1
|
Brajerova M, Zikova J, Krutova M. Clostridioides difficile epidemiology in the Middle and the Far East. Anaerobe 2022; 74:102542. [PMID: 35240336 DOI: 10.1016/j.anaerobe.2022.102542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Clostridioides difficile is an important pathogen of healthcare-associated gastrointestinal infections. Recently, an increased number of C. difficile infection (CDI) surveillance data has been reported from Asia. The aim of this review is to summarize the data on the prevalence, distribution and molecular epidemiology of CDI in the Middle and the Far East. METHODS Literature was drawn from a search of PubMed up to September 30, 2021. RESULTS The meta-analysis of data from 111 studies revealed the pooled CDI prevalence rate in the Middle and the Far East of 12.4% (95% CI 11.4-13.3); 48 studies used PCR for CDI laboratory diagnoses. The predominant types (RT)/sequence type (ST) differ between individual countries (24 studies, 14 countries). Frequently found RTs were 001, 002, 012, 017, 018 and 126; RT017 was predominant in the Far East. The epidemic RT027 was detected in 8 countries (22 studies), but its predominance was reported only in three studies (Israel and Iran). The contamination of vegetable and meat or meat products and/or intestinal carriage of C. difficile in food and companion animals have been reported; the C. difficile RTs/STs identified overlapped with those identified in humans. CONCLUSIONS A large number of studies on CDI prevalence in humans from the Middle and the Far East have been published; countries with no available data were identified. The number of studies on C. difficile from non-human sources is limited. Comparative genomic studies of isolates from different sources are needed.
Collapse
Affiliation(s)
- Marie Brajerova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Jaroslava Zikova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Czech Republic
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic.
| |
Collapse
|
2
|
Li C, Li Y, Huai Y, Liu S, Meng X, Duan J, Klena JD, Rainey JJ, Wu A, Rao CY. Incidence and Outbreak of Healthcare-Onset Healthcare-Associated Clostridioides difficile Infections Among Intensive Care Patients in a Large Teaching Hospital in China. Front Microbiol 2018; 9:566. [PMID: 29636739 PMCID: PMC5880889 DOI: 10.3389/fmicb.2018.00566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/12/2018] [Indexed: 12/18/2022] Open
Abstract
Background:Clostridioides difficile infection (CDI) is an important cause of morbidity and mortality among hospitalized patients. In China, however, hospital staff do not routinely test for CDI, leading to under-diagnosis and poor patient outcomes. Locally generated CDI data can help assess the magnitude of the problem and strengthen approaches for CDI prevention and control. Methods: We prospectively monitored hospital-onset hospital-associated (HOHA) CDI in four intensive care units (ICUs) from June 2013 to September 2014 in a large teaching hospital in China. We collected clinical information from all ICU patients with ≥ 3 episodes of diarrhea occurring within a 24-h period at least 48 h following admission (suspect case definition). Stool specimens were collected from all suspect cases of CDI and cultured for C. difficile. Polymerase chain reaction (PCR) was used to detect toxin genes from positive isolates; multi-locus sequence typing (MLST) was used for typing and identifying novel strains. We estimated the incidence rate as the number of HOHA CDI cases per 10,000 patient days; 95% confidence intervals were generated to assess rate differences between the four ICUs. Results: A total of 593 hospital-onset diarrhea patients met the suspect case definition during the study period. Of these, 47 patients (8%) were positive for C. difficile and toxin genes. The HOHA-CDI incidence rate was 14.1 cases per 10,000 patient days (95% CI: 10.5–18.6). Six patients with HOHA CDI died. ST54 (n = 14, 20%) was the most common type of HOHA-CDI strain circulating in the hospital during the study period and was linked to a temporal cluster (outbreak) involving two (NICU and GICU) of the four ICUs. Conclusion: HOHA-CDI occurs among ICU patients at this teaching hospital, supporting the importance of routine testing for CDI. Information on strain distribution can help detect CDI outbreaks. Detection of ST54 strain in a temporal cluster suggests possible gaps in infection control practices that should be investigated and addressed as needed.
Collapse
Affiliation(s)
- Chunhui Li
- Infection Control Center, Xiangya Hospital Central South University, Changsha, China
| | - Yuan Li
- International Emerging Infections Program, Division of Global Health Protection, Center for Global Health, U.S. Centers for Disease Control and Prevention, Beijing, China
| | - Yang Huai
- International Emerging Infections Program, Division of Global Health Protection, Center for Global Health, U.S. Centers for Disease Control and Prevention, Beijing, China
| | - Sidi Liu
- Infection Control Center, Xiangya Hospital Central South University, Changsha, China
| | - Xiujuan Meng
- Infection Control Center, Xiangya Hospital Central South University, Changsha, China
| | - Juping Duan
- Infection Control Center, Xiangya Hospital Central South University, Changsha, China
| | - John D Klena
- International Emerging Infections Program, Division of Global Health Protection, Center for Global Health, U.S. Centers for Disease Control and Prevention, Beijing, China.,Division of Global Health Protection, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jeanette J Rainey
- International Emerging Infections Program, Division of Global Health Protection, Center for Global Health, U.S. Centers for Disease Control and Prevention, Beijing, China.,Division of Global Health Protection, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Anhua Wu
- Infection Control Center, Xiangya Hospital Central South University, Changsha, China
| | - Carol Y Rao
- International Emerging Infections Program, Division of Global Health Protection, Center for Global Health, U.S. Centers for Disease Control and Prevention, Beijing, China.,Division of Global Health Protection, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|