1
|
Zhuang Y, Ortega-Ribera M, Szabo G. Reply: Exercise greater caution in bile acid research. Hepatology 2024; 80:E73. [PMID: 39018556 DOI: 10.1097/hep.0000000000001017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Affiliation(s)
- Yuan Zhuang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
2
|
Wang XP, Mutchler SM, Carrisoza-Gaytan R, Nickerson AJ, Baty CJ, Al-Bataineh M, Vandevender A, Morimoto T, Srinivasan P, Tan RJ, Jurczak MJ, Satlin LM, Kashlan OB. Epithelial Na + Channel Activation after Bile Duct Ligation with Mineralocorticoid Receptor Blockade. J Am Soc Nephrol 2024; 35:1466-1477. [PMID: 38986682 DOI: 10.1681/asn.0000000000000442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Key Points
Bile acids activate the epithelial Na+ channel (ENaC), which may lead to subsequent fluid retention in liver disease.Bile duct ligation with spironolactone increased ENaC-dependent Na+ and fluid retention without hormone-linked increased ENaC abundance.Counteracting bile acid ENaC activation may be effective for treating fluid retention in liver disease.
Background
Sodium and fluid retention in liver disease is classically thought to result from reduced effective circulating volume and stimulation of the renin-angiotensin-aldosterone system. However, evidence of fluid retention in patients without renin-angiotensin-aldosterone system activation suggests the involvement of additional mechanisms. In vitro, bile acids activate the epithelial Na+ channel (ENaC) found in the aldosterone-sensitive distal nephron. If this occurs in vivo, ENaC may become activated in liver disease even with antagonism of aldosterone signaling.
Methods
To test this, we performed bile duct ligation to induce liver disease and increase circulating bile acids in mice given spironolactone to antagonize aldosterone signaling. We analyzed effects on blood, urine, and body composition. We also determined the effects of taurocholic acid, a primary conjugated bile acid elevated in liver disease, on ion fluxes in microperfused rabbit collecting ducts.
Results
Bile duct ligation increased benzamil-sensitive natriuresis compared with sham, indicating ENaC activation. These effects were not explained by effects on ENaC expression, cleavage, or localization. Bile duct–ligated mice also gained significantly more fluid than sham-operated animals. Blocking ENaC reversed fluid gains in bile duct–ligated mice but had no effect in shams. In dissected collecting ducts from rabbits, which express ENaC, taurocholic acid stimulated net Na+ absorption.
Conclusions
Our results provide experimental evidence for a novel aldosterone-independent mechanism for sodium and fluid retention in liver disease.
Collapse
Affiliation(s)
- Xue-Ping Wang
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephanie M Mutchler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Andrew J Nickerson
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Catherine J Baty
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mohammad Al-Bataineh
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amber Vandevender
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tetsuji Morimoto
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
- Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Priyanka Srinivasan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ossama B Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Ranchin B, Meaux MN, Freppel M, Ruiz M, De Mul A. Kidney and vascular involvement in Alagille syndrome. Pediatr Nephrol 2024:10.1007/s00467-024-06562-8. [PMID: 39446153 DOI: 10.1007/s00467-024-06562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Alagille syndrome (ALGS) is an autosomal dominant, multisystemic disease with a high interindividual variability. The two causative genes JAG1 and NOTCH2 are expressed during kidney development, can be reactivated during adulthood kidney disease, and Notch signalling is essential for vascular morphogenesis and remodelling in mice. Liver disease is the most frequent and severe involvement; neonatal cholestasis occurs in 85% of cases, pruritus in 74%, xanthomas in 24% of cases, and the cumulative incidences of portal hypertension and liver transplantation are 66% and 50% respectively at 18 years of age. Stenosis/hypoplasia of the branch pulmonary arteries is the most frequent vascular abnormality reported in ALGS. Kidney involvement is present in 38% of patients, and can reveal the disease. Congenital anomalies of the kidney and urinary tract is reported in 22% of patients, hyperchloremic acidosis in 9%, and glomerulopathy and/or proteinuria in 6%. A decreased glomerular filtration rate is reported in 10% of patients and is more frequent after liver transplantation for ALGS than for biliary atresia. Kidney failure has been frequently reported in childhood and adulthood. Renal artery stenosis and mid aortic syndrome have also frequently been reported, often associated with hypertension and stenosis and/or aneurysm of other large arteries. ALGS patients require kidney assessment at diagnosis, long-term monitoring of kidney function and early detection of vascular complications, notably if they have undergone liver transplantation, to prevent progression of chronic kidney disease and vascular complications, which account for 15% of deaths at a median age of 2.2 years in the most recent series.
Collapse
Affiliation(s)
- Bruno Ranchin
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.
| | - Marie-Noelle Meaux
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- Faculté de Médecine Lyon Est, Université de Lyon, Lyon, France
| | - Malo Freppel
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- Faculté de Médecine Lyon Est, Université de Lyon, Lyon, France
| | - Mathias Ruiz
- Service d'Hépato-gastroentérologie pédiatrique, Centre de Référence de l'atrésie des voies biliaires et des cholestases génétiques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Aurelie De Mul
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- Faculté de Médecine Lyon Est, Université de Lyon, Lyon, France
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université de Lyon, Lyon, France
| |
Collapse
|
4
|
Wannowius M, Neelen C, Lotz P, Daude M, Neubauer A, Fühler B, Diederich WE, Geyer J. Structure-Activity Relationships and Target Selectivity of Phenylsulfonylamino-Benzanilide Inhibitors Based on S1647 at the SLC10 Carriers ASBT, NTCP, and SOAT. J Med Chem 2024. [PMID: 39419503 DOI: 10.1021/acs.jmedchem.4c01743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The intestinal bile acid carrier ASBT (SLC10A2), the hepatic bile acid carrier NTCP (SLC10A1), and the steroid sulfate carrier SOAT (SLC10A6), all members of the solute carrier family SLC10, are established drug targets. The ASBT inhibitors odevixibat, maralixibat, and elobixibat are used to treat intrahepatic cholestasis, cholestatic pruritus, and obstipation. The peptide drug bulevirtide blocks binding of the hepatitis B and D viruses to NTCP and thereby inhibits the virus's entry into hepatocytes. Experimental SOAT inhibitors have antiproliferative effects on hormone-dependent breast cancer cells. The phenylsulfonylamino-benzanilide S1647 is an inhibitor of ASBT and SOAT. The present study aimed to comparatively analyze a set of newly synthesized and commercially available S1647 derivatives for their transport inhibition against ASBT, NTCP, and SOAT. Structure-activity relationships were systematically analyzed regarding potency and target specificity to elucidate whether this compound class is worth being further developed in preclinical studies for pharmacological ASBT, NTCP, and/or SOAT inhibition.
Collapse
Affiliation(s)
- Marie Wannowius
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Biomedical Research Center Seltersberg (BFS), Justus Liebig University of Giessen, Schubertstr. 81, Giessen 35392, Germany
| | - Christopher Neelen
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Biomedical Research Center Seltersberg (BFS), Justus Liebig University of Giessen, Schubertstr. 81, Giessen 35392, Germany
| | - Philipp Lotz
- Department of Medicinal Chemistry and Core Facility Medicinal Chemistry, Center for Tumor- and Immune Biology, Philipps University Marburg, Hans-Meerwein-Str. 3, Marburg 35043, Germany
| | - Michael Daude
- Department of Medicinal Chemistry and Core Facility Medicinal Chemistry, Center for Tumor- and Immune Biology, Philipps University Marburg, Hans-Meerwein-Str. 3, Marburg 35043, Germany
| | - Anita Neubauer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Biomedical Research Center Seltersberg (BFS), Justus Liebig University of Giessen, Schubertstr. 81, Giessen 35392, Germany
| | - Bärbel Fühler
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Biomedical Research Center Seltersberg (BFS), Justus Liebig University of Giessen, Schubertstr. 81, Giessen 35392, Germany
| | - Wibke E Diederich
- Department of Medicinal Chemistry and Core Facility Medicinal Chemistry, Center for Tumor- and Immune Biology, Philipps University Marburg, Hans-Meerwein-Str. 3, Marburg 35043, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Biomedical Research Center Seltersberg (BFS), Justus Liebig University of Giessen, Schubertstr. 81, Giessen 35392, Germany
| |
Collapse
|
5
|
Li T, Chiang JYL. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol Rev 2024; 76:1221-1253. [PMID: 38977324 DOI: 10.1124/pharmrev.124.000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
6
|
Li M, Ge Y, Wang J, Chen W, Li J, Deng Y, Xie W. Impact of albumin infusion on prognosis in ICU patients with cirrhosis and AKI: insights from the MIMIC-IV database. Front Pharmacol 2024; 15:1467752. [PMID: 39434907 PMCID: PMC11491358 DOI: 10.3389/fphar.2024.1467752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Background Acute kidney injury (AKI) is common in cirrhotic patients, especially in the intensive care unit (ICU), and is often associated with poor prognosis. Albumin is often used for plasma volume expansion, but its efficacy in cirrhotic patients with AKI [excluding hepatorenal syndrome (HRS)] is debated. This study aimed to assess the impact of albumin therapy on prognosis in ICU patients with cirrhosis and non-HRS AKI. Methods A retrospective analysis was conducted using the MIMIC-IV 2.2 database. The primary endpoint was 28-day mortality. Inverse probability of treatment weighting (IPTW) was used to balance baseline characteristics between the albumin and non-albumin groups. Results A total of 1,623 patients were included, with 586 receiving albumin. After IPTW, the sample sizes were 1,713 in the non-albumin group and 1,490 in the albumin group. Albumin administration was associated with higher rates of AKI recovery at 48 h but did not improve 28-day mortality in the overall cohort. Further analysis revealed that using 5% albumin concentration was associated with improved 28-day mortality (HR 0.68; 95% CI 0.49-0.95; p = 0.025), whereas 25% albumin did not show benefit. In patients with high bilirubin levels, albumin treatment significantly reduced 28-day mortality. However, albumin therapy may increase 28-day mortality in certain subgroups, including patients with chronic kidney disease and baseline albumin levels >3.3 g/dL. Conclusion Although albumin therapy improved 28-day mortality in some cases, it may also increase mortality in certain subgroups. The use of albumin in critically ill patients with cirrhosis and AKI should be approached with greater consideration of its risks and benefits.
Collapse
Affiliation(s)
- Mengqi Li
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yidi Ge
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jingjing Wang
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wenya Chen
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jiashuo Li
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - You Deng
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wen Xie
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Pinon M, Kamath BM. What's new in pediatric genetic cholestatic liver disease: advances in etiology, diagnostics and therapeutic approaches. Curr Opin Pediatr 2024; 36:524-536. [PMID: 38957097 DOI: 10.1097/mop.0000000000001380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW To highlight recent advances in pediatric cholestatic liver disease, including promising novel prognostic markers and new therapies. FINDINGS Additional genetic variants associated with the progressive familial intrahepatic cholestasis (PFIC) phenotype and new genetic cholangiopathies, with an emerging role of ciliopathy genes, are increasingly being identified. Genotype severity predicts outcomes in bile salt export pump (BSEP) deficiency, and post-biliary diversion serum bile acid levels significantly affect native liver survival in BSEP and progressive familial intrahepatic cholestasis type 1 (FIC1 deficiency) patients. Heterozygous variants in the MDR3 gene have been associated with various cholestatic liver disease phenotypes in adults. Ileal bile acid transporter (IBAT) inhibitors, approved for pruritus in PFIC and Alagille Syndrome (ALGS), have been associated with improved long-term quality of life and event-free survival. SUMMARY Next-generation sequencing (NGS) technologies have revolutionized diagnostic approaches, while discovery of new intracellular signaling pathways show promise in identifying therapeutic targets and personalized strategies. Bile acids may play a significant role in hepatic damage progression, suggesting their monitoring could guide cholestatic liver disease management. IBAT inhibitors should be incorporated early into routine management algorithms for pruritus. Data are emerging as to whether IBAT inhibitors are impacting disease biology and modifying the natural history of the cholestasis.
Collapse
Affiliation(s)
- Michele Pinon
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | |
Collapse
|
8
|
Li Y, Pang S, Guo H, Yang S. The renal apical sodium-dependent bile acid transporter expression rescue attenuates renal damage in diabetic nephropathy via farnesoid X receptor activation. Nephrology (Carlton) 2024; 29:627-635. [PMID: 38925891 DOI: 10.1111/nep.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/28/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
AIM Bile acids (BA) function as signalling molecules regulating glucose-lipid homeostasis and energy expenditure. However, the expression of the apical sodium-dependent bile acid transporter (ASBT) in the kidney, responsible for renal BA reabsorption, is downregulated in patients with diabetic kidney disease (DKD). Using the db/db mouse model of DKD, this study aimed to investigate the effects of rescuing ASBT expression via adeno-associated virus-mediated delivery of ASBT (AAVASBT) on kidney protection. METHODS Six-week-old male db/db mice received an intraparenchymal injection of AAVASBT at a dose of 1 × 1011 viral genomes (vg)/animal and were subsequently fed a chow diet for 2 weeks. Male db/m mice served as controls. For drug treatment, daily intraperitoneal (i.p.) injections of the farnesoid X receptor (FXR) antagonist guggulsterone (GS, 10 mg/kg) were administered one day after initiating the experiment. RESULTS AAVASBT treatment rescued renal ASBT expression and reduced the urinary BA output in db/db mice. AAVASBT treatment activated kidney mitochondrial biogenesis and ameliorated renal impairment associated with diabetes by activating FXR. In addition, the injection of FXR antagonist GS in DKD mice would reverse these beneficial effects by AAVASBT treatment. CONCLUSION Our work indicated that restoring renal ASBT expression slowed the course of DKD via activating FXR. FXR activation stimulates mitochondrial biogenesis while reducing renal oxidative stress and lipid build up, indicating FXR activation's crucial role in preventing DKD. These findings further suggest that the maintenance of renal BA reabsorption could be a viable treatment for DKD.
Collapse
Affiliation(s)
- Youmei Li
- Department of Endocrinology, Jinan Central Hospital, Shandong University, Jinan, China
- Department of Endocrinology, Changqing District People's Hospital, Jinan, China
| | - Shuguang Pang
- Department of Endocrinology, Jinan Central Hospital, Shandong University, Jinan, China
- Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Clinical Medicine, Weifang Medical College, Weifang, China
| | - Honggang Guo
- Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Shuo Yang
- Department of Clinical Medicine, Weifang Medical College, Weifang, China
| |
Collapse
|
9
|
González D, Campos G, Pütter L, Friebel A, Holland CH, Holländer L, Ghallab A, Hobloss Z, Myllys M, Hoehme S, Meindl-Beinker NM, Dooley S, Marchan R, Weiss TS, Hengstler JG, Godoy P. Role of WISP1 in Stellate Cell Migration and Liver Fibrosis. Cells 2024; 13:1629. [PMID: 39404393 PMCID: PMC11475959 DOI: 10.3390/cells13191629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
The mechanisms underlying the remarkable capacity of the liver to regenerate are still not completely understood. Particularly, the cross-talk between cytokines and cellular components of the process is of utmost importance because they represent potential avenues for diagnostics and therapeutics. WNT1-inducible-signaling pathway protein 1 (WISP1) is a cytokine member of the CCN family, a family of proteins that play many different roles in liver pathophysiology. WISP1 also belongs to the earliest and strongest upregulated genes in mouse livers after CCl4 intoxication and has recently been shown to be secreted by tumor cells and to bind to type 1 collagen to cause its linearization in vitro and in tumor tissue in vivo. We show that WISP1 expression is strongly induced by TGFβ, a critical cytokine in wound healing processes. Additionally, secretion of WISP1 protein by hepatic stellate is increased in cells upon TGFβ stimulation (~seven-fold increase). Furthermore, WISP1 facilitates the migration of mouse hepatic stellate cells through collagen in vitro. However, in WISP1 knockout mice, no difference in stellate cell accumulation in damaged liver tissue and no influence on fibrosis was obtained, probably because the knockout of WISP1 was compensated by other factors in vivo.
Collapse
Affiliation(s)
- Daniela González
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
| | - Gisela Campos
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
| | - Larissa Pütter
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
| | - Adrian Friebel
- Interdisciplinary Centre for Bioinformatics (IZBI) & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16–18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Christian H. Holland
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
| | - Leonhard Holländer
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
| | - Ahmed Ghallab
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
- Department of Forensic and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Zaynab Hobloss
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
| | - Maiju Myllys
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
| | - Stefan Hoehme
- Interdisciplinary Centre for Bioinformatics (IZBI) & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16–18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Nadja M. Meindl-Beinker
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (N.M.M.-B.); (S.D.)
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (N.M.M.-B.); (S.D.)
| | - Rosemarie Marchan
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
| | - Thomas S. Weiss
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Jan G. Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
| | - Patricio Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
| |
Collapse
|
10
|
Kuhn M, Hassan R, González D, Myllys M, Hobloss Z, Degen GH, Humpf HU, Hengstler JG, Cramer B, Ghallab A. Role of albumin in the metabolism and excretion of ochratoxin A. Mycotoxin Res 2024; 40:433-445. [PMID: 38743341 DOI: 10.1007/s12550-024-00538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
Ochratoxin A (OTA) is known to be strongly bound to serum albumin, but it remains unknown how albumin affects its metabolism and kinetics. To close this gap, we used a mouse model, where heterozygous albumin deletion reduces serum albumin to concentrations similar to hypoalbuminemic patients and completely eliminates albumin by a homozygous knockout. OTA and its potential metabolites (OTα, 4-OH-OTA, 7'-OH-OTA, OTHQ, OP-OTA, OTB-GSH, OTB-NAC, OTB) were time-dependently analyzed in plasma, bile, and urine by LC-MS/MS and were compared to previously published hepatotoxicity and nephrotoxicity data. Homozygous albumin deletion strongly accelerated plasma clearance as well as biliary and urinary excretion of the parent compound and its hydroxylation products. Decreasing albumin in mice by the heterozygous and even more by the homozygous knockout leads to an increase in the parent compound in urine which corresponded to increased nephrotoxicity. The role of albumin in OTA-induced hepatotoxicity is more complex, since heterozygous but not homozygous nor wild-type mice showed a strong biliary increase in the toxic open lactone OP-OTA. Correspondingly, OTA-induced hepatotoxicity was higher in heterozygous than in wild-type and homozygous animals. We present evidence that albumin-mediated retention of OTA in hepatocytes is required for formation of the toxic OP-OTA, while complete albumin elimination leads to rapid biliary clearance of OTA from hepatocytes with less formation of OP-OTA. In conclusion, albumin has a strong influence on metabolism and toxicity of OTA. In hypoalbuminemia, the parent OTA is associated with increased nephrotoxicity and the open lactone with increased hepatotoxicity.
Collapse
Affiliation(s)
- Michael Kuhn
- Institute of Food Chemistry, University Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Daniela González
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Zaynab Hobloss
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Gisela H Degen
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.
| | - Benedikt Cramer
- Institute of Food Chemistry, University Münster, Corrensstr. 45, 48149, Münster, Germany.
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt.
| |
Collapse
|
11
|
Luo Z, Zhou W, Xie T, Xu W, Shi C, Xiao Z, Si Y, Ma Y, Ren Q, Di L, Shan J. The role of botanical triterpenoids and steroids in bile acid metabolism, transport, and signaling: Pharmacological and toxicological implications. Acta Pharm Sin B 2024; 14:3385-3415. [PMID: 39220868 PMCID: PMC11365449 DOI: 10.1016/j.apsb.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 09/04/2024] Open
Abstract
Bile acids (BAs) are synthesized by the host liver from cholesterol and are delivered to the intestine, where they undergo further metabolism by gut microbes and circulate between the liver and intestines through various transporters. They serve to emulsify dietary lipids and act as signaling molecules, regulating the host's metabolism and immune homeostasis through specific receptors. Therefore, disruptions in BA metabolism, transport, and signaling are closely associated with cholestasis, metabolic disorders, autoimmune diseases, and others. Botanical triterpenoids and steroids share structural similarities with BAs, and they have been found to modulate BA metabolism, transport, and signaling, potentially exerting pharmacological or toxicological effects. Here, we have updated the research progress on BA, with a particular emphasis on new-found microbial BAs. Additionally, the latest advancements in targeting BA metabolism and signaling for disease treatment are highlighted. Subsequently, the roles of botanical triterpenoids in BA metabolism, transport, and signaling are examined, analyzing their potential pharmacological, toxicological, or drug interaction effects through these mechanisms. Finally, a research paradigm is proposed that utilizes the gut microbiota as a link to interpret the role of these important natural products in BA signaling.
Collapse
Affiliation(s)
- Zichen Luo
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tong Xie
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weichen Xu
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Shi
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihan Xiao
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Si
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qingling Ren
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Liuqing Di
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
12
|
Wang Y, Xu H, Zhou X, Chen W, Zhou H. Dysregulated bile acid homeostasis: unveiling its role in metabolic diseases. MEDICAL REVIEW (2021) 2024; 4:262-283. [PMID: 39135605 PMCID: PMC11317083 DOI: 10.1515/mr-2024-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/13/2024] [Indexed: 08/15/2024]
Abstract
Maintaining bile acid homeostasis is essential for metabolic health. Bile acid homeostasis encompasses a complex interplay between biosynthesis, conjugation, secretion, and reabsorption. Beyond their vital role in digestion and absorption of lipid-soluble nutrients, bile acids are pivotal in systemic metabolic regulation. Recent studies have linked bile acid dysregulation to the pathogenesis of metabolic diseases, including obesity, type 2 diabetes mellitus (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD). Bile acids are essential signaling molecules that regulate many critical biological processes, including lipid metabolism, energy expenditure, insulin sensitivity, and glucose metabolism. Disruption in bile acid homeostasis contributes to metabolic disease via altered bile acid feedback mechanisms, hormonal dysregulation, interactions with the gut microbiota, and changes in the expression and function of bile acid transporters and receptors. This review summarized the essential molecular pathways and regulatory mechanisms through which bile acid dysregulation contributes to the pathogenesis and progression of obesity, T2DM, and MASLD. We aim to underscore the significance of bile acids as potential diagnostic markers and therapeutic agents in the context of metabolic diseases, providing insights into their application in translational medicine.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond Veterans Affairs Medical Center, Richmond, VA, USA
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Huangru Xu
- School of Life Science, Nanjing University, Nanjing, Jiangsu, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weidong Chen
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond Veterans Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
13
|
Sutton H, Sokol RJ, Kamath BM. IBAT inhibitors in pediatric cholestatic liver diseases: Transformation on the horizon? Hepatology 2024:01515467-990000000-00979. [PMID: 39052914 DOI: 10.1097/hep.0000000000001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Historically, the therapeutic options available to hepatologists managing cholestasis have been limited. Apart from bile acid--binding resins and the choleretic ursodeoxycholic acid, the medical management of cholestasis in children has been predominately focused on managing the complications of cholestasis, namely pruritus, malnutrition, fat-soluble vitamin deficiencies, and portal hypertension. As such, invasive surgical procedures such as biliary diversion and liver transplantation may become the only options for progressive and unremitting cases of cholestasis. Particularly in the pediatric population, where debilitating pruritus is a common indication for a liver transplant, effective anti-cholestatic medications have the potential to prolong native liver survival without the need for biliary diversion. Ileal bile acid transporter (IBAT) inhibitors are a relatively new class of drugs which that target the ileal re-uptake of bile acids, thus interrupting the enterohepatic circulation and reducing the total bile acid pool size and exposure of the liver. Oral, minimally absorbed IBAT inhibitors have been demonstrated to reduce serum bile acid levels and pruritus with a minimal side effect profile in clinical trials in Alagille Ssyndrome and progressive familial intrahepatic cholestasis, leading to FDA and EMA approval. The indications for IBAT inhibitors will likely expand in the coming years as clinical trials in other adult and pediatric cholestatic conditions are ongoing. This review will summarize the published clinical and pre-clinical data on IBAT inhibitors and offer providers guidance on their practical use.
Collapse
Affiliation(s)
- Harry Sutton
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Ronald J Sokol
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Binita M Kamath
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Hassan R, Hobloss Z, Myllys M, González D, Begher-Tibbe B, Reinders J, Friebel A, Hoehme S, Abdelmageed N, Abbas AA, Seddek AL, Morad SAF, Hengstler JG, Ghallab A. Acetaminophen overdose causes a breach of the blood-bile barrier in mice but not in rats. Arch Toxicol 2024; 98:1533-1542. [PMID: 38466352 DOI: 10.1007/s00204-024-03705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024]
Abstract
Acetaminophen (APAP) is known to cause a breach of the blood-bile barrier in mice that, via a mechanism called futile bile acid (BA) cycling, increases BA concentrations in hepatocytes above cytotoxic thresholds. Here, we compared this mechanism in mice and rats, because both species differ massively in their susceptibility to APAP and compared the results to available human data. Dose and time-dependent APAP experiments were performed in male C57BL6/N mice and Wistar rats. The time course of BA concentrations in liver tissue and in blood was analyzed by MALDI-MSI and LC-MS/MS. APAP and its derivatives were measured in the blood by LC-MS. APAP-induced liver damage was analyzed by histopathology, immunohistochemistry, and by clinical chemistry. In mice, a transient increase of BA in blood and in peri-central hepatocytes preceded hepatocyte death. The BA increase coincided with oxidative stress in liver tissue and a compromised morphology of bile canaliculi and immunohistochemically visualized tight junction proteins. Rats showed a reduced metabolic activation of APAP compared to mice. However, even at very high doses that caused cell death of hepatocytes, no increase of BA concentrations was observed neither in liver tissue nor in the blood. Correspondingly, no oxidative stress was detectable, and the morphology of bile canaliculi and tight junction proteins remained unaltered. In conclusion, different mechanisms cause cell death in rats and mice, whereby oxidative stress and a breach of the blood-bile barrier are seen only in mice. Since transient cholestasis also occurs in human patients with APAP overdose, mice are a clinically relevant species to study APAP hepatotoxicity but not rats.
Collapse
Affiliation(s)
- Reham Hassan
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Zaynab Hobloss
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Maiju Myllys
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Daniela González
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Brigitte Begher-Tibbe
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Joerg Reinders
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Adrian Friebel
- Institute of Computer Science &, Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107, Leipzig, Germany
| | - Stefan Hoehme
- Institute of Computer Science &, Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107, Leipzig, Germany
| | - Noha Abdelmageed
- Department of Pharmacology, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt
| | - Aya A Abbas
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Abdel-Latief Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Samy A F Morad
- Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Jan G Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.
| | - Ahmed Ghallab
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
15
|
Hassan R, Gerdemann A, Cramer B, Hobloss Z, Myllys M, González D, Albrecht W, Veerkamp J, Friebel A, Hoehme S, Esselen M, Degen GH, Humpf HU, Hengstler JG, Ghallab A. Integrated data from intravital imaging and HPLC-MS/MS analysis reveal large interspecies differences in AFB 1 metabolism in mice and rats. Arch Toxicol 2024; 98:1081-1093. [PMID: 38436695 DOI: 10.1007/s00204-024-03688-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Large interspecies differences between rats and mice concerning the hepatotoxicity and carcinogenicity of aflatoxin B1 (AFB1) are known, with mice being more resistant. However, a comprehensive interspecies comparison including subcellular liver tissue compartments has not yet been performed. In this study, we performed spatio-temporal intravital analysis of AFB1 kinetics in the livers of anesthetized mice and rats. This was supported by time-dependent analysis of the parent compound as well as metabolites and adducts in blood, urine, and bile of both species by HPLC-MS/MS. The integrated data from intravital imaging and HPLC-MS/MS analysis revealed major interspecies differences between rats and mice: (1) AFB1-associated fluorescence persisted much longer in the nuclei of rat than mouse hepatocytes; (2) in the sinusoidal blood, AFB1-associated fluorescence was rapidly cleared in mice, while a time-dependent increase was observed in rats in the first three hours after injection followed by a plateau that lasted until the end of the observation period of six hours; (3) this coincided with a far stronger increase of AFB1-lysine adducts in the blood of rats compared to mice; (4) the AFB1-guanine adduct was detected at much higher concentrations in bile and urine of rats than mice. In both species, the AFB1-glutathione conjugate was efficiently excreted via bile, where it reached concentrations at least three orders of magnitude higher compared to blood. In conclusion, major differences between mice and rats were observed, concerning the nuclear persistence, formation of AFB1-lysine adducts, and the AFB1-guanine adducts.
Collapse
Affiliation(s)
- Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Andrea Gerdemann
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Munster, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Munster, Germany
| | - Zaynab Hobloss
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139, Dortmund, Germany
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139, Dortmund, Germany
| | - Daniela González
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139, Dortmund, Germany
| | - Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139, Dortmund, Germany
| | - Jannik Veerkamp
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Munster, Germany
| | - Adrian Friebel
- Institute of Computer Science and Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107, Leipzig, Germany
| | - Stefan Hoehme
- Institute of Computer Science and Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107, Leipzig, Germany
| | - Melanie Esselen
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Munster, Germany
| | - Gisela H Degen
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139, Dortmund, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Munster, Germany.
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139, Dortmund, Germany.
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139, Dortmund, Germany.
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
16
|
Trampert DC, Kunst RF, van de Graaf SFJ. Targeting bile salt homeostasis in biliary diseases. Curr Opin Gastroenterol 2024; 40:62-69. [PMID: 38230695 DOI: 10.1097/mog.0000000000000997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
PURPOSE OF REVIEW Advances in the understanding of bile salt synthesis, transport and signalling show the potential of modulating bile salt homeostasis as a therapeutic strategy in cholestatic liver diseases. Here, recent developments in (pre)clinical research in this field is summarized and discussed. RECENT FINDINGS Inhibition of the apical sodium-dependent bile salt transporter (ASBT) and Na + -taurocholate cotransporting polypeptide (NTCP) seems effective against cholestatic liver diseases, as well as Farnesoid X receptor (FXR) agonism or a combination of both. While approved for the treatment of primary biliary cholangitis (PBC) and intrahepatic cholestasis of pregnancy (ICP), ursodeoxycholic acid (UDCA) has retrospectively shown carefully promising results in primary sclerosing cholangitis (PSC). The side chain shortened derivate norUDCA is of further therapeutic interest since its mechanisms of action are independent of the bile salt transport machinery. In the pathogenesis of sclerosing cholangiopathies, a skewed T-cell response with alterations in gut microbiota and bile salt pool compositions are observed. In PSC pathogenesis, the bile salt receptor Takeda G-protein-coupled receptor 5 (TGR5) in cholangiocytes is implicated, whilst in immunoglobulin G4-related cholangitis the autoantigens annexin A11 and laminin 511-E8 are involved in protecting cholangiocytes. SUMMARY Modulating bile salt homeostasis has proven a promising treatment strategy in models of cholestasis and are continuously being further developed. Confirmatory clinical studies are needed in order to assess the proposed treatment strategies in patients allowing for a broader therapeutic arsenal in the future.
Collapse
Affiliation(s)
- David C Trampert
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam University Medical Centers
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Roni F Kunst
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam University Medical Centers
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam University Medical Centers
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Velez JCQ, Latt N, Rodby RA. Pathophysiology of Hepatorenal Syndrome. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:87-99. [PMID: 38649221 DOI: 10.1053/j.akdh.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 04/25/2024]
Abstract
Hepatorenal syndrome type 1 (HRS-1) is a unique form of acute kidney injury that affects individuals with decompensated cirrhosis with ascites. The primary mechanism leading to reduction of kidney function in HRS-1 is hemodynamic in nature. Cumulative evidence points to a cascade of events that led to a profound reduction in kidney perfusion. A state of increased intrahepatic vascular resistance characteristic of advanced cirrhosis and portal hypertension is accompanied by maladaptive peripheral arterial vasodilation and reduction in systemic vascular resistance and mean arterial pressure. As a result of a fall in effective arterial blood volume, there is a compensatory activation of the sympathetic nervous system and the renin-angiotensin system, local renal vasoconstriction, loss of renal autoregulation, decrease in renal blood flow, and ultimately a fall in glomerular filtration rate. Systemic release of nitric oxide stimulated by the fibrotic liver, bacterial translocation, and inflammation constitute key components of the pathogenesis. While angiotensin II and noradrenaline remain the critical mediators of renal arterial and arteriolar vasoconstriction, other novel molecules have been recently implicated. Although the above-described mechanistic pathway remains the backbone of the pathogenesis of HRS-1, other noxious elements may be present in advanced cirrhosis and likely contribute to the renal impairment. Direct liver-kidney crosstalk via the hepatorenal sympathetic reflex can further reduce renal blood flow independently of the systemic derangements. Tense ascites may lead to intraabdominal hypertension and abdominal compartment syndrome. Cardio-hemodynamic processes have also been increasingly recognized. Porto-pulmonary hypertension, cirrhotic cardiomyopathy, and abdominal compartment syndrome may lead to renal congestion and complicate the course of HRS-1. In addition, a degree of ischemic or toxic (cholemic) tubular injury may overlap with the underlying circulatory dysfunction and further exacerbate the course of acute kidney injury. Improving our understanding of the pathogenesis of HRS-1 may lead to improvements in therapeutic options for this seriously ill population.
Collapse
Affiliation(s)
- Juan Carlos Q Velez
- Department of Nephrology, Ochsner Health, New Orleans, LA; Ochsner Clinical School, The University of Queensland, Brisbane, QLD, Australia.
| | - Nyan Latt
- Virtua Center for Liver Disease, Virtua Health, Toms River, NJ
| | - Roger A Rodby
- Division of Nephrology, Rush University School of Medicine, Chicago, IL
| |
Collapse
|
18
|
Yang J, Pontoglio M, Terzi F. Bile Acids and Farnesoid X Receptor in Renal Pathophysiology. Nephron Clin Pract 2024; 148:618-630. [PMID: 38412845 DOI: 10.1159/000538038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Bile acids (BAs) act not only as lipids and lipid-soluble vitamin detergents but also function as signaling molecules, participating in diverse physiological processes. The identification of BA receptors in organs beyond the enterohepatic system, such as the farnesoid X receptor (FXR), has initiated inquiries into their organ-specific functions. Among these organs, the kidney prominently expresses FXR. SUMMARY This review provides a comprehensive overview of various BA species identified in kidneys and delves into the roles of renal apical and basolateral BA transporters. Furthermore, we explore changes in BAs and their potential implications for various renal diseases, particularly chronic kidney disease. Lastly, we center our discussion on FXR, a key BA receptor in the kidney and a potential therapeutic target for renal diseases, providing current insights into the protective mechanisms associated with FXR agonist treatments. KEY MESSAGES Despite the relatively low concentrations of BAs in the kidney, their presence is noteworthy, with rodents and humans exhibiting distinct renal BA compositions. Renal BA transporters efficiently facilitate either reabsorption into systemic circulation or excretion into the urine. However, adaptive changes in BA transporters are evident during cholestasis. Various renal diseases are accompanied by alterations in BA concentrations and FXR expression. Consequently, the activation of FXR in the kidney could be a promising target for mitigating kidney damage.
Collapse
Affiliation(s)
- Jiufang Yang
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France,
| | - Marco Pontoglio
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France
| | - Fabiola Terzi
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France
| |
Collapse
|