1
|
Hamilton MI, Copeland SR, Nelson SV. A reanalysis of strontium isotope ratios as indicators of dispersal in South African hominins. J Hum Evol 2024; 187:103480. [PMID: 38159536 DOI: 10.1016/j.jhevol.2023.103480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Dispersal patterns in primates have major implications for behavior and sociality but are difficult to reconstruct for fossil species. This study applies novel strontium isotope methodologies that have reliably predicted philopatry and dispersal patterns in chimpanzees and other modern primates to previously published strontium isotope ratios (87Sr/86Sr) of two South African hominins, Australopithecus africanus and Australopithecus robustus. In this study, the difference or 'offset' was calculated between the 87Sr/86Sr of each fossil tooth compared to local bioavailable 87Sr/86Sr as defined by cluster analysis of modern plant isotope ratios. Large teeth (presumably belonging to males) have low offsets from local 87Sr/86Sr proxies, while small teeth (presumably from females) have greater offsets from local 87Sr/86Sr proxies. This supports previous conclusions of male philopatry and female dispersal in both A. africanus and A. robustus. Furthermore, A. robustus shows more extreme differences between presumed males and females compared to A. africanus. This is analogous to differences seen in modern olive baboons compared to chimpanzees and suggests that A. africanus may have had a larger home range than A. robustus. Neither hominin species has 87Sr/86Sr consistent with riparian habitat preferences despite the demonstrated presence of riparian habitats in South Africa at the time.
Collapse
Affiliation(s)
- Marian I Hamilton
- University of New Mexico, Department of Anthropology, MSC01-1040 1, Albuquerque, NM, 87131, USA; University of Northern Colorado, Department of Anthropology, Candelaria Hall 2200, Campus Box 90, Greeley, CO, 80639, USA.
| | - Sandi R Copeland
- Environmental Stewardship Group, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA
| | - Sherry V Nelson
- University of New Mexico, Department of Anthropology, MSC01-1040 1, Albuquerque, NM, 87131, USA
| |
Collapse
|
2
|
Townsend C, Ferraro JV, Habecker H, Flinn MV. Human cooperation and evolutionary transitions in individuality. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210414. [PMID: 36688393 PMCID: PMC9869453 DOI: 10.1098/rstb.2021.0414] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/31/2022] [Indexed: 01/24/2023] Open
Abstract
A major evolutionary transition in individuality involves the formation of a cooperative group and the transformation of that group into an evolutionary entity. Human cooperation shares principles with those of multicellular organisms that have undergone transitions in individuality: division of labour, communication, and fitness interdependence. After the split from the last common ancestor of hominoids, early hominins adapted to an increasingly terrestrial niche for several million years. We posit that new challenges in this niche set in motion a positive feedback loop in selection pressure for cooperation that ratcheted coevolutionary changes in sociality, communication, brains, cognition, kin relations and technology, eventually resulting in egalitarian societies with suppressed competition and rapid cumulative culture. The increasing pace of information innovation and transmission became a key aspect of the evolutionary niche that enabled humans to become formidable cooperators with explosive population growth, the ability to cooperate and compete in groups of millions, and emergent social norms, e.g. private property. Despite considerable fitness interdependence, the rise of private property, in concert with population explosion and socioeconomic inequality, subverts potential transition of human groups into evolutionary entities due to resurgence of latent competition and conflict. This article is part of the theme issue 'Human socio-cultural evolution in light of evolutionary transitions'.
Collapse
Affiliation(s)
- Cathryn Townsend
- Department of Anthropology, Baylor University, Waco, TX 76798-7334, USA
| | - Joseph V. Ferraro
- Department of Anthropology, Baylor University, Waco, TX 76798-7334, USA
| | - Heather Habecker
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798-7334, USA
| | - Mark V. Flinn
- Department of Anthropology, Baylor University, Waco, TX 76798-7334, USA
| |
Collapse
|
3
|
Sillen A. 87Sr/86Sr in Archeological and Paleobiological Research: A Perspective. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.632681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The stable isotope ratio 87Sr/86Sr has been shown to have extraordinary potential for documenting the movement and life-histories of humans and other animals, both in history and prehistory. Thirty years of expanding applications has taken the method from a niche (if not fringe) approach to a normal part of archeological and paleobiological enquiry; indeed a “Golden Age.” The technique is inherently interdisciplinary, because in addition to those archeologists and paleobiologists wishing to apply it, most applications require informed input from ecologists, geochemists, and calcified tissue biologists. This perspective explores how such interdisciplinarity is both a strength and an impediment to further advancement.
Collapse
|
4
|
Hamilton MI, Fernandez DP, Nelson SV. Using strontium isotopes to determine philopatry and dispersal in primates: a case study from Kibale National Park. ROYAL SOCIETY OPEN SCIENCE 2021; 8:200760. [PMID: 33972840 PMCID: PMC8074638 DOI: 10.1098/rsos.200760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Strontium isotope ratios (87Sr/86Sr) allow researchers to track changes in mobility throughout an animal's life and could theoretically be used to reconstruct sex-biases in philopatry and dispersal patterns in primates. Dispersal patterns are a life-history variable that correlate with numerous aspects of behaviour and socio-ecology that are elusive in the fossil record. The present study demonstrates that the standard archaeological method used to differentiate between 'local' and 'non-local' individuals, which involves comparing faunal isotopic ratios with environmental isotopic minima and maxima, is not always reliable; aspects of primate behaviour, local environments, geologic heterogeneity and the availability of detailed geologic maps may compromise its utility in certain situations. This study instead introduces a different methodological approach: calculating offset values to compare 87Sr/86Sr of teeth with that of bone or local environments. We demonstrate this method's effectiveness using data from five species of primates, including chimpanzees, from Kibale National Park, Uganda. Tooth-to-bone offsets reliably indicate sex-biases in dispersal for primates with small home ranges while tooth-to-environment offset comparisons are more reliable for primates with larger home ranges. Overall, tooth-to-environment offsets yield the most reliable predictions of species' sex-biases in dispersal.
Collapse
Affiliation(s)
- Marian I. Hamilton
- Department of Anthropology, University of Northern Colorado, Greeley, CO, 80639-6900, USA
- Department of Anthropology, University of New Mexico, Albuquerque, NM, 87111, USA
| | - Diego P. Fernandez
- Department of Geology and Geochemistry, University of Utah, Salt Lake City, UT, USA
| | - Sherry V. Nelson
- Department of Anthropology, University of New Mexico, Albuquerque, NM, 87111, USA
| |
Collapse
|
5
|
Monthly mobility inferred from isoscapes and laser ablation strontium isotope ratios in caprine tooth enamel. Sci Rep 2021; 11:2277. [PMID: 33500495 PMCID: PMC7838167 DOI: 10.1038/s41598-021-81923-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/13/2021] [Indexed: 01/30/2023] Open
Abstract
Strontium isotopic analysis of sequentially formed tissues, such as tooth enamel, is commonly used to study provenance and mobility of humans and animals. However, the potential of 87Sr/86Sr in tooth enamel to track high-frequency movements has not yet been established, in part due to the lack of data on modern animals of known movement and predictive model of isotope variation across the landscape. To tackle this issue, we measured the 87Sr/86Sr in plant samples taken from a 2000 km2 area in the Altai Mountains (Mongolia), and the 87Sr/86Sr in tooth enamel of domestic caprines whose mobility was monitored using GPS tracking. We show that high-resolution, sequential profiles of strontium isotope composition of tooth enamel reliably reflect the high-frequency mobility of domestic livestock and that short-term residency of about 45 days can be resolved. This offers new perspectives in various disciplines, including forensics, ecology, palaeoanthropology, and bioarchaeology.
Collapse
|
6
|
Dean C, Zanolli C, Le Cabec A, Tawane M, Garrevoet J, Mazurier A, Macchiarelli R. Growth and development of the third permanent molar in Paranthropus robustus from Swartkrans, South Africa. Sci Rep 2020; 10:19053. [PMID: 33149180 PMCID: PMC7642444 DOI: 10.1038/s41598-020-76032-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 11/24/2022] Open
Abstract
Third permanent molars (M3s) are the last tooth to form but have not been used to estimate age at dental maturation in early fossil hominins because direct histological evidence for the timing of their growth has been lacking. We investigated an isolated maxillary M3 (SK 835) from the 1.5 to 1.8-million-year-old (Mya) site of Swartkrans, South Africa, attributed to Paranthropus robustus. Tissue proportions of this specimen were assessed using 3D X-ray micro-tomography. Thin ground sections were used to image daily growth increments in enamel and dentine. Transmitted light microscopy and synchrotron X-ray fluorescence imaging revealed fluctuations in Ca concentration that coincide with daily growth increments. We used regional daily secretion rates and Sr marker-lines to reconstruct tooth growth along the enamel/dentine and then cementum/dentine boundaries. Cumulative growth curves for increasing enamel thickness and tooth height and age-of-attainment estimates for fractional stages of tooth formation differed from those in modern humans. These now provide additional means for assessing late maturation in early hominins. M3 formation took ≥ 7 years in SK 835 and completion of the roots would have occurred between 11 and 14 years of age. Estimated age at dental maturation in this fossil hominin compares well with what is known for living great apes.
Collapse
Affiliation(s)
- Christopher Dean
- Department of Earth Sciences, Natural History Museum, London, UK. .,Department of Cell and Developmental Biology, University College London, London, UK.
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, 33600 Pessac, France.,Department of Maxillofacial and Oral Surgery, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, South Africa
| | - Adeline Le Cabec
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, 33600 Pessac, France.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mirriam Tawane
- Ditsong National Museum of Natural History, Pretoria, South Africa
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Arnaud Mazurier
- IC2MP, UMR 7285 CNRS, Université de Poitiers, Poitiers, France
| | - Roberto Macchiarelli
- UMR 7194 CNRS, Muséum National D'Histoire Naturelle, Musée de L'Homme, Paris, France.,Unité de Formation Géosciences, Université de Poitiers, Poitiers, France
| |
Collapse
|
7
|
Lobo L, Pereiro R, Fernández B. Opportunities and challenges of isotopic analysis by laser ablation ICP-MS in biological studies. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|