1
|
Querebillo CJ. A Review on Nano Ti-Based Oxides for Dark and Photocatalysis: From Photoinduced Processes to Bioimplant Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:982. [PMID: 36985872 PMCID: PMC10058723 DOI: 10.3390/nano13060982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Catalysis on TiO2 nanomaterials in the presence of H2O and oxygen plays a crucial role in the advancement of many different fields, such as clean energy technologies, catalysis, disinfection, and bioimplants. Photocatalysis on TiO2 nanomaterials is well-established and has advanced in the last decades in terms of the understanding of its underlying principles and improvement of its efficiency. Meanwhile, the increasing complexity of modern scientific challenges in disinfection and bioimplants requires a profound mechanistic understanding of both residual and dark catalysis. Here, an overview of the progress made in TiO2 catalysis is given both in the presence and absence of light. It begins with the mechanisms involving reactive oxygen species (ROS) in TiO2 photocatalysis. This is followed by improvements in their photocatalytic efficiency due to their nanomorphology and states by enhancing charge separation and increasing light harvesting. A subsection on black TiO2 nanomaterials and their interesting properties and physics is also included. Progress in residual catalysis and dark catalysis on TiO2 are then presented. Safety, microbicidal effect, and studies on Ti-oxides for bioimplants are also presented. Finally, conclusions and future perspectives in light of disinfection and bioimplant application are given.
Collapse
Affiliation(s)
- Christine Joy Querebillo
- Leibniz-Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
| |
Collapse
|
2
|
Yang K, Wang L, Zhang D, Yan Y, Ji XJ, Cao M, Shi ZZ, Wang LN. Nanomechanical probing of bacterial adhesion to biodegradable Zn alloys. BIOMATERIALS ADVANCES 2023; 145:213243. [PMID: 36566645 DOI: 10.1016/j.bioadv.2022.213243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/13/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Bacterial infections on implants cause an inflammatory response and even implant failure. Bacterial adhesion is an initial and critical step during implant infection. The prevention of bacterial adhesion to implant materials has attracted much attention, especially for biodegradable metals. A deep understanding of the mechanisms of bacterial adhesion to biodegradable metals is urgently needed. In this work, a bacterial probe based on atomic force spectroscopy was employed to determine the bacterial adhesion to Zn alloy, which depended on surface charge, roughness, and wettability. Negative surface charges of Zn, Zn-0.5Li, and 316L generated electrostatic repulsion force towards bacteria. The surface roughness of Zn-0.5Li was significantly increased by localized corrosion. Bacterial adhesion forces on Zn, Zn-0.5Li, and 316L were 325.2 pN, 519.1 pN, and 727.7 pN, respectively. The density of attached bacteria (early-stage bacterial adhesion) on these samples exhibited a positive correlation with the bacterial adhesion force. The bacterial adhesion force and adhesion work provide a quantitative determination of the interactions between bacteria and biodegradable alloys. These results provide a deeper understanding of early bacterial adhesion on Zn alloys, which can further guide the antibacterial surface design of biodegradable materials for clinical application.
Collapse
Affiliation(s)
- Kun Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Lei Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Dawei Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Institute for Advanced Materials and Technology, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Yu Yan
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Institute for Advanced Materials and Technology, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Xiao-Jing Ji
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Meng Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zhang-Zhi Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Lu-Ning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
3
|
Bohara S, Suthakorn J. Surface coating of orthopedic implant to enhance the osseointegration and reduction of bacterial colonization: a review. Biomater Res 2022; 26:26. [PMID: 35725501 PMCID: PMC9208209 DOI: 10.1186/s40824-022-00269-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/11/2022] [Indexed: 12/11/2022] Open
Abstract
The use of orthopedic implants in surgical technology has fostered restoration of physiological functions. Along with successful treatment, orthopedic implants suffer from various complications and fail to offer functions correspondent to native physiology. The major problems include aseptic and septic loosening due to bone nonunion and implant site infection due to bacterial colonization. Crucial advances in material selection in the design and development of coating matrixes an opportunity for the prevention of implant failure. However, many coating materials are limited in in-vitro testing and few of them thrive in clinical tests. The rate of implant failure has surged with the increasing rates of revision surgery creating physical and sensitive discomfort as well as economic burdens. To overcome critical pathogenic activities several systematic coating techniques have been developed offering excellent results that combat infection and enhance bone integration. This review article includes some more common implant coating matrixes with excellent in vitro and in vivo results focusing on infection rates, causes, complications, coating materials, host immune responses and significant research gaps. This study provides a comprehensive overview of potential coating technology, with functional combination coatings which are focused on ultimate clinical practice with substantial improvement on in-vivo tests. This includes the development of rapidly growing hydrogel coating techniques with the potential to generate several accurate and precise coating procedures.
Collapse
Affiliation(s)
- Smriti Bohara
- Department of Biomedical Engineering, Center for Biomedical and Robotics Technology (BART LAB), Faculty of Engineering, Mahidol University, Salaya, Thailand
| | - Jackrit Suthakorn
- Department of Biomedical Engineering, Center for Biomedical and Robotics Technology (BART LAB), Faculty of Engineering, Mahidol University, Salaya, Thailand
| |
Collapse
|
4
|
Bohara S, Rohner N, Budziszewski E, Suthakorn J, von Recum HA, Exner AA. Ultrasound Triggered Drug Release from Affinity-Based β-Cyclodextrin Polymers for Infection Control. Ann Biomed Eng 2021; 49:2513-2521. [PMID: 34173088 DOI: 10.1007/s10439-021-02814-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/13/2021] [Indexed: 12/21/2022]
Abstract
This work demonstrates a slow, sustained drug delivery system that provides on-demand delivery bursts through the application of pulsed therapeutic ultrasound (TUS). Insoluble β-cyclodextrin-polymer (pCD) disks were loaded with a saturated antibiotic solution of rifampicin (RIF) and used for drug delivery studies. To obtain on-demand release from the implants, TUS was applied at an intensity of 1.8 W/cm2. The therapeutic efficacy of the combination treatment was assessed in bacterial culture via an in vitro Staphylococcus aureus bioluminescence assay. The results demonstrated that the application of pulsed TUS at 3 MHz and 1.8 W/cm2 to pCD implants leads to a significantly higher short-term burst in the drug release rate compared to samples not treated with TUS. The addition of TUS increased the drug release by 100% within 4 days. The pCD disk + RIF stimulated with TUS showed a comparatively higher bacterial eradication with CFU/mL of 4.277E+09, and 8.00E+08 at 1 and 24 h compared with control treated bacteria at 1.48E+10. Overall, these results suggest that the addition of pulsed TUS could be an effective technology to noninvasively expedite antibiotic release on demand at desired intervals.
Collapse
Affiliation(s)
- Smriti Bohara
- Department of Biomedical Engineering, Mahidol University, Salaya, Thailand.,Department of Radiology, Case Western Reserve University (CWRU), 10900 Euclid Avenue, Cleveland, OH, 44106-5056, USA
| | - Nathan Rohner
- Department of Biomedical Engineering, Case Western Reserve University (CWRU), 10900 Euclid Avenue, Cleveland, OH, 44106-7207, USA
| | - Emily Budziszewski
- Department of Radiology, Case Western Reserve University (CWRU), 10900 Euclid Avenue, Cleveland, OH, 44106-5056, USA
| | - Jackrit Suthakorn
- Department of Biomedical Engineering, Mahidol University, Salaya, Thailand
| | - Horst A von Recum
- Department of Biomedical Engineering, Case Western Reserve University (CWRU), 10900 Euclid Avenue, Cleveland, OH, 44106-7207, USA.
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University (CWRU), 10900 Euclid Avenue, Cleveland, OH, 44106-5056, USA. .,Department of Biomedical Engineering, Case Western Reserve University (CWRU), 10900 Euclid Avenue, Cleveland, OH, 44106-7207, USA.
| |
Collapse
|
5
|
Malizos K, Blauth M, Danita A, Capuano N, Mezzoprete R, Logoluso N, Drago L, Romanò CL. Fast-resorbable antibiotic-loaded hydrogel coating to reduce post-surgical infection after internal osteosynthesis: a multicenter randomized controlled trial. J Orthop Traumatol 2017; 18:159-169. [PMID: 28155060 PMCID: PMC5429256 DOI: 10.1007/s10195-017-0442-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/31/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Infection is one of the main reasons for failure of orthopedic implants. Antibacterial coatings may prevent bacterial adhesion and biofilm formation, according to various preclinical studies. The aim of the present study is to report the first clinical trial on an antibiotic-loaded fast-resorbable hydrogel coating (Defensive Antibacterial Coating, DAC®) to prevent surgical site infection, in patients undergoing internal osteosynthesis for closed fractures. MATERIALS AND METHODS In this multicenter randomized controlled prospective study, a total of 256 patients in five European orthopedic centers who were scheduled to receive osteosynthesis for a closed fracture, were randomly assigned to receive antibiotic-loaded DAC or to a control group (without coating). Pre- and postoperative assessment of laboratory tests, wound healing, clinical scores and X-rays were performed at fixed time intervals. RESULTS Overall, 253 patients were available with a mean follow-up of 18.1 ± 4.5 months (range 12-30). On average, wound healing, clinical scores, laboratory tests and radiographic findings did not show any significant difference between the two groups. Six surgical site infections (4.6%) were observed in the control group compared to none in the treated group (P < 0.03). No local or systemic side-effects related to the DAC hydrogel product were observed and no detectable interference with bone healing was noted. CONCLUSIONS The use of a fast-resorbable antibiotic-loaded hydrogel implant coating provides a reduced rate of post-surgical site infections after internal osteosynthesis for closed fractures, without any detectable adverse event or side-effects. LEVEL OF EVIDENCE 2.
Collapse
Affiliation(s)
- Kostantinos Malizos
- Orthopaedic Surgery and Trauma, Medical School, University of Thessaly, Larissa, Greece
| | - Michael Blauth
- Department for Trauma Surgery, Medical University, Innsbruck, Austria
| | - Adrian Danita
- Department for Trauma Surgery, Medical University, Innsbruck, Austria
| | - Nicola Capuano
- Department for Orthopaedics, San Luca Hospital, Vallo Della Lucania, Italy
| | | | - Nicola Logoluso
- Department of Reconstructive Surgery of Osteo-articular Infections CRIO Unit, IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161 Milan, Italy
| | - Lorenzo Drago
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Laboratory of Medical Technical Sciences, Department of Biochemical Sciences for Health, University of Milano, Milan, Italy
| | - Carlo Luca Romanò
- Department of Reconstructive Surgery of Osteo-articular Infections CRIO Unit, IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161 Milan, Italy
| |
Collapse
|
6
|
Does laminar airflow make a difference to the infection rates for lower limb arthroplasty: a study using the National Joint Registry and local surgical site infection data for two hospitals with and without laminar airflow. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2016; 27:261-265. [DOI: 10.1007/s00590-016-1852-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/04/2016] [Indexed: 01/27/2023]
|
7
|
Romanò CL, Malizos K, Capuano N, Mezzoprete R, D'Arienzo M, Van Der Straeten C, Scarponi S, Drago L. Does an Antibiotic-Loaded Hydrogel Coating Reduce Early Post-Surgical Infection After Joint Arthroplasty? J Bone Jt Infect 2016; 1:34-41. [PMID: 28529851 PMCID: PMC5423565 DOI: 10.7150/jbji.15986] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/02/2016] [Indexed: 01/17/2023] Open
Abstract
Background: Infection remains among the main reasons for joint prosthesis failure. Preclinical reports have suggested that antibacterial coatings of implants may prevent bacterial adhesion and biofilm formation. This study presents the results of the first clinical trial on an antibiotic-loaded fast-resorbable hydrogel coating (Defensive Antibacterial Coating, DAC®) in patients undergoing hip or knee prosthesis. Methods: In this multicenter, randomized prospective study, a total of 380 patients, scheduled to undergo primary (n=270) or revision (n=110) total hip (N=298) or knee (N=82) joint replacement with a cementless or a hybrid implant, were randomly assigned, in six European orthopedic centers, to receive an implant either with the antibiotic-loaded DAC coating (treatment group) or without coating (control group). Pre- and postoperative assessment of clinical scores, wound healing, laboratory tests, and x-ray exams were performed at fixed time intervals. Results: Overall, 373 patients were available at a mean follow-up of 14.5 ± 5.5 months (range 6 to 24). On average, wound healing, laboratory and radiographic findings showed no significant difference between the two groups. Eleven early surgical site infections were observed in the control group and only one in the treatment group (6% vs. 0.6%; p=0.003). No local or systemic side effects related to the DAC hydrogel coating were observed, and no detectable interference with implant osteointegration was noted. Conclusions: The use of a fast-resorbable, antibiotic-loaded hydrogel implant coating can reduce the rate of early surgical site infections, without any detectable adverse events or side effects after hip or knee joint replacement with a cementless or hybrid implant.
Collapse
Affiliation(s)
- Carlo Luca Romanò
- Department of Reconstructive Surgery of Osteo-articular Infections C.R.I.O. Unit, I.R.C.C.S. Galeazzi Orthopaedic Institute, Milano, Italy
| | - Kostantinos Malizos
- Orthopaedic Surgery & Trauma, Medical School, University of Thessaly, Larissa, Greece
| | - Nicola Capuano
- Department of Orthopaedics, San Luca Hospital - Vallo della Lucania, Italy
| | | | | | - Catherine Van Der Straeten
- Department of Orthopaedics, Medical University Ghent, Belgium.,MSK Lab, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Sara Scarponi
- Department of Reconstructive Surgery of Osteo-articular Infections C.R.I.O. Unit, I.R.C.C.S. Galeazzi Orthopaedic Institute, Milano, Italy
| | - Lorenzo Drago
- Clinical Chemistry and Microbiology Laboratory, I.R.C.C.S. Galeazzi Orthopaedic Institute, Milano, Italy.,Laboratory of Medical Technical Sciences, Department of Biochemical Sciences for Health, University of Milano, Italy
| |
Collapse
|
8
|
Gallo J, Panacek A, Prucek R, Kriegova E, Hradilova S, Hobza M, Holinka M. Silver Nanocoating Technology in the Prevention of Prosthetic Joint Infection. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E337. [PMID: 28773461 PMCID: PMC5503077 DOI: 10.3390/ma9050337] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 02/06/2023]
Abstract
Prosthetic joint infection (PJI) is a feared complication of total joint arthroplasty associated with increased morbidity and mortality. There is a growing body of evidence that bacterial colonization and biofilm formation are critical pathogenic events in PJI. Thus, the choice of biomaterials for implanted prostheses and their surface modifications may significantly influence the development of PJI. Currently, silver nanoparticle (AgNP) technology is receiving much interest in the field of orthopaedics for its antimicrobial properties and a strong anti-biofilm potential. The great advantage of AgNP surface modification is a minimal release of active substances into the surrounding tissue and a long period of effectiveness. As a result, a controlled release of AgNPs could ensure antibacterial protection throughout the life of the implant. Moreover, the antibacterial effect of AgNPs may be strengthened in combination with conventional antibiotics and other antimicrobial agents. Here, our main attention is devoted to general guidelines for the design of antibacterial biomaterials protected by AgNPs, its benefits, side effects and future perspectives in PJI prevention.
Collapse
Affiliation(s)
- Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 6, Olomouc 779 00, Czech Republic.
| | - Ales Panacek
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic.
| | - Robert Prucek
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic.
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, Olomouc 779 00, Czech Republic.
| | - Sarka Hradilova
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic.
| | - Martin Hobza
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 6, Olomouc 779 00, Czech Republic.
| | - Martin Holinka
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 6, Olomouc 779 00, Czech Republic.
| |
Collapse
|
9
|
Romanò CL, Scarponi S, Gallazzi E, Romanò D, Drago L. Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res 2015; 10:157. [PMID: 26429342 PMCID: PMC4591707 DOI: 10.1186/s13018-015-0294-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/16/2015] [Indexed: 02/07/2023] Open
Abstract
Implanted biomaterials play a key role in current success of orthopedic and trauma surgery. However, implant-related infections remain among the leading reasons for failure with high economical and social associated costs. According to the current knowledge, probably the most critical pathogenic event in the development of implant-related infection is biofilm formation, which starts immediately after bacterial adhesion on an implant and effectively protects the microorganisms from the immune system and systemic antibiotics. A rationale, modern prevention of biomaterial-associated infections should then specifically focus on inhibition of both bacterial adhesion and biofilm formation. Nonetheless, currently available prophylactic measures, although partially effective in reducing surgical site infections, are not based on the pathogenesis of biofilm-related infections and unacceptable high rates of septic complications, especially in high-risk patients and procedures, are still reported.In the last decade, several studies have investigated the ability of implant surface modifications to minimize bacterial adhesion, inhibit biofilm formation, and provide effective bacterial killing to protect implanted biomaterials, even if there still is a great discrepancy between proposed and clinically implemented strategies and a lack of a common language to evaluate them.To move a step forward towards a more systematic approach in this promising but complicated field, here we provide a detailed overview and an original classification of the various technologies under study or already in the market. We may distinguish the following: 1. Passive surface finishing/modification (PSM): passive coatings that do not release bactericidal agents to the surrounding tissues, but are aimed at preventing or reducing bacterial adhesion through surface chemistry and/or structure modifications; 2. Active surface finishing/modification (ASM): active coatings that feature pharmacologically active pre-incorporated bactericidal agents; and 3. Local carriers or coatings (LCC): local antibacterial carriers or coatings, biodegradable or not, applied at the time of the surgical procedure, immediately prior or at the same time of the implant and around it. Classifying different technologies may be useful in order to better compare different solutions, to improve the design of validation tests and, hopefully, to improve and speed up the regulatory process in this rapidly evolving field.
Collapse
Affiliation(s)
- Carlo Luca Romanò
- Department of Reconstructive Surgery of Osteo-articular Infections C.R.I.O. Unit, IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy.
| | - Sara Scarponi
- Department of Reconstructive Surgery of Osteo-articular Infections C.R.I.O. Unit, IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy.
| | - Enrico Gallazzi
- Department of Reconstructive Surgery of Osteo-articular Infections C.R.I.O. Unit, IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy.
| | - Delia Romanò
- Department of Reconstructive Surgery of Osteo-articular Infections C.R.I.O. Unit, IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy.
| | - Lorenzo Drago
- Laboratory of Clinical Chemistry and Microbiology, I.R.C.C.S. Galeazzi Orthopaedic Institute, Milan, Italy.
| |
Collapse
|
10
|
Chauveaux D. Preventing surgical-site infections: measures other than antibiotics. Orthop Traumatol Surg Res 2015; 101:S77-83. [PMID: 25623269 DOI: 10.1016/j.otsr.2014.07.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/02/2014] [Indexed: 02/02/2023]
Abstract
Surgical-site infections (SSIs) due to intra-operative contamination are chiefly ascribable to airborne particles carrying microorganisms, mainly Staphylococcus aureus, which settle on the surgeon's hands and instruments. SSI prevention therefore rests on minimisation of airborne contaminated particle counts, although these have not been demonstrated to correlate significantly with SSI rates. Maintaining clear air in the operating room classically involves the use of ultra clean ventilation systems combining laminar airflow and high-efficiency particulate air filters to create a physical barrier around the surgical table; in addition to a stringent patient preparation protocol, appropriate equipment, and strict operating room discipline on the part of the surgeon and other staff members. SSI rates in clean surgery, although influenced by the type of procedure and by patient-related factors, are consistently very low, of about 1% to 2%. These low rates, together with the effectiveness of prophylactic antibiotic therapy and the multiplicity of parameters influencing the SSI risk, are major obstacles to the demonstration that a specific measure is effective in decreasing SSIs. As a result, controversy surrounds the usefulness of many measures, including laminar airflow, body exhaust suits, patient preparation techniques, and specific surgical instruments. Impeccable surgical technique and operating room behaviour, in contrast, are clearly essential.
Collapse
Affiliation(s)
- D Chauveaux
- CHU Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux cedex, France.
| |
Collapse
|
11
|
Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci 2014; 15:13849-80. [PMID: 25116685 PMCID: PMC4159828 DOI: 10.3390/ijms150813849] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 06/06/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023] Open
Abstract
It is expected that the projected increased usage of implantable devices in medicine will result in a natural rise in the number of infections related to these cases. Some patients are unable to autonomously prevent formation of biofilm on implant surfaces. Suppression of the local peri-implant immune response is an important contributory factor. Substantial avascular scar tissue encountered during revision joint replacement surgery places these cases at an especially high risk of periprosthetic joint infection. A critical pathogenic event in the process of biofilm formation is bacterial adhesion. Prevention of biomaterial-associated infections should be concurrently focused on at least two targets: inhibition of biofilm formation and minimizing local immune response suppression. Current knowledge of antimicrobial surface treatments suitable for prevention of prosthetic joint infection is reviewed. Several surface treatment modalities have been proposed. Minimizing bacterial adhesion, biofilm formation inhibition, and bactericidal approaches are discussed. The ultimate anti-infective surface should be “smart” and responsive to even the lowest bacterial load. While research in this field is promising, there appears to be a great discrepancy between proposed and clinically implemented strategies, and there is urgent need for translational science focusing on this topic.
Collapse
|