1
|
Ciernikova S, Sevcikova A, Novisedlakova M, Mego M. Insights into the Relationship Between the Gut Microbiome and Immune Checkpoint Inhibitors in Solid Tumors. Cancers (Basel) 2024; 16:4271. [PMID: 39766170 PMCID: PMC11674129 DOI: 10.3390/cancers16244271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Immunotherapy with immune checkpoint inhibitors represents a revolutionary approach to the treatment of solid tumors, including malignant melanoma, lung cancer, and gastrointestinal malignancies. Anti-CTLA-4 and anti-PD-1/PDL-1 therapies provide prolonged survival for cancer patients, but their efficacy and safety are highly variable. This review focuses on the crucial role of the gut microbiome in modulating the efficacy and toxicity of immune checkpoint blockade. Studies suggest that the composition of the gut microbiome may influence the response to immunotherapy, with specific bacterial strains able to promote an anti-tumor immune response. On the other hand, dysbiosis may increase the risk of adverse effects, such as immune-mediated colitis. Interventions aimed at modulating the microbiome, including the use of probiotics, prebiotics, fecal microbial transplantation, or dietary modifications, represent promising strategies to increase treatment efficacy and reduce toxicity. The combination of immunotherapy with the microbiome-based strategy opens up new possibilities for personalized treatment. In addition, factors such as physical activity and nutritional supplementation may indirectly influence the gut ecosystem and consequently improve treatment outcomes in refractory patients, leading to enhanced patient responses and prolonged survival.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia;
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia;
| | - Maria Novisedlakova
- Department of Oncology, Hospital Bory, Ivana Bukovčana 6118, 841 08 Bratislava, Slovakia;
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia;
| |
Collapse
|
2
|
Dulai AS, Min M, Sivamani RK. The Gut Microbiome's Influence on Incretins and Impact on Blood Glucose Control. Biomedicines 2024; 12:2719. [PMID: 39767626 PMCID: PMC11727616 DOI: 10.3390/biomedicines12122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) have been increasing in prevalence, causing complications and strain on our healthcare systems. Notably, gut dysbiosis is implicated as a contributing factor in obesity, T2DM, and chronic inflammatory diseases. A pharmacology exists which modulates the incretin pathway to improve glucose control; this has proven to be beneficial in patients with obesity and T2DM. However, it is unclear how the gut microbiome may regulate insulin resistance, glucose control, and metabolic health. In this narrative review, we aim to discuss how the gut microbiome can modulate incretin pathways and related mechanisms to control glucose. To investigate this, Google Scholar and PubMed databases were searched using key terms and phrases related to the microbiome and its effects on insulin and glucose control. Emerging research has shown that several bacteria, such as Akkermansia and MN-Gup, have GLP-1-agonistic properties capable of reducing hyperglycemia. While more human research is needed to prove clinical benefit and identify long-term implications on health, the usage of pre-, pro-, and postbiotics has the potential to improve glucose control.
Collapse
Affiliation(s)
- Ajay S. Dulai
- Integrative Research Institute, Sacramento, CA 95819, USA
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
| | - Mildred Min
- Integrative Research Institute, Sacramento, CA 95819, USA
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Raja K. Sivamani
- Integrative Research Institute, Sacramento, CA 95819, USA
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
- Pacific Skin Institute, Sacramento, CA 95815, USA
- Department of Dermatology, University of California-Davis, Sacramento, CA 95616, USA
| |
Collapse
|
3
|
Petrilla A, Nemeth P, Fauszt P, Szilagyi-Racz A, Mikolas M, Szilagyi-Tolnai E, David P, Stagel A, Gal F, Gal K, Sohajda R, Pham T, Stundl L, Biro S, Remenyik J, Paholcsek M. Comparative analysis of the postadmission and antemortem oropharyngeal and rectal swab microbiota of ICU patients. Sci Rep 2024; 14:27179. [PMID: 39516251 PMCID: PMC11549221 DOI: 10.1038/s41598-024-78102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Shotgun metabarcoding was conducted to examine the microbiota in a total of 48 samples from 12 critically ill patients, analyzing samples from both the oropharynx and rectum. We aimed to compare their postadmission microbiota, characterized as moderately dysbiotic, with the severely dysbiotic antemortem microbiota associated with patients' deaths. We found that, compared with postadmission samples, patient antemortem swab samples presented moderate but not significantly decreased diversity indices. The antemortem oropharyngeal samples presented an increase in biofilm-forming bacteria, including Streptococcus oralis, methicillin-resistant Staphylococcus aureus (MRSA), and Enterococcus faecalis. Although the septic shock rate was 67%, no significant differences were detected in the potential pathogen ratios when the microbiota was analyzed. A notable strain-sharing rate between the oropharynx and intestine was noted. By comparing postadmission and antemortem samples, microbial biomarkers of severe dysbiosis were pinpointed through the analysis of differentially abundant and uniquely emerging species in both oropharyngeal and rectal swabs. Demonstrating strong interconnectivity along the oral-intestinal axis, these biomarkers could serve as indicators of the progression of dysbiosis. Furthermore, the microbial networks of the oropharyngeal microbiota in deceased patients presented the lowest modularity, suggesting a vulnerable community structure. Our data also highlight the critical importance of introducing treatments aimed at enhancing the resilience of the oral cavity microbiome, thereby contributing to better patient outcomes.
Collapse
Affiliation(s)
- Annamaria Petrilla
- Department of Anaesthesiology and Intensive Care, Vas County Markusovszky Teaching Hospital, Szombathely, Hungary
| | - Peter Nemeth
- Department of Anaesthesiology and Intensive Care, Vas County Markusovszky Teaching Hospital, Szombathely, Hungary
| | - Peter Fauszt
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Anna Szilagyi-Racz
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Maja Mikolas
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Emese Szilagyi-Tolnai
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Peter David
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Aniko Stagel
- Hungarian National Blood Transfusion Service Nucleic Acid Testing Laboratory, Budapest, Hungary
| | - Ferenc Gal
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Kristof Gal
- Department of Oncoradiology, University of Debrecen Clinical Centre, Debrecen, Hungary
| | - Reka Sohajda
- Hungarian National Blood Transfusion Service Nucleic Acid Testing Laboratory, Budapest, Hungary
| | - Trinh Pham
- Turku Bioscience Centre, University of Turku and Abo Akademi University, 20520, Turku, Finland
| | - Laszlo Stundl
- Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Sandor Biro
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Remenyik
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Melinda Paholcsek
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
4
|
Boyd A, El Dani M, Ajrouche R, Demontant V, Cheval J, Lacombe K, Cosson G, Rodriguez C, Pawlotsky JM, Woerther PL, Surgers L. Gut microbiome diversity and composition in individuals with and without extended-spectrum β-lactamase-producing Enterobacterales carriage: a matched case-control study in infectious diseases department. Clin Microbiol Infect 2024; 30:1154-1163. [PMID: 38527613 DOI: 10.1016/j.cmi.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVE Little is known about the effect of gut microbial and extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E) carriage, particularly in the general population. The aim of this study was to identify microbiota signatures uniquely correlated with ESBL-E carriage. METHODS We conducted a case-control study among individuals seeking care at the Sexual Health Clinic or Department of Infectious and Tropical Diseases, Saint-Antoine Hospital, Paris, France. Using coarsened exact matching, 176 participants with ESBL-carriage (i.e. cases) were matched 1:1 to those without ESBL-carriage (i.e. controls) based on sexual group, ESBL-E prevalence of countries travelled in <12 months, number of sexual partners in <6 months, geographic origin, and any antibiotic use in <6 months. 16S rRNA gene amplicon sequencing was used to generate differential abundances at the genus level and measures of α- and β-diversity. RESULTS Participants were mostly men (83.2%, n = 293/352) and had a median age of 33 years (interquartile range: 27-44). Nine genera were found associated with ESBL-E carriage: Proteus (p < 0.0001), Carnobacterium (p < 0.0001), Enterorhabdus (p 0.0079), Catonella (p 0.017), Dermacoccus (p 0.017), Escherichia/Shigella (p 0.021), Kocuria (p 0.023), Bacillus (p 0.040), and Filifactor (p 0.043); however, differences were no longer significant after Benjamini-Hochberg correction (q > 0.05). There were no differences between those with versus without ESBL-E carriage in measures of α-diversity (Shannon Diversity Index, p 0.49; Simpson Diversity Index, p 0.54; and Chao1 Richness Estimator, p 0.16) or β-diversity (Bray-Curtis dissimilarity index, p 0.42). DISCUSSION In this large carefully controlled study, there is lacking evidence that gut microbial composition and diversity is any different between individuals with and without ESBL-E carriage.
Collapse
Affiliation(s)
- Anders Boyd
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, Paris, France; Stichting HIV Monitoring, Amsterdam, The Netherlands; Public Health Service of Amsterdam, Infectious Diseases, Amsterdam, The Netherlands
| | - Mariam El Dani
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, Paris, France; Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Hadat, Lebanon
| | - Roula Ajrouche
- Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Hadat, Lebanon; Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Beirut, Lebanon
| | - Vanessa Demontant
- NGS Platform, Henri Mondor Hospital, APHP, and IMRB Institute, University of Paris-Est-Créteil, Créteil, France
| | - Justine Cheval
- NGS Platform, Henri Mondor Hospital, APHP, and IMRB Institute, University of Paris-Est-Créteil, Créteil, France
| | - Karine Lacombe
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, Paris, France; GHU APHP. Sorbonne Université, Service des Maladies Infectieuses et Tropicales, Hôpital Saint-Antoine, Paris, France
| | - Guillaume Cosson
- GHU APHP. Sorbonne Université, Service des Maladies Infectieuses et Tropicales, Hôpital Saint-Antoine, Paris, France
| | - Christophe Rodriguez
- Département de Microbiologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique Hôpitaux de Paris (APHP), Université Paris-Est-Créteil, Créteil, France; INSERM U955, Team "Viruses, Hepatology, Cancer", Créteil, France
| | - Jean-Michel Pawlotsky
- Département de Microbiologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique Hôpitaux de Paris (APHP), Université Paris-Est-Créteil, Créteil, France; INSERM U955, Team "Viruses, Hepatology, Cancer", Créteil, France
| | - Paul-Louis Woerther
- NGS Platform, Henri Mondor Hospital, APHP, and IMRB Institute, University of Paris-Est-Créteil, Créteil, France; Département de Microbiologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique Hôpitaux de Paris (APHP), Université Paris-Est-Créteil, Créteil, France; Université Paris-Est-Créteil (UPEC), EA 7380 Dynamic, Ecole nationale vétérinaire d'Alfort, USC Anses, Créteil, France
| | - Laure Surgers
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, Paris, France; GHU APHP. Sorbonne Université, Service des Maladies Infectieuses et Tropicales, Hôpital Saint-Antoine, Paris, France.
| |
Collapse
|
5
|
Rosay T, Jimenez AG, Sperandio V. Glucuronic acid confers colonization advantage to enteric pathogens. Proc Natl Acad Sci U S A 2024; 121:e2400226121. [PMID: 38502690 PMCID: PMC10990124 DOI: 10.1073/pnas.2400226121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Glucuronidation is a detoxification process to eliminate endo- and xeno-biotics and neurotransmitters from the host circulation. Glucuronosyltransferase binds these compounds to glucuronic acid (GlcA), deactivating them and allowing their elimination through the gastrointestinal (GI) tract. However, the microbiota produces β-glucuronidases that release GlcA and reactivate these compounds. Enteric pathogens such as enterohemorrhagic Escherichia coli (EHEC) and Citrobacter rodentium sense and utilize galacturonic acid (GalA), an isomer of GlcA, to outcompete the microbiota promoting gut colonization. However, the role of GlcA in pathogen colonization has not been explored. Here, we show that treatment of mice with a microbial β-glucuronidase inhibitor (GUSi) decreased C. rodentium's colonization of the GI tract, without modulating bacterial virulence or host inflammation. Metagenomic studies indicated that GUSi did not change the composition of the intestinal microbiota in these animals. GlcA confers an advantage for pathogen expansion through its utilization as a carbon source. Congruently mutants unable to catabolize GlcA depict lower GI colonization compared to wild type and are not sensitive to GUSi. Germfree mice colonized with a commensal E. coli deficient for β-glucuronidase production led to a decrease of C. rodentium tissue colonization, compared to animals monocolonized with an E. coli proficient for production of this enzyme. GlcA is not sensed as a signal and doesn't activate virulence expression but is used as a metabolite. Because pathogens can use GlcA to promote their colonization, inhibitors of microbial β-glucuronidases could be a unique therapeutic against enteric infections without disturbing the host or microbiota physiology.
Collapse
Affiliation(s)
- Thibaut Rosay
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Angel G. Jimenez
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Vanessa Sperandio
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
6
|
Zhang ZJ, Cole C, Lin H, Wu C, Haro F, McSpadden E, van der Donk WA, Pamer EG. Exposure and resistance to lantibiotics impact microbiota composition and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573728. [PMID: 38234830 PMCID: PMC10793476 DOI: 10.1101/2023.12.30.573728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The intestinal microbiota is composed of hundreds of distinct microbial species that interact with each other and their mammalian host. Antibiotic exposure dramatically impacts microbiota compositions and leads to acquisition of antibiotic-resistance genes. Lantibiotics are ribosomally synthesized and post-translationally modified peptides produced by some bacterial strains to inhibit the growth of competing bacteria. Nisin A is a lantibiotic produced by Lactococcus lactis that is commonly added to food products to reduce contamination with Gram-positive pathogens. Little is known, however, about lantibiotic-resistance of commensal bacteria inhabiting the human intestine. Herein, we demonstrate that Nisin A administration to mice alters fecal microbiome compositions and the concentration of taurine-conjugated primary bile acids. Lantibiotic Resistance System genes (LRS) are encoded by lantibiotic-producing bacterial strains but, we show, are also prevalent in microbiomes across human cohorts spanning vastly different lifestyles and 5 continents. Bacterial strains encoding LRS have enhanced in vivo fitness upon dietary exposure to Nisin A but reduced fitness in the absence of lantibiotic pressure. Differential binding of host derived, secreted IgA contributes to fitness discordance between bacterial strains encoding or lacking LRS. Although LRS are associated with mobile genetic elements, sequence comparisons of LRS encoded by distinct bacterial species suggest they have been long-term components of their respective genomes. Our study reveals the prevalence, abundance and physiologic significance of an underappreciated subset of antimicrobial resistance genes encoded by commensal bacterial species constituting the human gut microbiome, and provides insights that will guide development of microbiome augmenting strategies.
Collapse
Affiliation(s)
- Zhenrun J Zhang
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave, Chicago, IL 60637, USA
| | - Cody Cole
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave, Chicago, IL 60637, USA
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Chunyu Wu
- Department of Chemistry, University of Illinois Urbana-Champaign, IL 61801, USA
| | - Fidel Haro
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Emma McSpadden
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Wilfred A van der Donk
- Department of Chemistry, University of Illinois Urbana-Champaign, IL 61801, USA; Howard Hughes Medical Institute, University of Illinois Urbana-Champaign, IL 61801, USA
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA; Department of Medicine, Section of Infectious Diseases & Global Health, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Ferguson JK, Chiu S, Oldmeadow C, Deane J, Munnoch S, Fraser N. VRE acquisition in hospital and its association with hospital antimicrobial usage -a non-linear analysis of an extended time series. Infect Dis Health 2023; 28:151-158. [PMID: 36803829 DOI: 10.1016/j.idh.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Vancomycin resistant enterococci (VRE) have become endemic pathogens in many Australian hospitals causing significant morbidity. There are few observational studies that have evaluated the effect of antibiotic usage on VRE acquisition. This study examined VRE acquisition and its association with antimicrobial use. The setting was a NSW tertiary hospital with 800 beds over a 63 month period up to March 2020, straddling piperacillin-tazobactam (PT) shortages that occurred from in September 2017. METHODS The primary outcome was monthly inpatient hospital onset Vancomycin-resistant Enterococci (VRE) acquisitions. Multivariate adaptive regression splines (MARS) were used to estimate hypothetical thresholds, where antimicrobial use above threshold is associated with increased incidence of hospital onset VRE acquisition. Specific antimicrobials and categorised usage (broad, less broad and narrow spectrum) were modelled. RESULTS There were 846 hospital onset VRE detections over the study period. Hospital onset vanB and vanA VRE acquisitions fell significantly by 64% and 36% respectively after the PT shortage. MARS modelling indicated that PT usage was the only antibiotic found to exhibit a meaningful threshold. PT usage greater than 17.4 defined daily doses/1000 occupied bed-days (95%C I: 13.4, 20.5) was associated with higher onset of hospital VRE. CONCLUSIONS This paper highlights the large, sustained impact that reduced broad spectrum antimicrobial use had on VRE acquisition and showed that PT use in particular was a major driver with a relatively low threshold. It raises the question as to whether hospitals should be determining local antimicrobial usage targets based on direct evidence from local data analysed with non-linear methods.
Collapse
Affiliation(s)
- J K Ferguson
- John Hunter Hospital, Newcastle, NSW, Australia; University of Newcastle, NSW, Australia.
| | - S Chiu
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - C Oldmeadow
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - J Deane
- Infection Prevention Service, Hunter New England Health Service, NSW, Australia
| | - S Munnoch
- Infection Prevention Service, Hunter New England Health Service, NSW, Australia
| | - N Fraser
- Hunter New England Population Health Unit, NSW, Australia
| |
Collapse
|
8
|
Arellano H, Nardello-Rataj V, Szunerits S, Boukherroub R, Fameau AL. Saturated long chain fatty acids as possible natural alternative antibacterial agents: Opportunities and challenges. Adv Colloid Interface Sci 2023; 318:102952. [PMID: 37392663 DOI: 10.1016/j.cis.2023.102952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/03/2023]
Abstract
The spread of new strains of antibiotic-resistant pathogenic microorganisms has led to the urgent need to discover and develop new antimicrobial systems. The antibacterial effects of fatty acids have been well-known and recognized since the first experiments of Robert Koch in 1881, and they are now used in diverse fields. Fatty acids can prevent the growth and directly kill bacteria by insertion into their membrane. For that, a sufficient amount of fatty acid molecules has to be solubilized in water to transfer from the aqueous phase to the cell membrane. Due to conflicting results in the literature and lack of standardization methods, it is very difficult to draw clear conclusions on the antibacterial effect of fatty acids. Most of the current studies link fatty acids' effectiveness against bacteria to their chemical structure, notably the alkyl chain length and the presence of double bonds in their chain. Furthermore, the solubility of fatty acids and their critical aggregation concentration is not only related to their structure, but also influenced by medium conditions (pH, temperature, ionic strength, etc.). There is a possibility that the antibacterial activity of saturated long chain fatty acids (LCFA) may be underestimated due to the lack of water solubility and the use of unsuitable methods to assess their antibacterial activity. Thus, enhancing the solubility of these long chain saturated fatty acids is the main goal before examining their antibacterial properties. To increase their water solubility and thereby improve their antibacterial efficacy, novel alternatives may be considered, including the use of organic positively charged counter-ions instead of the conventional sodium and potassium soaps, the formation of catanionic systems, the mixture with co-surfactants, and solubilization in emulsion systems. This review summarizes the latest findings on fatty acids as antibacterial agents, with a focus on long chain saturated fatty acids. Additionally, it highlights the different ways to improve their water solubility, which may be a crucial factor in increasing their antibacterial efficacy. We finish with a discussion on the challenges, strategies and opportunities for the formulation of LCFAs as antibacterial agents.
Collapse
Affiliation(s)
- Helena Arellano
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Véronique Nardello-Rataj
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Anne-Laure Fameau
- Univ. Lille, CNRS, INRAe, Centrale Lille, UMET, F-59000, Lille, France.
| |
Collapse
|
9
|
Lopez-Santamarina A, Mondragon ADC, Cardelle-Cobas A, Santos EM, Porto-Arias JJ, Cepeda A, Miranda JM. Effects of Unconventional Work and Shift Work on the Human Gut Microbiota and the Potential of Probiotics to Restore Dysbiosis. Nutrients 2023; 15:3070. [PMID: 37447396 DOI: 10.3390/nu15133070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
The work environment is a factor that can significantly influence the composition and functionality of the gut microbiota of workers, in many cases leading to gut dysbiosis that will result in serious health problems. The aim of this paper was to provide a compilation of the different studies that have examined the influence of jobs with unconventional work schedules and environments on the gut microbiota of workers performing such work. As a possible solution, probiotic supplements, via modulation of the gut microbiota, can moderate the effects of sleep disturbance on the immune system, as well as restore the dysbiosis produced. Rotating shift work has been found to be associated with an increase in the risk of various metabolic diseases, such as obesity, metabolic syndrome, and type 2 diabetes. Sleep disturbance or lack of sleep due to night work is also associated with metabolic diseases. In addition, sleep disturbance induces a stress response, both physiologically and psychologically, and disrupts the healthy functioning of the gut microbiota, thus triggering an inflammatory state. Other workers, including military, healthcare, or metallurgy workers, as well as livestock farmers or long-travel seamen, work in environments and schedules that can significantly affect their gut microbiota.
Collapse
Affiliation(s)
- Aroa Lopez-Santamarina
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alicia Del Carmen Mondragon
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alejandra Cardelle-Cobas
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Eva Maria Santos
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km. 4.5, Pachuca 42076, Hidalgo, Mexico
| | - Jose Julio Porto-Arias
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alberto Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Jose Manuel Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
10
|
Martin AJ, Serebrinsky-Duek K, Riquelme E, Saa PA, Garrido D. Microbial interactions and the homeostasis of the gut microbiome: the role of Bifidobacterium. MICROBIOME RESEARCH REPORTS 2023; 2:17. [PMID: 38046822 PMCID: PMC10688804 DOI: 10.20517/mrr.2023.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 12/05/2023]
Abstract
The human gut is home to trillions of microorganisms that influence several aspects of our health. This dense microbial community targets almost all dietary polysaccharides and releases multiple metabolites, some of which have physiological effects on the host. A healthy equilibrium between members of the gut microbiota, its microbial diversity, and their metabolites is required for intestinal health, promoting regulatory or anti-inflammatory immune responses. In contrast, the loss of this equilibrium due to antibiotics, low fiber intake, or other conditions results in alterations in gut microbiota composition, a term known as gut dysbiosis. This dysbiosis can be characterized by a reduction in health-associated microorganisms, such as butyrate-producing bacteria, enrichment of a small number of opportunistic pathogens, or a reduction in microbial diversity. Bifidobacterium species are key species in the gut microbiome, serving as primary degraders and contributing to a balanced gut environment in various ways. Colonization resistance is a fundamental property of gut microbiota for the prevention and control of infections. This community competes strongly with foreign microorganisms, such as gastrointestinal pathogens, antibiotic-resistant bacteria, or even probiotics. Resistance to colonization is based on microbial interactions such as metabolic cross-feeding, competition for nutrients, or antimicrobial-based inhibition. These interactions are mediated by metabolites and metabolic pathways, representing the inner workings of the gut microbiota, and play a protective role through colonization resistance. This review presents a rationale for how microbial interactions provide resistance to colonization and gut dysbiosis, highlighting the protective role of Bifidobacterium species.
Collapse
Affiliation(s)
- Alberto J.M. Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 8580702, Chile
| | - Kineret Serebrinsky-Duek
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
| | - Erick Riquelme
- Department of Respiratory Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Pedro A. Saa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
- Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
| |
Collapse
|
11
|
Cortegiani A, Antonelli M, Falcone M, Giarratano A, Girardis M, Leone M, Pea F, Stefani S, Viaggi B, Viale P. Rationale and clinical application of antimicrobial stewardship principles in the intensive care unit: a multidisciplinary statement. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2023; 3:11. [PMID: 37386615 PMCID: PMC10245548 DOI: 10.1186/s44158-023-00095-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/21/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Antimicrobial resistance represents a major critical issue for the management of the critically ill patients hospitalized in the intensive care unit (ICU), since infections by multidrug-resistant bacteria are characterized by high morbidity and mortality, high rates of treatment failure, and increased healthcare costs worldwide. It is also well known that antimicrobial resistance can emerge as a result of inadequate antimicrobial therapy, in terms of drug selection and/or treatment duration. The application of antimicrobial stewardship principles in ICUs improves the quality of antimicrobial therapy management. However, it needs specific considerations related to the critical setting. METHODS The aim of this consensus document gathering a multidisciplinary panel of experts was to discuss principles of antimicrobial stewardship in ICU and to produce statements that facilitate their clinical application and optimize their effectiveness. The methodology used was a modified nominal group discussion. CONCLUSION The final set of statements underlined the importance of the specific interpretation of antimicrobial stewardship's principles in critically ill patient management, quasi-targeted therapy, the use of rapid diagnostic methods, the personalization of antimicrobial therapies' duration, obtaining microbiological surveillance data, the use of PK/PD targets, and the use of specific indicators in antimicrobial stewardship programs.
Collapse
Affiliation(s)
- Andrea Cortegiani
- Department of Surgical, Oncological and Oral Science, University of Palermo, Via Liborio Giuffrè 5, 90127, Palermo, Italy.
- Department of Anaesthesia, Intensive Care and Emergency, University Hospital Policlinico Paolo Giaccone, 90127, Palermo, Italy.
| | - Massimo Antonelli
- Department of Anesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marco Falcone
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Antonino Giarratano
- Department of Surgical, Oncological and Oral Science, University of Palermo, Via Liborio Giuffrè 5, 90127, Palermo, Italy
- Department of Anaesthesia, Intensive Care and Emergency, University Hospital Policlinico Paolo Giaccone, 90127, Palermo, Italy
| | - Massimo Girardis
- Intensive Care Unit, University Hospital of Modena, Modena, Italy
| | - Marc Leone
- Department of Anaesthesia and Intensive Care Unit, Aix-Marseille University, AP-HM, North Hospital, Marseille, France
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, 40138, Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138, Bologna, Italy
| | - Stefania Stefani
- Microbiology Section, Dept of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
- Unità Operativa Complessa (UOC) Laboratory Analysis, University Hospital Policlinico-San Marco, Catania, Italy
| | - Bruno Viaggi
- Department of Anesthesiology, Neuro-Intensive Care Unit, Careggi University Hospital, 50139, Florence, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Infectious Disease Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| |
Collapse
|
12
|
Russo E, Antonini MV, Sica A, Dell’Amore C, Martino C, Gamberini E, Bissoni L, Circelli A, Bolondi G, Santonastaso DP, Cristini F, Raumer L, Catena F, Agnoletti V. Infection-Related Ventilator-Associated Complications in Critically Ill Patients with Trauma: A Retrospective Analysis. Antibiotics (Basel) 2023; 12:176. [PMID: 36671377 PMCID: PMC9854794 DOI: 10.3390/antibiotics12010176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Trauma is a leading cause of death and disability. Patients with trauma undergoing invasive mechanical ventilation (IMV) are at risk for ventilator-associated events (VAEs) potentially associated with a longer duration of IMV and increased stay in the intensive care unit (ICU). METHODS We conducted a retrospective cohort study aimed to evaluate the incidence of infection-related ventilator-associated complications (IVACs), possible ventilator-associated pneumonia (PVAP), and their characteristics among patients experiencing severe trauma that required ICU admission and IMV for at least four days. We also determined pathogens implicated in PVAP episodes and characterized the use of antimicrobial therapy. RESULTS In total, 88 adult patients were included in the main analysis. In this study, we observed that 29.5% of patients developed a respiratory infection during ICU stay. Among them, five patients (19.2%) suffered from respiratory infections due to multi-drug resistant bacteria. Patients who developed IVAC/PVAP presented lower total GCS (median value, 7; (IQR, 9) vs. 12.5, (IQR, 8); p = 0.068) than those who did not develop IVAC/PVAP. CONCLUSIONS We observed that less than one-third of trauma patients fulfilling criteria for ventilator associated events developed a respiratory infection during the ICU stay.
Collapse
Affiliation(s)
- Emanuele Russo
- Anesthesia and Intensive Care Unit, Bufalini Hospital, AUSL Romagna, 47521 Cesena, Italy
| | - Marta Velia Antonini
- Anesthesia and Intensive Care Unit, Bufalini Hospital, AUSL Romagna, 47521 Cesena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena & Reggio Emilia, 41121 Modena, Italy
| | - Andrea Sica
- Anesthesia and Intensive Care Unit, Bufalini Hospital, AUSL Romagna, 47521 Cesena, Italy
| | - Cristian Dell’Amore
- Anesthesia and Intensive Care Unit, Bufalini Hospital, AUSL Romagna, 47521 Cesena, Italy
| | - Costanza Martino
- Anesthesia and Intensive Care Unit, Umberto I Hospital, AUSL Romagna, 48022 Lugo, Italy
| | - Emiliano Gamberini
- Anesthesia and Intensive Care Unit, Infermi Hospital, AUSL della Romagna, 47923 Rimini, Italy
| | - Luca Bissoni
- Anesthesia and Intensive Care Unit, Bufalini Hospital, AUSL Romagna, 47521 Cesena, Italy
| | - Alessandro Circelli
- Anesthesia and Intensive Care Unit, Bufalini Hospital, AUSL Romagna, 47521 Cesena, Italy
| | - Giuliano Bolondi
- Anesthesia and Intensive Care Unit, Bufalini Hospital, AUSL Romagna, 47521 Cesena, Italy
| | | | - Francesco Cristini
- Infectious Diseases Unit, Forlì-Cesena Hospitals, AUSL Romagna, 47121 Forlì-Cesena, Italy
| | - Luigi Raumer
- Infectious Diseases Unit, Forlì-Cesena Hospitals, AUSL Romagna, 47121 Forlì-Cesena, Italy
| | - Fausto Catena
- Department of Emergency Surgery and Trauma, Bufalini Hospital, AUSL Romagna, 47521 Cesena, Italy
| | - Vanni Agnoletti
- Anesthesia and Intensive Care Unit, Bufalini Hospital, AUSL Romagna, 47521 Cesena, Italy
| |
Collapse
|
13
|
Limiting the Spread of Multidrug-Resistant Bacteria in Low-to-Middle-Income Countries: One Size Does Not Fit All. Pathogens 2023; 12:pathogens12010144. [PMID: 36678492 PMCID: PMC9866331 DOI: 10.3390/pathogens12010144] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
The spread of multidrug-resistant organisms (MDRO) is associated with additional costs as well as higher morbidity and mortality rates. Risk factors related to the spread of MDRO can be classified into four categories: bacterial, host-related, organizational, and epidemiological. Faced with the severity of the MDRO predicament and its individual and collective consequences, many scientific societies have developed recommendations to help healthcare teams control the spread of MDROs. These international recommendations include a series of control measures based on surveillance cultures and the application of barrier measures, ranging from patients' being isolated in single rooms, to the reinforcement of hand hygiene and implementation of additional contact precautions, to the cohorting of colonized patients in a dedicated unit with or without a dedicated staff. In addition, most policies include the application of an antimicrobial stewardship program. Applying international policies to control the spread of MDROs presents several challenges, particularly in low-to-middle-income countries (LMICs). Through a review of the literature, this work evaluates the real risks of dissemination linked to MDROs and proposes an alternative policy that caters to the means of LMICs. Indeed, sufficient evidence exists to support the theory that high compliance with hand hygiene and antimicrobial stewardship reduces the risk of MDRO transmission. LMICs would therefore be better off adopting such low-cost policies without necessarily having to implement costly isolation protocols or impose additional contact precautions.
Collapse
|
14
|
Le Guern R, Grandjean T, Stabler S, Bauduin M, Gosset P, Kipnis É, Dessein R. Gut colonisation with multidrug-resistant Klebsiella pneumoniae worsens Pseudomonas aeruginosa lung infection. Nat Commun 2023; 14:78. [PMID: 36604442 PMCID: PMC9816093 DOI: 10.1038/s41467-022-35767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
Carbapenemase-producing Enterobacterales (CPE) are spreading rapidly in hospital settings. Asymptomatic CPE gut colonisation may be associated with dysbiosis and gut-lung axis alterations, which could impact lung infection outcomes. In this study, in male C57BL/6JRj mice colonised by CPE, we characterise the resulting gut dysbiosis, and analyse the lung immune responses and outcomes of subsequent Pseudomonas aeruginosa lung infection. Asymptomatic gut colonisation by CPE leads to a specific gut dysbiosis and increases the severity of P. aeruginosa lung infection through lower numbers of alveolar macrophages and conventional dendritic cells. CPE-associated dysbiosis is characterised by a near disappearance of the Muribaculaceae family and lower levels of short-chain fatty acids. Faecal microbiota transplantation restores immune responses and outcomes of lung infection outcomes, demonstrating the involvement of CPE colonisation-induced gut dysbiosis in altering the immune gut-lung axis, possibly mediated by microbial metabolites such as short-chain fatty acids.
Collapse
Affiliation(s)
- Rémi Le Guern
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France.
| | - Teddy Grandjean
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Sarah Stabler
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Marvin Bauduin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Philippe Gosset
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Éric Kipnis
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Rodrigue Dessein
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| |
Collapse
|
15
|
Appel TM, Vehreschild MJ. [Role of the gut microbiome in the development and transfer of antibiotic resistances]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2022; 63:1043-1050. [PMID: 36048186 DOI: 10.1007/s00108-022-01400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial resistance (AR) is a natural phenomenon resulting from the exposure of bacteria to antibacterial substances. The intestinal microbiome plays a central role in the development and transmission of AR. In its physiological state, the intestinal microbiome has several mechanisms that contribute to what is referred to as colonization resistance against potentially pathogenic and often multiresistant bacteria. Exposure to broad-spectrum antibiotics can disrupt those mechanisms, facilitating colonization with these pathogens. The persistence of antibiotic selection pressure favors growth of multiresistant bacteria and their dominance within the intestinal microbiota. Under these circumstances, the risk of the development of invasive infections increases. Antibiotic stewardship programs, the use of narrow-spectrum antibiotics, and the administration of substances that protect the intestinal microbiome from antibiotic exposure can prevent these processes. Several interventions such as the administration of probiotics, oral antibiotics, and fecal microbiome transfers are potential strategies for decolonizing patients with multidrug resistant bacteria; to date, however, no intervention has been proven to be consistently effective.
Collapse
Affiliation(s)
- Tobias M Appel
- Zentrum für Innere Medizin, Medizinische Klinik 2, Infektiologie, Universitätsklinikum Frankfurt, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland
| | - Maria J Vehreschild
- Zentrum für Innere Medizin, Medizinische Klinik 2, Infektiologie, Universitätsklinikum Frankfurt, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland.
| |
Collapse
|
16
|
Lai Y, Fakhri A, Janani BJ. Synergistic activities of silver indium sulfide/nickel molybdenum sulfide nanostructures anchored on clay mineral for light-driven bactericidal performance, and detection of uric acid from gout patient serum. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112526. [PMID: 35908358 DOI: 10.1016/j.jphotobiol.2022.112526] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/30/2022]
Abstract
In this study, the hydrothermal method was used to synthesis of silver indium sulfide/nickel molybdenum sulfide (AgInS2/NiMoS4) nanostructure and decorated on Palygorskite (Plg) as an excellent carrier of antibacterial materials. The performance of the prepared AgInS2/NiMoS4/Plg composites was investigated for light-driven antibacterial process and detection of uric acid from biological samples. The result shows the highest antibacterial activity of the AgInS2/NiMoS4/Plg with the minimum inhibitory concentrations about 0.2-0.3 mg/mL. The prepared AgInS2/NiMoS4/Plg as sensor depicted enhanced peroxidase-like activity for detection of acid uric. The detection limit of acid uric by AgInS2/NiMoS4/Plg was about 26.1 nM. Therefore, the AgInS2/NiMoS4/Plg can be developed in the bactericidal process and sensing in complex biological systems.
Collapse
Affiliation(s)
- Ying Lai
- Department of Life Science and Agriculture, Zhoukou Normal University, Zhoukou, Henan 466001, China.
| | - Ali Fakhri
- Nanotechnology Laboratory, Nano Smart Science Institute, Tehran, Iran; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
17
|
Wang Y, Li Q, Peng X, Li Z, Xiang J, Chen Y, Hao K, Wang S, Nie D, Cui Y, Lv F, Wang Y, Wu W, Guo D, Si H. Green synthesis of silver nanoparticles through oil: Promoting full-thickness cutaneous wound healing in methicillin-resistant Staphylococcus aureus infections. Front Bioeng Biotechnol 2022; 10:856651. [PMID: 36082170 PMCID: PMC9445837 DOI: 10.3389/fbioe.2022.856651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Due to the emergence of multi-drug resistant microorganisms, the development and discovery of alternative eco-friendly antimicrobial agents have become a top priority. In this study, a simple, novel, and valid green method was developed to synthesize Litsea cubeba essential oil-silver nanoparticles (Lceo-AgNPs) using Lceo as a reducing and capping agent. The maximum UV absorbance of Lceo-AgNPs appeared at 423 nm and the size was 5-15 nm through transmission electron microscopy result. The results of Fourier transform infrared and DLS showed that Lceo provided sufficient chemical bonds for Lceo-AgNPs to reinforce its stability and dispersion. The in vitro antibacterial effects of Lceo-AgNPs against microbial susceptible multidrug-resistant Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) were determined. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Lceo-AgNPs against E. coli were 25 and 50 μg/ml. The MIC and MBC of Lceo-AgNPs against MRSA were 50 and 100 μg/ml, respectively. The results of scanning electron microscopy showed that the amount of bacteria obviously decreased and the bacteria cells were destroyed by Lceo-AgNPs. In vivo research disclosed significant wound healing and re-epithelialization effects in the Lceo-AgNPs group compared with the self-healing group and the healing activity was better than in the sulfadiazine silver group. In this experiment, Lceo-AgNPs has been shown to have effects on killing multidrug-resistant bacteria and promoting wound healing. This study suggested Lceo-AgNPs as an excellent new-type drug for wound treatment infected with multidrug-resistant bacteria, and now expects to proceed with clinical research.
Collapse
Affiliation(s)
- Yuhan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qinmei Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaomin Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zheng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jun Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yunru Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kaiyuan Hao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shuaiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Dongyang Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yao Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Feifei Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wenda Wu
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
18
|
Ghani R, Mullish BH, Roberts LA, Davies FJ, Marchesi JR. The potential utility of fecal (or intestinal) microbiota transplantation in controlling infectious diseases. Gut Microbes 2022; 14:2038856. [PMID: 35230889 PMCID: PMC8890388 DOI: 10.1080/19490976.2022.2038856] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The intestinal microbiota is recognized to play a role in the defense against infection, but conversely also acts as a reservoir for potentially pathogenic organisms. Disruption to the microbiome can increase the risk of invasive infection from these organisms; therefore, strategies to restore the composition of the gut microbiota are a potential strategy of key interest to mitigate this risk. Fecal (or Intestinal) Microbiota Transplantation (FMT/IMT), is the administration of minimally manipulated screened healthy donor stool to an affected recipient, and remains the major 'whole microbiome' therapeutic approach at present. Driven by the marked success of using FMT in the treatment of recurrent Clostridioides difficile infection, the potential use of FMT in treating other infectious diseases is an area of active research. In this review, we discuss key examples of this treatment based on recent findings relating to the interplay between microbiota and infection, and potential further exploitations of FMT/IMT.
Collapse
Affiliation(s)
- Rohma Ghani
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lauren A. Roberts
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Frances J. Davies
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|