comparative analysis of data from different LT centers. IRI is considered as an important risk factor of EAD, which can induce both damage and adaptive responses in liver grafts. IRI and EAD are closely linked and share several common pathways. However, the underlying mechanisms remain largely unclear. Therapeutic interventions against EAD through the amelioration of IRI is a promising strategy, but most approaches are still in preclinical stages. To further study the mechanisms of EAD and promote collaborations between LT centers, optimized animal models and unified definitions of EAD are urgently needed. Because IRI and EAD are closely linked, more attention should be paid to the underlying mechanisms and the fundamental relationship between them. Ischemia/reperfusion-induced adaptive responses may play a crucial role in the prevention of EAD, and more preclinical studies and clinical trials are urgently needed to address the current limitation of available therapeutic interventions.
Collapse
Affiliation(s)
- Junbin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Jian Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Qiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom.,Cambridge National Institute of Health Research Biomedical research Centre, Cambridge, United Kingdom
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| |
Collapse
|
33
|
Hosono K, Kojo K, Narumiya S, Majima M, Ito Y. Prostaglandin E receptor EP4 stimulates lymphangiogenesis to promote mucosal healing during DSS-induced colitis. Biomed Pharmacother 2020; 128:110264. [PMID: 32447215 DOI: 10.1016/j.biopha.2020.110264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 01/22/2023] Open
Abstract
In the intestine, the formation of new lymphatic vessels from pre-existing lymphatic vasculature (lymphangiogenesis) is related to the progression of inflammatory bowel disease (IBD). However, it remains unclear whether lymphangiogenesis contributes to mucosal repair after acute colitis. Prostaglandin Ereceptor EP4 suppresses the development of experimental colitis. In this study, we investigated whether EP4 exerts this effect by contributing to lymphangiogenesis, in turn promoting mucosal tissue repair, following acute colitis. We elicited experimental colitis in male C57/BL6 mice by administering dextran sulphate sodium (DSS) via the drinking water for 5 days, followed by normal water for 9 additional days. From Day 5 through Day 13, the experimental mice received a daily dose of EP4-selective agonist, EP4-selective antagonist, or vehicle. On Day 14, mice treated with vehicle had recovered 95 % of body weight and exhibited moderate increases in disease activity and histological score relative to untreated controls. Compared with vehicle, post-treatment with EP4 antagonist increased signs of colitis, colonic tissue destruction, and CD11b+ cell infiltration, associated with elevated lymphatic vessel density (LVD) and reduced percentage of lymphatic vessel area (LVA%). By contrast, post-treatment with EP4 agonist improved disease activity, suppressed CD11b+ infiltration, and decreased levels of inflammatory cytokines; these changes were associated with upregulation of lymphatic growth factors and lymphangiogenesis, as evidenced by increases in LVA% and lymphatic drainage function. Inhibition of vascular endothelial growth factor receptor 3 (VEGFR3) caused a delay in mucosal repair, accompanied by impaired lymphangiogenesis. These results suggest that EP4 stimulation aids in mucosal repair from DSS-induced acute colitis by promoting lymphangiogenesis.
Collapse
Affiliation(s)
- Kanakako Hosono
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Ken Kojo
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Shuh Narumiya
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
34
|
Tsuru S, Ito Y, Matsuda H, Hosono K, Inoue T, Nakamoto S, Kurashige C, Mishima T, Tsujikawa K, Okamoto H, Majima M. RAMP1 signaling in immune cells regulates inflammation-associated lymphangiogenesis. J Transl Med 2020; 100:738-750. [PMID: 31911634 DOI: 10.1038/s41374-019-0364-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Calcitonin gene-related peptide (CGRP) regulates inflammation via signaling through receptor activity-modifying protein (RAMP) 1. Here, we investigated the role of RAMP1 signaling in growth of lymphatic vessels during inflammation. Lymphangiogenesis in the diaphragm of RAMP1-deficient (-/-) mice or their wild-type (WT) counterparts was induced by repeated intraperitoneal injection of lipopolysaccharide (LPS). Compared with WT mice, LPS-induced lymphangiogenesis in RAMP1-/- mice was suppressed. This was accompanied by the reduced expression of vascular endothelial growth factor (VEGF)-C and VEGF-D. The number of CD4+ cells in diaphragm tissue from WT mice was greater than RAMP1-/- mice. Removing CD4+ cells attenuated lymphangiogenesis and expression of VEGF-C and VEGF-D. CD4+ cells isolated from RAMP1-/- mice exhibited reduced expression of VEGF-C and VEGF-D. The number of CD11b+ cells from RAMP1-/- mice was higher than WT mice and was associated with the upregulated expression of genes related to pro-inflammatory macrophage phenotype and downregulation of reparative macrophage phenotype-related expression. When fluorescein isothiocyanate (FITC)-dextran was injected into the peritoneal cavity, the amount of residual FITC-dextran in WT mice was lower than that in RAMP1-/- mice. The present results suggest that RAMP1 signaling in immune cells plays a critical role in inflammation-related lymphangiogenesis; therefore, it represents a novel target for controlling lymphangiogenesis.
Collapse
Affiliation(s)
- Seri Tsuru
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan.,Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoshiya Ito
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hiromi Matsuda
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kanako Hosono
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Tomoyoshi Inoue
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| | - Shuji Nakamoto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| | - Chie Kurashige
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Toshiaki Mishima
- Department of Cardiovascular Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hirotsugu Okamoto
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masataka Majima
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan. .,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan.
| |
Collapse
|
35
|
Cai LL, Xu HT, Wang QL, Zhang YQ, Chen W, Zheng DY, Liu F, Yuan HB, Li YH, Fu HL. EP4 activation ameliorates liver ischemia/reperfusion injury via ERK1/2‑GSK3β‑dependent MPTP inhibition. Int J Mol Med 2020; 45:1825-1837. [PMID: 32186754 PMCID: PMC7169940 DOI: 10.3892/ijmm.2020.4544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Prostaglandin E receptor subtype 4 (EP4) is widely distributed in the heart, but its role in hepatic ischemia/reperfusion (I/R), particularly in mitochondrial permeability transition pore (MPTP) modulation, is yet to be elucidated. In the present study, an EP4 agonist (CAY10598) was used in a rat model to evaluate the effects of EP4 activation on liver I/R and the mechanisms underlying this. I/R insult upregulated hepatic EP4 expression during early reperfusion. In addition, subcutaneous CAY10598 injection prior to the onset of reperfusion significantly increased hepatocyte cAMP concentrations and decreased serum ALT and AST levels and necrotic and apoptotic cell percentages, after 6 h of reperfusion. Moreover, CAY10598 protected mitochondrial morphology, markedly inhibited mitochondrial permeability transition pore (MPTP) opening and decreased liver reactive oxygen species levels. This occurred via activation of the ERK1/2-GSK3β pathway rather than the janus kinase (JAK)2-signal transducers and activators of transcription (STAT)3 pathway, and resulted in prevention of mitochondria-associated cell injury. The MPTP opener carboxyatractyloside (CATR) and the ERK1/2 inhibitor PD98059 also partially reversed the protective effects of CAY10598 on the liver and mitochondria. The current findings indicate that EP4 activation induces ERK1/2-GSK3β signaling and subsequent MPTP inhibition to provide hepatoprotection, and these observations are informative for developing new molecular targets and preventative therapies for I/R in a clinical setting.
Collapse
Affiliation(s)
- Lin-Lin Cai
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Hai-Tao Xu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Qi-Long Wang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Ya-Qing Zhang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Wei Chen
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Dong-Yu Zheng
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Fang Liu
- National Key Laboratory of Medical Immunology and Department of Immunology, Second Military Medical University, Shanghai 200433, P.R. China
| | - Hong-Bin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yong-Hua Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Hai-Long Fu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
36
|
Nakamoto S, Ito Y, Nishizawa N, Goto T, Kojo K, Kumamoto Y, Watanabe M, Majima M. Lymphangiogenesis and accumulation of reparative macrophages contribute to liver repair after hepatic ischemia-reperfusion injury. Angiogenesis 2020; 23:395-410. [PMID: 32162023 DOI: 10.1007/s10456-020-09718-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022]
Abstract
Hepatic tissue repair plays a critical role in determining the outcome of hepatic ischemia-reperfusion (I/R) injury. Hepatic lymphatics participate in the clearance of dead tissues and contribute to the reparative process after acute hepatic injury; however, it remains unknown whether lymphangiogenesis in response to hepatic inflammation is involved in liver repair. Herein, we determined if hepatic lymphangiogenesis improves liver repair after hepatic I/R injury. Using a mouse model of hepatic I/R injury, we investigated hepatic lymphatic structure, growth, and function in injured murine livers. Hepatic I/R injury enhanced lymphangiogenesis around the portal tract and this was associated with increased expression of pro-lymphangiogenic growth factors including vascular endothelial growth factor (VEGF)-C and VEGF-D. Recombinant VEGF-D treatment facilitated liver repair in association with the expansion of lymphatic vessels and increased expression of genes related to the reparative macrophage phenotype. Treatment with a VEGF receptor 3 (VEGFR3) inhibitor suppressed liver repair, lymphangiogenesis, drainage function, and accumulation of VEGFR3-expressing reparative macrophages. VEGF-C and VEGF-D upregulated expression of genes related to lymphangiogenic factors and the reparative macrophage phenotype in cultured macrophages. These results suggest that activation of VEGFR3 signaling increases lymphangiogenesis and the number of reparative macrophages, both of which play roles in liver repair. Expanded lymphatics and induction of reparative macrophage accumulation may be therapeutic targets to enhance liver repair after hepatic injury.
Collapse
Affiliation(s)
- Shuji Nakamoto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Kanagawa, Sagamihara, 252-0374, Japan
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshiya Ito
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Kanagawa, Sagamihara, 252-0374, Japan
| | - Nobuyuki Nishizawa
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takuya Goto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Kanagawa, Sagamihara, 252-0374, Japan
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ken Kojo
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yusuke Kumamoto
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masataka Majima
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan.
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Kanagawa, Sagamihara, 252-0374, Japan.
| |
Collapse
|
37
|
Nakamoto S, Ito Y, Nishizawa N, Goto T, Kojo K, Kumamoto Y, Watanabe M, Narumiya S, Majima M. EP3 signaling in dendritic cells promotes liver repair by inducing IL-13-mediated macrophage differentiation in mice. FASEB J 2020; 34:5610-5627. [PMID: 32112485 DOI: 10.1096/fj.201901955r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/16/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
Macrophage plasticity is essential for liver wound healing; however, the mechanisms underlying macrophage phenotype switching are largely unknown. Dendritic cells (DCs) are critical initiators of innate immune responses; as such, they orchestrate inflammation following hepatic injury. Here, we subjected EP3-deficient (Ptger3-/- ) and wild-type (WT) mice to hepatic ischemia-reperfusion (I/R) and demonstrate that signaling via the prostaglandin E (PGE) receptor EP3 in DCs regulates macrophage plasticity during liver repair. Compared with WT mice, Ptger3-/- mice showed delayed liver repair accompanied by reduced expression of hepatic growth factors and accumulation of Ly6Clow reparative macrophages and monocyte-derived DCs (moDCs). MoDCs were recruited to the boundary between damaged and undamaged liver tissue in an EP3-dependent manner. Adoptive transfer of moDCs from Ptger3-/- mice resulted in impaired repair, along with increased numbers of Ly6Chigh inflammatory macrophages. Bone marrow macrophages (BMMs) up-regulated expression of genes related to a reparative macrophage phenotype when co-cultured with moDCs; this phenomenon was dependent on EP3 signaling. In the presence of an EP3 agonist, interleukin (IL)-13 derived from moDCs drove BMMs to increase expression of genes characteristic of a reparative macrophage phenotype. The results suggest that EP3 signaling in moDCs facilitates liver repair by inducing IL-13-mediated switching of macrophage phenotype from pro-inflammatory to pro-reparative.
Collapse
Affiliation(s)
- Shuji Nakamoto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshiya Ito
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Nobuyuki Nishizawa
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takuya Goto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Ken Kojo
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yusuke Kumamoto
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Shuh Narumiya
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masataka Majima
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
38
|
FitzSimons M, Beauchemin M, Smith AM, Stroh EG, Kelpsch DJ, Lamb MC, Tootle TL, Yin VP. Cardiac injury modulates critical components of prostaglandin E 2 signaling during zebrafish heart regeneration. Sci Rep 2020; 10:3095. [PMID: 32080283 PMCID: PMC7033201 DOI: 10.1038/s41598-020-59868-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
The inability to effectively stimulate cardiomyocyte proliferation remains a principle barrier to regeneration in the adult human heart. A tightly regulated, acute inflammatory response mediated by a range of cell types is required to initiate regenerative processes. Prostaglandin E2 (PGE2), a potent lipid signaling molecule induced by inflammation, has been shown to promote regeneration and cell proliferation; however, the dynamics of PGE2 signaling in the context of heart regeneration remain underexplored. Here, we employ the regeneration-competent zebrafish to characterize components of the PGE2 signaling circuit following cardiac injury. In the regenerating adult heart, we documented an increase in PGE2 levels, concurrent with upregulation of cox2a and ptges, two genes critical for PGE2 synthesis. Furthermore, we identified the epicardium as the most prominent site for cox2a expression, thereby suggesting a role for this tissue as an inflammatory mediator. Injury also drove the opposing expression of PGE2 receptors, upregulating pro-restorative ptger2a and downregulating the opposing receptor ptger3. Importantly, treatment with pharmacological inhibitors of Cox2 activity suppressed both production of PGE2, and the proliferation of cardiomyocytes. These results suggest that injury-induced PGE2 signaling is key to stimulating cardiomyocyte proliferation during regeneration.
Collapse
Affiliation(s)
- MaryLynn FitzSimons
- Kathryn W. Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME, 04609, US
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, US
| | - Megan Beauchemin
- Kathryn W. Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME, 04609, US
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, US
- The University of New England, Biddeford, ME, 04005, US
| | - Ashley M Smith
- Kathryn W. Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME, 04609, US
| | - Erika G Stroh
- Kathryn W. Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME, 04609, US
| | - Daniel J Kelpsch
- Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, US
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, US
| | - Maureen C Lamb
- Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, US
| | - Tina L Tootle
- Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, US
| | - Viravuth P Yin
- Kathryn W. Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME, 04609, US.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, US.
| |
Collapse
|
39
|
Thromboxane A2 receptor signaling in endothelial cells attenuates monocrotaline-induced liver injury. Toxicol Appl Pharmacol 2019; 381:114733. [DOI: 10.1016/j.taap.2019.114733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/18/2022]
|
40
|
Motiño O, Francés DE, Casanova N, Fuertes-Agudo M, Cucarella C, Flores JM, Vallejo-Cremades MT, Olmedilla L, Pérez Peña J, Bañares R, Boscá L, Casado M, Martín-Sanz P. Protective Role of Hepatocyte Cyclooxygenase-2 Expression Against Liver Ischemia-Reperfusion Injury in Mice. Hepatology 2019; 70:650-665. [PMID: 30155948 DOI: 10.1002/hep.30241] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/22/2018] [Indexed: 02/05/2023]
Abstract
Liver ischemia and reperfusion injury (IRI) remains a serious clinical problem affecting liver transplantation outcomes. IRI causes up to 10% of early organ failure and predisposes to chronic rejection. Cyclooxygenase-2 (COX-2) is involved in different liver diseases, but the significance of COX-2 in IRI is a matter of controversy. This study was designed to elucidate the role of COX-2 induction in hepatocytes against liver IRI. In the present work, hepatocyte-specific COX-2 transgenic mice (hCOX-2-Tg) and their wild-type (Wt) littermates were subjected to IRI. hCOX-2-Tg mice exhibited lower grades of necrosis and inflammation than Wt mice, in part by reduced hepatic recruitment and infiltration of neutrophils, with a concomitant decrease in serum levels of proinflammatory cytokines. Moreover, hCOX-2-Tg mice showed a significant attenuation of the IRI-induced increase in oxidative stress and hepatic apoptosis, an increase in autophagic flux, and a decrease in endoplasmic reticulum stress compared to Wt mice. Interestingly, ischemic preconditioning of Wt mice resembles the beneficial effects observed in hCOX-2-Tg mice against IRI due to a preconditioning-derived increase in endogenous COX-2, which is mainly localized in hepatocytes. Furthermore, measurement of prostaglandin E2 (PGE2 ) levels in plasma from patients who underwent liver transplantation revealed a significantly positive correlation of PGE2 levels and graft function and an inverse correlation with the time of ischemia. Conclusion: These data support the view of a protective effect of hepatic COX-2 induction and the consequent rise of derived prostaglandins against IRI.
Collapse
Affiliation(s)
- Omar Motiño
- Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAM, Madrid, Spain
| | - Daniel E Francés
- Instituto de Fisiología Experimental (IFISE-CONICET), Rosario, Argentina
| | - Natalia Casanova
- Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAM, Madrid, Spain
| | | | - Carme Cucarella
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
| | - Juana M Flores
- Department of Animal Medicine and Surgery, Veterinary Faculty, Universidad Complutense de Madrid, Spain
| | | | - Luis Olmedilla
- Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
| | - José Pérez Peña
- Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
| | - Rafael Bañares
- Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
- Medicine Faculty, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERcv), Madrid, Spain
| | - Marta Casado
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERcv), Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERcv), Madrid, Spain
| |
Collapse
|
41
|
Bergqvist F, Ossipova E, Idborg H, Raouf J, Checa A, Englund K, Englund P, Khoonsari PE, Kultima K, Wheelock CE, Larsson K, Korotkova M, Jakobsson PJ. Inhibition of mPGES-1 or COX-2 Results in Different Proteomic and Lipidomic Profiles in A549 Lung Cancer Cells. Front Pharmacol 2019; 10:636. [PMID: 31231223 PMCID: PMC6567928 DOI: 10.3389/fphar.2019.00636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/17/2019] [Indexed: 12/23/2022] Open
Abstract
Pharmacological inhibition of microsomal prostaglandin E synthase (mPGES)-1 for selective reduction in prostaglandin E2 (PGE2) biosynthesis is protective in experimental models of cancer and inflammation. Targeting mPGES-1 is envisioned as a safer alternative to traditional non-steroidal anti-inflammatory drugs (NSAIDs). Herein, we compared the effects of mPGES-1 inhibitor Compound III (CIII) with the cyclooxygenase (COX)-2 inhibitor NS-398 on protein and lipid profiles in interleukin (IL)-1β-induced A549 lung cancer cells using mass spectrometry. Inhibition of mPGES-1 decreased PGE2 production and increased PGF2α and thromboxane B2 (TXB2) formation, while inhibition of COX-2 decreased the production of all three prostanoids. Our proteomics results revealed that CIII downregulated multiple canonical pathways including eIF2, eIF4/P70S6K, and mTOR signaling, compared to NS-398 that activated these pathways. Moreover, pathway analysis predicted that CIII increased cell death of cancer cells (Z = 3.8, p = 5.1E-41) while NS-398 decreased the same function (Z = -5.0, p = 6.5E-35). In our lipidomics analyses, we found alterations in nine phospholipids between the two inhibitors, with a stronger alteration in the lysophospholipid (LPC) profile with NS-398 compared to CIII. Inhibition of mPGES-1 increased the concentration of sphinganine and dihydroceramide (C16:0DhCer), while inhibition of COX-2 caused a general decrease in most ceramides, again suggesting different effects on cell death between the two inhibitors. We showed that CIII decreased proliferation and potentiated the cytotoxic effect of the cytostatic drugs cisplatin, etoposide, and vincristine when investigated in a live cell imaging system. Our results demonstrate differences in protein and lipid profiles after inhibition of mPGES-1 or COX-2 with important implications on the therapeutic potential of mPGES-1 inhibitors as adjuvant treatment in cancer. We encourage further investigations to illuminate the clinical benefit of mPGES-1 inhibitors in cancer.
Collapse
Affiliation(s)
- Filip Bergqvist
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Elena Ossipova
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Helena Idborg
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Joan Raouf
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Antonio Checa
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Karin Englund
- Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Petter Englund
- Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Payam Emami Khoonsari
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Karin Larsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Marina Korotkova
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
42
|
Sekiguchi K, Ito Y, Hattori K, Inoue T, Hosono K, Honda M, Numao A, Amano H, Shibuya M, Unno N, Majima M. VEGF Receptor 1-Expressing Macrophages Recruited from Bone Marrow Enhances Angiogenesis in Endometrial Tissues. Sci Rep 2019; 9:7037. [PMID: 31065021 PMCID: PMC6504918 DOI: 10.1038/s41598-019-43185-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/08/2019] [Indexed: 01/08/2023] Open
Abstract
Angiogenesis is critical in maintenance of endometrial tissues. Here, we examined the role of VEGF receptor 1 (VEGFR1) signaling in angiogenesis and tissue growth in an endometriosis model. Endometrial fragments were implanted into the peritoneal wall of mice, and endometrial tissue growth and microvessel density (MVD) were determined. Endometrial fragments from wild-type (WT) mice grew slowly with increased angiogenesis determined by CD31+ MVD, peaking on Day 14. When tissues from WT mice were transplanted into VEGFR1 tyrosine kinase-knockout mice, implant growth and angiogenesis were suppressed on Day 14 compared with growth of WT implants in a WT host. The blood vessels in the implants were not derived from the host peritoneum. Immunostaining for VEGFR1 suggested that high numbers of VEGFR1+ cells such as macrophages were infiltrated into the endometrial tissues. When macrophages were deleted with Clophosome N, both endometrial tissue growth and angiogenesis were significantly suppressed. Bone marrow chimera experiments revealed that growth and angiogenesis in endometrial implants were promoted by host bone marrow-derived VEGFR1+/CD11b+ macrophages that accumulated in the implants, and secreted basic fibroblast growth factor (bFGF). A FGF receptor kinase inhibitor, PD173047 significantly reduced size of endometrial tissues and angiogenesis. VEGFR1 signaling in host-derived cells is crucial for growth and angiogenesis in endometrial tissue. Thus, VEGFR1 blockade is a potential treatment for endometriosis.
Collapse
Affiliation(s)
- Kazuki Sekiguchi
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan.,Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kyoko Hattori
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan.,Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Tomoyoshi Inoue
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Masako Honda
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan.,Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Akiko Numao
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Masabumi Shibuya
- Gakubunkan Institute of Physiology and Medicine, Jobu University, Takasaki, Gunma, Japan
| | - Nobuya Unno
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan. .,Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan.
| |
Collapse
|
43
|
Chen Z, Cai X, Li M, Yan L, Wu L, Wang X, Tang N. CRISPR/Cas9-based liver-derived reporter cells for screening of mPGES-1 inhibitors. J Enzyme Inhib Med Chem 2019; 34:799-807. [PMID: 30879343 PMCID: PMC6427568 DOI: 10.1080/14756366.2019.1587416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
mPGES-1 is a terminal rate-limiting enzyme responsible for inflammation-induced PGE2 production. The inhibition of mPGES-1 has been considered as a safe and effective target for the treatment of inflammation and cancer. However, a specific, efficient, and simple method for high-throughput screening of mPGES-1 inhibitors is still lacking. In this study, we developed a fluorescence imaging strategy to monitor the expression of mPGES-1 via CRISPR/Cas9 knock-in system. Immunofluorescence colocalisation, Sanger sequencing, RNAi, and IL-1β treatment all confirmed the successful construction of mPGES-1 reporter cells. The fluorescence signal intensity of the reporter cells treated with four conventional mPGES-1 inhibitors was considerably attenuated via flow cytometry and fluorescent microplate reader, demonstrating that the reporter cells can be used as an efficient and convenient means for screening and optimising mPGES-1 inhibitors. Moreover, it provides a new technical support for the development of targeted small molecule compounds for anti-inflammatory and tumour therapy.
Collapse
Affiliation(s)
- Zhanfei Chen
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - Xiaoling Cai
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - Man Li
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - LinLin Yan
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - Luxi Wu
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - Xiaoqian Wang
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - Nanhong Tang
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China.,b Key Laboratory of Ministry of Education for Gastrointestinal Cancer , Research Center for Molecular Medicine, Fujian Medical University , Fuzhou , China
| |
Collapse
|
44
|
Treprostinil reduces endothelial damage in murine sinusoidal obstruction syndrome. J Mol Med (Berl) 2018; 97:201-213. [PMID: 30535954 PMCID: PMC6348071 DOI: 10.1007/s00109-018-1726-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 12/03/2022]
Abstract
Abstract Sinusoidal obstruction syndrome (SOS) is a major complication after hematopoietic stem cell transplantation and belongs to a group of diseases increasingly identified as transplant-related systemic endothelial disease. Administration of defibrotide affords some protection against SOS, but the effect is modest. Hence, there is unmet medical need justifying the preclinical search for alternative approaches. Prostaglandins exert protective actions on endothelial cells of various vascular beds. Here, we explored the therapeutic potential of the prostacyclin analog treprostinil to prevent SOS. Treprostinil acts via stimulation of IP, EP2, and EP4 receptors, which we detected in murine liver sinusoidal endothelial cells (LSECs). Busulfan-induced cell death was reduced when pretreated with treprostinil in vitro. In a murine in vivo model of SOS, concomitantly administered treprostinil caused lower liver weight-to-body weight ratios indicating liver protection. Histopathological changes were scored to assess damage to liver sinusoidal endothelial cells, to hepatocytes, and to the incipient fibrotic reaction. Treprostinil indeed reduced sinusoidal endothelial cell injury, but this did not translate into reduced liver cell necrosis or fibrosis. In summary, our observations provide evidence for a beneficial effect of treprostinil on damage to LSECs but unexpectedly treprostinil was revealed as a double-edged sword in SOS. Key messages Murine liver sinusoidal endothelial cells (LSECs) express prostanoid receptors. Treprostinil reduces busulfan-induced cell death in vitro. Treprostinil lowers liver weight-to-body weight ratios in mice. Treprostinil positively affects LSECs in mice but not hepatic necrosis/fibrosis.
Collapse
|
45
|
Inoue T, Ito Y, Nishizawa N, Eshima K, Kojo K, Otaka F, Betto T, Yamane S, Tsujikawa K, Koizumi W, Majima M. RAMP1 in Kupffer cells is a critical regulator in immune-mediated hepatitis. PLoS One 2018; 13:e0200432. [PMID: 30462657 PMCID: PMC6248891 DOI: 10.1371/journal.pone.0200432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/17/2018] [Indexed: 01/01/2023] Open
Abstract
The significance of the relationship between the nervous and immune systems with respect to disease course is increasingly apparent. Immune cells in the liver and spleen are responsible for the development of acute liver injury, yet the regulatory mechanisms of the interactions remain elusive. Calcitonin gene-related peptide (CGRP), which is released from the sensory nervous system, regulates innate immune activation via receptor activity-modifying protein 1 (RAMP1), a subunit of the CGRP receptor. Here, we show that RAMP1 in Kupffer cells (KCs) plays a critical role in the etiology of immune-mediated hepatitis. RAMP1-deficient mice with concanavalin A (ConA)-mediated hepatitis, characterized by severe liver injury accompanied by infiltration of immune cells and increased secretion of pro-inflammatory cytokines by KCs and splenic T cells, showed poor survival. Removing KCs ameliorated liver damage, while depleting T cells or splenectomy led to partial amelioration. Adoptive transfer of splenic T cells from RAMP1-deficient mice led to a modest increase in liver injury. Co-culture of KCs with splenic T cells led to increased cytokine expression by both cells in a RAMP1-dependent manner. Thus, immune-mediated hepatitis develops via crosstalk between immune cells. RAMP1 in KCs is a key regulator of immune responses.
Collapse
Affiliation(s)
- Tomoyoshi Inoue
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshiya Ito
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Nobuyuki Nishizawa
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Koji Eshima
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ken Kojo
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Fumisato Otaka
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Tomohiro Betto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Sakiko Yamane
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Wasaburo Koizumi
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masataka Majima
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- * E-mail:
| |
Collapse
|