1
|
Gómez-Olivencia A, Arsuaga JL. The Sima de los Huesos thorax and lumbar spine: Selected traits and state-of-the-art. Anat Rec (Hoboken) 2024; 307:2465-2490. [PMID: 38450997 DOI: 10.1002/ar.25414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Information on the evolution of the thorax and lumbar spine in the genus Homo is hampered by a limited fossil record due to the inherent fragility of vertebrae and ribs. Neandertals show significant metric and morphological differences in these two anatomical regions, when compared to Homo sapiens. Thus, the important fossil record from the Middle Pleistocene site of Sima de los Huesos (SH) not only offers important information on the evolution of these anatomical regions within the Neandertal lineage but also provides important clues to understand the evolution of these regions at the genus level. We present the current knowledge of the costal skeleton, and the thoracic and lumbar spine anatomy of the hominins found in Sima de los Huesos compared to that of Neandertals and modern humans. The current SH fossil record comprises 738 vertebral specimens representing a minimum of 70 cervical, 95 thoracic and 47 lumbar vertebrae, 652 rib fragments representing a minimum of 118 ribs, and 26 sternal fragments representing 4 sterna. The SH hominins exhibit a morphological pattern in their thorax and lumbar spine more similar to that of Neandertals than to that of H. sapiens, which is consistent with the phylogenetic position of these hominins. However, there are some differences between the SH hominins and Neandertals in these anatomical regions, primarily in the orientation of the lumbar transverse processes and in the robusticity of the second ribs. The presence of some but not all of the suite of Neandertal-derived features is consistent with the pattern found in the cranium and other postcranial regions of this population.
Collapse
Affiliation(s)
- Asier Gómez-Olivencia
- Dept. Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
- Sociedad de Ciencias Aranzadi, Donostia-San Sebastián, Spain
- Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Madrid, Spain
| | - Juan Luis Arsuaga
- Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Madrid, Spain
- Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Rmoutilová R, Brůžek J, Gómez-Olivencia A, Madelaine S, Couture-Veschambre C, Holliday T, Maureille B. Sex estimation of the adult Neandertal Regourdou 1 (Montignac, France): Implications for sexing human fossil remains. J Hum Evol 2024; 189:103470. [PMID: 38552260 DOI: 10.1016/j.jhevol.2023.103470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 04/08/2024]
Abstract
Sex is a biological trait fundamental to the study of hominin fossils. Among the many questions that can be addressed are those related to taxonomy, biological variability, sexual dimorphism, paleoobstetrics, funerary selection, and paleodemography. While new methodologies such as paleogenomics or paleoproteomics can be used to determine sex, they have not been systematically applied to Pleistocene human remains due to their destructive nature. Therefore, we estimated sex from the coxal bone of the newly discovered pelvic remains of the Regourdou 1 Neandertal (Southwest France, MIS 5) based on morphological and metric data employing two methods that have been recently revised and shown to be reliable in multiple studies. Both methods calculate posterior probabilities of the estimate. The right coxal bone of Regourdou 1 was partially reconstructed providing additional traits for sex estimation. These methods were cross validated on 14 sufficiently preserved coxal bones of specimens from the Neandertal lineage. Our results show that the Regourdou 1 individual, whose postcranial skeleton is not robust, is a male, and that previous sex attributions of comparative Neandertal specimens are largely in agreement with those obtained here. Our results encourage additional morphological research of fossil hominins in order to develop a set of methods that are applicable, reliable, and reproducible.
Collapse
Affiliation(s)
- Rebeka Rmoutilová
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Viničná 7, 128 00, Prague, Czech Republic; University of Bordeaux, CNRS, MC, PACEA, UMR 5199, F-33600, Pessac, France; Hrdlicka Museum of Man, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czech Republic.
| | - Jaroslav Brůžek
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Viničná 7, 128 00, Prague, Czech Republic; University of Bordeaux, CNRS, MC, PACEA, UMR 5199, F-33600, Pessac, France
| | - Asier Gómez-Olivencia
- Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain; Sociedad de Ciencias Aranzadi, Donostia-San Sebastián, Spain; Centro UCM-ISCIII de Investigacion Sobre Evolución y Comportamiento Humanos, Madrid, Spain
| | - Stéphane Madelaine
- University of Bordeaux, CNRS, MC, PACEA, UMR 5199, F-33600, Pessac, France; Musée National de Préhistoire, 1 Rue Du Musée, 24620, Les Eyzies-de-Tayac Sireuil, France
| | | | - Trenton Holliday
- Tulane University, Department of Anthropology, 101 Dinwiddie Hall, New Orleans, LA, 70118, USA; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, Wits, 2050, RSA, South Africa
| | - Bruno Maureille
- University of Bordeaux, CNRS, MC, PACEA, UMR 5199, F-33600, Pessac, France
| |
Collapse
|
3
|
Arlegi M, García‐Sagastibelza A, Veschambre‐Couture C, Gómez‐Olivencia A. Sexual dimorphism in the first rib of Homo sapiens. J Anat 2022; 240:959-971. [PMID: 34796481 PMCID: PMC9005670 DOI: 10.1111/joa.13594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022] Open
Abstract
This work aimed to study sexual dimorphism in the first rib of modern humans, with a special focus on whether differences in shape are due to divergent allometric growth in males and females. Also, we compare the accuracy of sex classification using different approaches based on two methodologies, traditional morphometry based on linear measurements and geometric morphometric analysis based on 2D landmark coordinates. The sample studied here comprised 121 right and left first ribs from 65 female and male adult recent Euro-American Homo sapiens individuals. For traditional morphometrics, 12 metric variables were collected from each rib using a digital caliper, and for geometric morphometrics, six landmarks and 31 semilandmarks were captured from photographs using digital software. Both geometric morphometric and metric data were analyzed to calculate the index of sexual dimorphism, variation related to lateral asymmetry, variation in size and shape, and allometric trends between males and females. Finally, a linear discriminant analysis (LDA) was performed comparing both methodologies to test the best approach for sex classification. Results indicated that there are significant sex differences in the size and shape of the first ribs of recent Euro-American Homo sapiens. Regression analysis revealed different allometric patterns for males and females, and this could partially explain shape differences between sexes. Additionally, traditional morphometrics showed that all characteristics analyzed are significantly dimorphic, with the midshaft minimum craniocaudal diameter, the sternal end minimum diameter, and the neck minimum craniocaudal diameter displaying the most dimorphic scores. Similarly, geometric morphometrics results indicated that males have more curved and interno-exteriorly wider first ribs. Finally, analysis of sex classification using LDA yielded slightly better accuracy for traditional morphometry (83.8%) than the geometric morphometrics approach (81.3%) based on form Procrustes coordinates. This study demonstrates the usefulness of applying two different morphometric approaches to obtain more comprehensive results.
Collapse
Affiliation(s)
- Mikel Arlegi
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES‐CERCA)TarragonaSpain
- Departament d’Història i Història de l’ArtUniversitat Rovira i VirgiliTarragonaSpain
| | - Andrea García‐Sagastibelza
- Facultad de Ciencia y TecnologíaDepartamento de GeologíaUniversidad del País Vasco‐Euskal Herriko Unibertsitatea (UPV/EHU)LeioaSpain
- UMR 5199 PACEAUniversité de Bordeaux. Allée Geoffroy Saint HilairePessacFrance
| | | | - Asier Gómez‐Olivencia
- Facultad de Ciencia y TecnologíaDepartamento de GeologíaUniversidad del País Vasco‐Euskal Herriko Unibertsitatea (UPV/EHU)LeioaSpain
- Centro UCM‐ISCIII de Investigación sobre Evolución y Comportamiento HumanosMadridSpain
- Sociedad de Ciencias AranzadiDonostia‐San SebastiánSpain
| |
Collapse
|
4
|
Torres-Tamayo N, Schlager S, García-Martínez D, Sanchis-Gimeno JA, Nalla S, Ogihara N, Oishi M, Martelli S, Bastir M. Three-dimensional geometric morphometrics of thorax-pelvis covariation and its potential for predicting the thorax morphology: A case study on Kebara 2 Neandertal. J Hum Evol 2020; 147:102854. [PMID: 32805525 DOI: 10.1016/j.jhevol.2020.102854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 07/04/2020] [Accepted: 07/04/2020] [Indexed: 11/18/2022]
Abstract
The skeletal torso is a complex structure of outstanding importance in understanding human body shape evolution, but reconstruction usually entails an element of subjectivity as researchers apply their own anatomical expertise to the process. Among different fossil reconstruction methods, 3D geometric morphometric techniques have been increasingly used in the last decades. Two-block partial least squares analysis has shown great potential for predicting missing elements by exploiting the covariation between two structures (blocks) in a reference sample: one block can be predicted from the other one based on the strength of covariation between blocks. The first aim of this study is to test whether this predictive approach can be used for predicting thorax morphologies from pelvis morphologies within adult Homo sapiens reference samples with known covariation between the thorax and the pelvis. The second aim is to apply this method to Kebara 2 Neandertal (Israel, ∼60 ka) to predict its thorax morphology using two different pelvis reconstructions as predictors. We measured 134 true landmarks, 720 curve semilandmarks, and 160 surface semilandmarks on 60 3D virtual torso models segmented from CT scans. We conducted three two-block partial least squares analyses between the thorax (block 1) and the pelvis (block 2) based on the H. sapiens reference samples after performing generalized Procrustes superimposition on each block separately. Comparisons of these predictions in full shape space by means of Procrustes distances show that the male-only predictive model yields the most reliable predictions within modern humans. In addition, Kebara 2 thorax predictions based on this model concur with the thorax morphology proposed for Neandertals. The method presented here does not aim to replace other techniques, but to rather complement them through quantitative prediction of a virtual 'scaffold' to articulate the thoracic fossil elements, thus extending the potential of missing data estimation beyond the methods proposed in previous works.
Collapse
Affiliation(s)
- Nicole Torres-Tamayo
- Paleoanthropology Group, Museo Nacional de Ciencias Naturales (CSIC), J.G. Abascal 2, 28006, Madrid, Spain; GIAVAL Research Group, Department of Anatomy and Human Embryology, University of Valencia, Av. Blasco Ibanez, 15, E-46010, Valencia, Spain.
| | - Stefan Schlager
- Biological Anthropology, Faculty of Medicine, University of Freiburg, Hebelstr 29, D-79104, Freiburg, Germany
| | - Daniel García-Martínez
- Paleoanthropology Group, Museo Nacional de Ciencias Naturales (CSIC), J.G. Abascal 2, 28006, Madrid, Spain; Centro Nacional de Investigación Sobre La Evolución Humana (CENIEH), Avenida de La Sierra de Atapuerca 3, 09002, Burgos, Spain
| | - Juan Alberto Sanchis-Gimeno
- GIAVAL Research Group, Department of Anatomy and Human Embryology, University of Valencia, Av. Blasco Ibanez, 15, E-46010, Valencia, Spain
| | - Shahed Nalla
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, 2006, Gauteng, South Africa
| | - Naomichi Ogihara
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Motoharu Oishi
- Laboratory of Anatomy 1, School of Veterinary Medicine, Azabu University, Kanagawa, 252-5201, Japan
| | - Sandra Martelli
- UCL Centre for Integrative Anatomy (CIA), Department of Cell and Developmental Biology, Faculty of Life Sciences, Gower Street, WC1E 6BT, London, UK
| | - Markus Bastir
- Paleoanthropology Group, Museo Nacional de Ciencias Naturales (CSIC), J.G. Abascal 2, 28006, Madrid, Spain
| |
Collapse
|
5
|
Rmoutilová R, Gómez‐Olivencia A, Brůžek J, Holliday T, Ledevin R, Couture‐Veschambre C, Madelaine S, Džupa V, Velemínská J, Maureille B. A case of marked bilateral asymmetry in the sacral alae of the Neandertal specimen Regourdou 1 (Périgord, France). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 171:242-259. [DOI: 10.1002/ajpa.23968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/16/2019] [Accepted: 10/18/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Rebeka Rmoutilová
- CNRS, Université de Bordeaux, MCC, UMR5199 PACEAUniversité de Bordeaux Pessac Cedex France
- Department of Anthropology and Human Genetics, Faculty of ScienceCharles University Prague Czech Republic
| | - Asier Gómez‐Olivencia
- Departamento Estratigrafía y Paleontología, Facultad de Ciencia y TecnologíaUniversidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) Leioa Spain
- IKERBASQUE. Basque Foundation for Science Bilbao Spain
- Centro UCM‐ISCIII de Investigación sobre Evolución y Comportamiento Humanos Madrid Spain
| | - Jaroslav Brůžek
- CNRS, Université de Bordeaux, MCC, UMR5199 PACEAUniversité de Bordeaux Pessac Cedex France
- Department of Anthropology and Human Genetics, Faculty of ScienceCharles University Prague Czech Republic
| | - Trenton Holliday
- Department of AnthropologyTulane University New Orleans Louisiana
- Evolutionary Studies InstituteUniversity of the Witwatersrand Johannesburg Republic of South Africa
| | - Ronan Ledevin
- CNRS, Université de Bordeaux, MCC, UMR5199 PACEAUniversité de Bordeaux Pessac Cedex France
| | | | - Stéphane Madelaine
- CNRS, Université de Bordeaux, MCC, UMR5199 PACEAUniversité de Bordeaux Pessac Cedex France
- Musée National de Préhistoire Les Eyzies‐de‐Tayac France
| | - Valér Džupa
- Department of Orthopaedics and Traumatology, Third Faculty of MedicineCharles University, and University Hospital Královské Vinohrady Prague Czech Republic
| | - Jana Velemínská
- Department of Anthropology and Human Genetics, Faculty of ScienceCharles University Prague Czech Republic
| | - Bruno Maureille
- CNRS, Université de Bordeaux, MCC, UMR5199 PACEAUniversité de Bordeaux Pessac Cedex France
| |
Collapse
|
6
|
Gómez-Olivencia A, Barash A, García-Martínez D, Arlegi M, Kramer P, Bastir M, Been E. 3D virtual reconstruction of the Kebara 2 Neandertal thorax. Nat Commun 2018; 9:4387. [PMID: 30377294 PMCID: PMC6207772 DOI: 10.1038/s41467-018-06803-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/17/2018] [Indexed: 11/17/2022] Open
Abstract
The size and shape of the Neandertal thorax has been debated since the first discovery of Neandertal ribs more than 150 years ago, with workers proposing different interpretations ranging from a Neandertal thoracic morphology that is indistinguishable from modern humans, to one that was significantly different from them. Here, we provide a virtual 3D reconstruction of the thorax of the adult male Kebara 2 Neandertal. Our analyses reveal that the Kebara 2 thorax is significantly different but not larger from that of modern humans, wider in its lower segment, which parallels his wide bi-iliac breadth, and with a more invaginated vertebral column. Kinematic analyses show that rib cages that are wider in their lower segment produce greater overall size increments (respiratory capacity) during inspiration. We hypothesize that Neandertals may have had a subtle, but somewhat different breathing mechanism compared to modern humans.
Collapse
Affiliation(s)
- Asier Gómez-Olivencia
- Dept. Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
- IKERBASQUE. Basque Foundation for Science, 48013, Bilbao, Spain.
- Équipe de Paléontologie Humaine, UMR 7194, CNRS, Département de Préhistoire, Muséum National d'Histoire naturelle, Musée de l'Homme, 17, Place du Trocadéro, 75016, Paris, France.
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Avda. Monforte de Lemos, 5, Madrid, 28029, Spain.
| | - Alon Barash
- Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold, 8. P.O.B 1589, 1311502, Zefat, Israel
| | - Daniel García-Martínez
- Paleoanthropology Group, Museo Nacional de Ciencias Naturales (CSIC), J. G. Abascal 2, 28006, Madrid, Spain
| | - Mikel Arlegi
- Dept. Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
- Université de Bordeaux, Allée Geoffroy Saint-Hilaire, PACEA UMR 5199, Bâtiment B8, 33615, Pessac, France
| | - Patricia Kramer
- Departments of Anthropology and Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, 98195-3100, USA
| | - Markus Bastir
- Paleoanthropology Group, Museo Nacional de Ciencias Naturales (CSIC), J. G. Abascal 2, 28006, Madrid, Spain
| | - Ella Been
- Department of Sports Therapy, Faculty of Health Professions, Ono Academic College, 5545001, Kiryat Ono, Israel
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| |
Collapse
|