1
|
Liu C, Niu Y, Jin J, Ulita SA, Lin Y, Cong J, Lei S, Chen J, Yang J. Elucidating the immunomodulatory effects of phytoestrogens and their groundbreaking applications in transplantation medicine. Int Immunopharmacol 2024; 143:113220. [PMID: 39405935 DOI: 10.1016/j.intimp.2024.113220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/30/2024]
Abstract
Phytoestrogens are natural compounds found in plants and plant-based foods. When ingested, they can affect the human body in the same way as estrogen produced by the body. Phytoestrogens affect the regulation, differentiation, and production of immune cells. People who consume polyphenol and flavonoid-rich foods have lower incidences of inflammation, autoimmune diseases, and cancer. In organ transplantation, immune rejection is a lifelong problem for patients. In clinical practice, acute rejection is treated with hormonal shock or immunosuppressive drugs. However, effective reversal measures for chronic rejection, specifically for prevention, are still lacking. Recipients are also prone to post-transplant complications such as new tumors, diabetes, hyperlipidemia, hyperuricemia, and cardiovascular and cerebrovascular diseases, owing to the long-term use of immunosuppressive drugs. Phytoestrogens play a promising role in immune regulation and exert curative effects on cardiovascular diseases and cancer. In this study, we reviewed the use of phytoestrogens in the fields of immune regulation and organ transplantation.
Collapse
Affiliation(s)
- Chen Liu
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Yewei Niu
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Jiamin Jin
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Salsa Ayudia Ulita
- Department of Immunology, Guilin Medical University, Guilin 541199, China
| | - Yi Lin
- Department of Ultrasound, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, China
| | - Jiacheng Cong
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Shangbo Lei
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Jian Chen
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China.
| | - Jinfeng Yang
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
2
|
Xiao ZF, Chai WH, Shu XL, Yuan HR, Guo F. Immune cell traits and causal relationships with cholecystitis: a mendelian randomization analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03493-x. [PMID: 39358644 DOI: 10.1007/s00210-024-03493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Cholecystitis, characterized by inflammation of the gallbladder, is intricately linked to immune cells and the cytokines they produce. Despite this association, the specific contributions of immune cells to the onset and progression of cholecystitis remain to be fully understood. To delineate this relationship, we utilized the Mendelian randomization (MR) method to scrutinize the causal connections between 731 immune cell phenotypes and cholecystitis. By conducting MR analysis on 731 immune cell markers from public datasets, this study seeks to understand their potential impact on the risk of cholecystitis. It aims to elucidate the interactions between immune phenotypes and the disease, aiming to lay the groundwork for advancing precision medicine and developing effective treatment strategies for cholecystitis. Taking immune cell phenotypes as the exposure factor and cholecystitis as the outcome event, this study used single nucleotide polymorphisms (SNPs) closely associated with both immune cell phenotypes and cholecystitis as genetic instrumental variables. We conducted a two-sample MR analysis on genome-wide association studies (GWAS) data. Our research thoroughly examined 731 immune cell markers, to determine potential causal relationships with susceptibility to cholecystitis. Sensitivity analyses were performed to ensure the robustness of our findings, excluding the potential impacts of heterogeneity and pleiotropy. To avoid reverse causality, we conducted reverse MR analyses with cholecystitis as the exposure factor and immune cell phenotypes as the outcome event. Among the 731 immune phenotypes, our study identified 21 phenotypes with a causal relationship to cholecystitis (P < 0.05). Of these, eight immune phenotypes exhibited a protective effect against cholecystitis (odds ratio (OR) < 1), while the other 13 immune phenotypes were associated with an increased risk of developing cholecystitis (OR > 1). Additionally, employing the false discovery rate (FDR) method at a significance level of 0.2, no significant causal relationship was found between cholecystitis and immune phenotypes. Our research has uncovered a significant causal relationship between immune cell phenotypes and cholecystitis. This discovery not only enhances our understanding of the role of immune cells in the onset and progression of cholecystitis but also establishes a foundation for developing more precise biomarkers and targeted therapeutic strategies. It provides a scientific basis for more effective and personalized treatments in the future. These findings are expected to substantially improve the quality of life for patients with cholecystitis and mitigate the impact of the disease on patients and their families.
Collapse
Affiliation(s)
- Ze-Fa Xiao
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wei-Hao Chai
- Department of Graduate School, Xinjiang Medical University, Urumqi, China
| | - Xiao-Long Shu
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hong-Rui Yuan
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fei Guo
- Department of Emergency Trauma Surgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830054, China.
| |
Collapse
|
3
|
Jalan-Sakrikar N, Guicciardi ME, O'Hara SP, Azad A, LaRusso NF, Gores GJ, Huebert RC. Central role for cholangiocyte pathobiology in cholestatic liver diseases. Hepatology 2024:01515467-990000000-01022. [PMID: 39250501 DOI: 10.1097/hep.0000000000001093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Cholangiopathies comprise a spectrum of chronic intrahepatic and extrahepatic biliary tract disorders culminating in progressive cholestatic liver injury, fibrosis, and often cirrhosis and its sequela. Treatment for these diseases is limited, and collectively, they are one of the therapeutic "black boxes" in clinical hepatology. The etiopathogenesis of the cholangiopathies likely includes disease-specific mediators but also common cellular and molecular events driving disease progression (eg, cholestatic fibrogenesis, inflammation, and duct damage). The common pathways involve cholangiocytes, the epithelial cells lining the intrahepatic and extrahepatic bile ducts, which are central to the pathogenesis of these disorders. Current information suggests that cholangiocytes function as a signaling "hub" in biliary tract-associated injury. Herein, we review the pivotal role of cholangiocytes in cholestatic fibrogenesis, focusing on the crosstalk between cholangiocytes and portal fibroblasts and HSCs. The proclivity of these cells to undergo a senescence-associated secretory phenotype, which is proinflammatory and profibrogenic, and the intrinsic intracellular activation pathways resulting in the secretion of cytokines and chemokines are reviewed. The crosstalk between cholangiocytes and cells of the innate (neutrophils and macrophages) and adaptive (T cells and B cells) immune systems is also examined in detail. The information will help consolidate information on this topic and guide further research and potential therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Gastroenterology Research Unit, Department of Medicine, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria Eugenia Guicciardi
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven P O'Hara
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Adiba Azad
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicholas F LaRusso
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory J Gores
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert C Huebert
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Gastroenterology Research Unit, Department of Medicine, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Ge J, Yin X, Chen L. Regulatory T cells: masterminds of immune equilibrium and future therapeutic innovations. Front Immunol 2024; 15:1457189. [PMID: 39290699 PMCID: PMC11405253 DOI: 10.3389/fimmu.2024.1457189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Regulatory T cells (Tregs), a subset of CD4+T cells marked by the expression of the transcription factor forkhead box protein 3 (Foxp3), are pivotal in maintaining immune equilibrium and preventing autoimmunity. In our review, we addressed the functional distinctions between Foxp3+Tregs and other T cells, highlighting their roles in autoimmune diseases and cancer. We uncovered the dual nature of Tregs: they prevented autoimmune diseases by maintaining self-tolerance while contributing to tumor evasion by suppressing anti-tumor immunity. This study underscored the potential for targeted therapeutic strategies, such as enhancing Treg activity to restore balance in autoimmune diseases or depleting Foxp3+Tregs to augment anti-tumor immune responses in cancer. These insights laid the groundwork for future research and clinical applications, emphasizing the critical role of Foxp3+Tregs in immune regulation and the advancement of next-generation immunotherapies.
Collapse
Affiliation(s)
- Junwei Ge
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xuan Yin
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
5
|
Cornillet M, Geanon D, Bergquist A, Björkström NK. Immunobiology of primary sclerosing cholangitis. Hepatology 2024:01515467-990000000-01014. [PMID: 39226402 DOI: 10.1097/hep.0000000000001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic inflammatory progressive cholestatic liver disease. Genetic risk factors, the presence of autoantibodies, the strong clinical link with inflammatory bowel disease, and associations with other autoimmune disorders all suggest a pivotal role for the immune system in PSC pathogenesis. In this review, we provide a comprehensive overview of recent immunobiology insights in PSC. A particular emphasis is given to immunological concepts such as tissue residency and knowledge gained from novel technologies, including single-cell RNA sequencing and spatial transcriptomics. This review of the immunobiological landscape of PSC covers major immune cell types known to be enriched in PSC-diseased livers as well as recently described cell types whose biliary localization and contribution to PSC immunopathogenesis remain incompletely described. Finally, we emphasize the importance of time and space in relation to PSC heterogeneity as a key consideration for future studies interrogating the role of the immune system in PSC.
Collapse
Affiliation(s)
- Martin Cornillet
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Geanon
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Annika Bergquist
- Unit of Gastroenterology, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Andrews TS, Nakib D, Perciani CT, Ma XZ, Liu L, Winter E, Camat D, Chung SW, Lumanto P, Manuel J, Mangroo S, Hansen B, Arpinder B, Thoeni C, Sayed B, Feld J, Gehring A, Gulamhusein A, Hirschfield GM, Ricciuto A, Bader GD, McGilvray ID, MacParland S. Single-cell, single-nucleus, and spatial transcriptomics characterization of the immunological landscape in the healthy and PSC human liver. J Hepatol 2024; 80:730-743. [PMID: 38199298 DOI: 10.1016/j.jhep.2023.12.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND & AIMS Primary sclerosing cholangitis (PSC) is an immune-mediated cholestatic liver disease for which there is an unmet need to understand the cellular composition of the affected liver and how it underlies disease pathogenesis. We aimed to generate a comprehensive atlas of the PSC liver using multi-omic modalities and protein-based functional validation. METHODS We employed single-cell and single-nucleus RNA sequencing (47,156 cells and 23,000 nuclei) and spatial transcriptomics (one sample by 10x Visium and five samples with Nanostring GeoMx DSP) to profile the cellular ecosystem in 10 PSC livers. Transcriptomic profiles were compared to 24 neurologically deceased donor livers (107,542 cells) and spatial transcriptomics controls, as well as 18,240 cells and 20,202 nuclei from three PBC livers. Flow cytometry was performed to validate PSC-specific differences in immune cell phenotype and function. RESULTS PSC explants with parenchymal cirrhosis and prominent periductal fibrosis contained a population of cholangiocyte-like hepatocytes that were surrounded by diverse immune cell populations. PSC-associated biliary, mesenchymal, and endothelial populations expressed chemokine and cytokine transcripts involved in immune cell recruitment. Additionally, expanded CD4+ T cells and recruited myeloid populations in the PSC liver expressed the corresponding receptors to these chemokines and cytokines, suggesting potential recruitment. Tissue-resident macrophages, by contrast, were reduced in number and exhibited a dysfunctional and downregulated inflammatory response to lipopolysaccharide and interferon-γ stimulation. CONCLUSIONS We present a comprehensive atlas of the PSC liver and demonstrate an exhaustion-like phenotype of myeloid cells and markers of chronic cytokine expression in late-stage PSC lesions. This atlas expands our understanding of the cellular complexity of PSC and has potential to guide the development of novel treatments. IMPACT AND IMPLICATIONS Primary sclerosing cholangitis (PSC) is a rare liver disease characterized by chronic inflammation and irreparable damage to the bile ducts, which eventually results in liver failure. Due to a limited understanding of the underlying pathogenesis of disease, treatment options are limited. To address this, we sequenced healthy and diseased livers to compare the activity, interactions, and localization of immune and non-immune cells. This revealed that hepatocytes lining PSC scar regions co-express cholangiocyte markers, whereas immune cells infiltrate the scar lesions. Of these cells, macrophages, which typically contribute to tissue repair, were enriched in immunoregulatory genes and demonstrated a lack of responsiveness to stimulation. These cells may be involved in maintaining hepatic inflammation and could be a target for novel therapies.
Collapse
Affiliation(s)
- Tallulah S Andrews
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada; Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada; Department of Computer Science, University of Western Ontario, London, ON, N6A 3K7, Canada.
| | - Diana Nakib
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Catia T Perciani
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Xue Zhong Ma
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Lewis Liu
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Erin Winter
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Damra Camat
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sai W Chung
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Patricia Lumanto
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Justin Manuel
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Shantel Mangroo
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Bettina Hansen
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON, M5G 2C4, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, M5T 3M6, Canada
| | - Bal Arpinder
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Cornelia Thoeni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Blayne Sayed
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Jordan Feld
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Adam Gehring
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada; Toronto Centre for Liver Disease, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Aliya Gulamhusein
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Gideon M Hirschfield
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Amanda Ricciuto
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| | - Ian D McGilvray
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada.
| | - Sonya MacParland
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
7
|
Rigamonti A, Villar J, Segura E. Monocyte differentiation within tissues: a renewed outlook. Trends Immunol 2023; 44:999-1013. [PMID: 37949783 DOI: 10.1016/j.it.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
When recruited to mammalian tissues, monocytes differentiate into macrophages or dendritic cells (DCs). In the past few years, the existence of monocyte-derived DCs (moDCs) was questioned by the discovery of new DC populations with overlapping phenotypes. Here, we critically review the evidence for monocyte differentiation into DCs in tissues and highlight their specific functions. Recent studies have shown that monocyte-derived macrophages (moMacs) with distinct life cycles coexist in tissues, both at steady state and upon inflammation. Integrating studies in mice and humans, we highlight specific features of moMacs during inflammation and tissue repair. We also discuss the notion of monocyte differentiation occurring via a binary fate decision. Deciphering monocyte-derived cell properties is essential for understanding their role in nonresolving inflammation and how they might be targeted for therapies.
Collapse
Affiliation(s)
| | - Javiera Villar
- Institut Curie, PSL University, INSERM, U932, 26 Rue d'Ulm, Paris 75005, France
| | - Elodie Segura
- Institut Curie, PSL University, INSERM, U932, 26 Rue d'Ulm, Paris 75005, France.
| |
Collapse
|
8
|
Tian S, Hu Y, Zhang M, Wang K, Guo G, Li B, Shang Y, Han Y. Integrative bioinformatics analysis and experimental validation of key biomarkers for risk stratification in primary biliary cholangitis. Arthritis Res Ther 2023; 25:186. [PMID: 37784152 PMCID: PMC10544390 DOI: 10.1186/s13075-023-03163-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is an autoimmune liver disease, whose etiology is yet to be fully elucidated. Currently, ursodeoxycholic acid (UDCA) is the only first-line drug. However, 40% of PBC patients respond poorly to it and carry a potential risk of disease progression. So, in this study, we aimed to explore new biomarkers for risk stratification in PBC patients to enhance treatment. METHODS We first downloaded the clinical characteristics and microarray datasets of PBC patients from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified and subjected to enrichment analysis. Hub genes were further validated in multiple public datasets and PBC mouse model. Furthermore, we also verified the expression of the hub genes and developed a predictive model in our clinical specimens. RESULTS A total of 166 DEGs were identified in the GSE79850 dataset, including 95 upregulated and 71 downregulated genes. Enrichment analysis indicated that DEGs were significantly enriched in inflammatory or immune-related process. Among these DEGs, 15 risk-related genes were recognized and further validated in the GSE119600 cohort. Then, TXNIP, CD44, ENTPD1, and PDGFRB were identified as candidate hub genes. Finally, we proceeded to the next screening with these four genes in our serum samples and developed a three-gene panel. The gene panel could effectively identify those patients at risk of disease progression, yielding an AUC of 0.777 (95% CI, 0.657-0.870). CONCLUSIONS In summary, combining bioinformatics analysis and experiment validation, we identified TXNIP, CD44, and ENTPD1 as promising biomarkers for risk stratification in PBC patients.
Collapse
Affiliation(s)
- Siyuan Tian
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yinan Hu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Miao Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Kemei Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Guanya Guo
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Bo Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| | - Yulong Shang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| | - Ying Han
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
9
|
Lübbering D, Preti M, Schlott L, Schultheiß C, Weidemann S, Lohse AW, Binder M, Carambia A, Herkel J. Autoantigen-selected B cells are bystanders in spontaneous T cell-driven experimental autoimmune hepatitis. Immunology 2023; 170:214-229. [PMID: 37243425 DOI: 10.1111/imm.13665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Autoreactive B cells are considered pathogenic drivers in many autoimmune diseases; however, it is not clear whether autoimmune B cells are invariably pathogenic or whether they can also arise as bystanders of T cell-driven autoimmune pathology. Here, we studied the B cell response in an autoantigen- and CD4+ T cell-driven model of autoimmune hepatitis (AIH), the Alb-iGP_Smarta mouse in which expression of a viral model antigen (GP) in hepatocytes and its recognition by GP-specific CD4+ T cells causes spontaneous AIH-like disease. T cell-driven AIH in Alb-iGP_Smarta mice was marked by autoantibodies and hepatic infiltration of plasma cells and B cells, particularly of isotype-switched memory B cells, indicating antigen-driven selection and activation. Immunosequencing of B cell receptor repertoires confirmed B cell expansion selectively in the liver, which was most likely driven by the hepatic GP model antigen, as indicated by branched networks of connected sequences and elevated levels of IgG antibodies to GP. However, intrahepatic B cells did not produce increased levels of cytokines and their depletion with anti-CD20 antibody did not alter the CD4+ T cell response in Alb-iGP_Smarta mice. Moreover, B cell depletion did not prevent spontaneous liver inflammation and AIH-like disease in Alb-iGP_Smarta mice. In conclusion, selection and isotype-switch of liver-infiltrating B cells was dependent on the presence of CD4+ T cells recognizing liver antigen. However, recognition of hepatic antigen by CD4+ T cells and CD4+ T cell-mediated hepatitis was not dependent on B cells. Thus, autoreactive B cells can be bystanders and need not be drivers of liver inflammation in AIH.
Collapse
Affiliation(s)
- David Lübbering
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Max Preti
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Schlott
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schultheiß
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Sören Weidemann
- Department of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W Lohse
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Antonella Carambia
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Herkel
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|