1
|
Hussein M, Mahboob MBH, Tait JR, Grace JL, Montembault V, Fontaine L, Quinn JF, Velkov T, Whittaker MR, Landersdorfer CB. Providing insight into the mechanism of action of cationic lipidated oligomers using metabolomics. mSystems 2024; 9:e0009324. [PMID: 38606960 PMCID: PMC11097639 DOI: 10.1128/msystems.00093-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
The increasing resistance of clinically relevant microbes against current commercially available antimicrobials underpins the urgent need for alternative and novel treatment strategies. Cationic lipidated oligomers (CLOs) are innovative alternatives to antimicrobial peptides and have reported antimicrobial potential. An understanding of their antimicrobial mechanism of action is required to rationally design future treatment strategies for CLOs, either in monotherapy or synergistic combinations. In the present study, metabolomics was used to investigate the potential metabolic pathways involved in the mechanisms of antibacterial activity of one CLO, C12-o-(BG-D)-10, which we have previously shown to be effective against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300. The metabolomes of MRSA ATCC 43300 at 1, 3, and 6 h following treatment with C12-o-(BG-D)-10 (48 µg/mL, i.e., 3× MIC) were compared to those of the untreated controls. Our findings reveal that the studied CLO, C12-o-(BG-D)-10, disorganized the bacterial membrane as the first step toward its antimicrobial effect, as evidenced by marked perturbations in the bacterial membrane lipids and peptidoglycan biosynthesis observed at early time points, i.e., 1 and 3 h. Central carbon metabolism and the biosynthesis of DNA, RNA, and arginine were also vigorously perturbed, mainly at early time points. Moreover, bacterial cells were under osmotic and oxidative stress across all time points, as evident by perturbations of trehalose biosynthesis and pentose phosphate shunt. Overall, this metabolomics study has, for the first time, revealed that the antimicrobial action of C12-o-(BG-D)-10 may potentially stem from the dysregulation of multiple metabolic pathways.IMPORTANCEAntimicrobial resistance poses a significant challenge to healthcare systems worldwide. Novel anti-infective therapeutics are urgently needed to combat drug-resistant microorganisms. Cationic lipidated oligomers (CLOs) show promise as new antibacterial agents against Gram-positive pathogens like methicillin-resistant Staphylococcus aureus (MRSA). Understanding their molecular mechanism(s) of antimicrobial action may help design synergistic CLO treatments along with monotherapy. Here, we describe the first metabolomics study to investigate the killing mechanism(s) of CLOs against MRSA. The results of our study indicate that the CLO, C12-o-(BG-D)-10, had a notable impact on the biosynthesis and organization of the bacterial cell envelope. C12-o-(BG-D)-10 also inhibits arginine, histidine, central carbon metabolism, and trehalose production, adding to its antibacterial characteristics. This work illuminates the unique mechanism of action of C12-o-(BG-D)-10 and opens an avenue to design innovative antibacterial oligomers/polymers for future clinical applications.
Collapse
Affiliation(s)
- Maytham Hussein
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Muhammad Bilal Hassan Mahboob
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jessica R. Tait
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - James L. Grace
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Véronique Montembault
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS–Le Mans Université, Le Mans, France
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS–Le Mans Université, Le Mans, France
| | - John F. Quinn
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, Australia
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Michael R. Whittaker
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cornelia B. Landersdorfer
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Ho LC, Yu Chi C, You YS, Hsieh YW, Hou YC, Lin TC, Chen MT, Chou CH, Chen YC, Hsu KC, Yu J, Hsueh PR, Cho DY. Impact of the implementation of the Intelligent Antimicrobial System (iAMS) on clinical outcomes among patients with bacteraemia caused by methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 2024; 63:107142. [PMID: 38490572 DOI: 10.1016/j.ijantimicag.2024.107142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
OBJECTIVES This study aimed to investigate the clinical impact of the Intelligent Antimicrobial System (iAMS) on patients with bacteraemia due to methicillin-resistant (MRSA) and methicillin-susceptible Staphylococcus aureus (MSSA). METHODS A total of 1008 patients with suspected SA infection were enrolled before and after the implementation of iAMS. Among them, 252 with bacteraemia caused by SA, including 118 in the iAMS and 134 in the non-iAMS groups, were evaluated. RESULTS The iAMS group exhibited a 5.2% (from 55.2% to 50.0%; P = 0.96) increase in the 1-year survival rate. For patients with MRSA and MSSA compared to the non-iAMS group, the 1-year survival rate increased by 17.6% (from 70.9% to 53.3%; P = 0.41) and 7.0% (from 52.3% to 45.3%; P = 0.57), respectively, both surpassing the rate of the non-iAMS group. The iAMS intervention resulted in a higher long-term survival rate (from 70.9% to 52.3%; P = 0.984) for MRSA patients than for MSSA patients. MRSA patients experienced a reduced length of hospital stay (from 23.3% to 35.6%; P = 0.038), and the 45-day discharge rate increased by 20.4% (P = 0.064). Furthermore, the intervention resulted in a significant 97.3% relative decrease in near miss medication incidents reported by pharmacists (P = 0.013). CONCLUSIONS Implementation of iAMS platform improved long-term survival rates, discharge rates, hospitalization days, and medical cost (although no significant differences were observed) among patients with MRSA bacteraemia. Additionally, it demonstrated significant benefits in ensuring drug safety.
Collapse
Affiliation(s)
- Lu-Ching Ho
- School of Pharmacy, China Medical University, Taichung, Taiwan; Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan
| | - Chih Yu Chi
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan
| | - Ying-Shu You
- Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yow-Wen Hsieh
- School of Pharmacy, China Medical University, Taichung, Taiwan; Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chi Hou
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Tzu-Ching Lin
- Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan
| | - Ming Tung Chen
- Information Office, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hui Chou
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chieh Chen
- School of Pharmacy, China Medical University, Taichung, Taiwan; Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan
| | - Kai-Cheng Hsu
- Artificial Intelligence Center, China Medical University Hospital, Taichung, Taiwan
| | - Jiaxin Yu
- Artificial Intelligence Center, China Medical University Hospital, Taichung, Taiwan
| | - Po-Ren Hsueh
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; Department of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
3
|
Chang CH, Chang CH, Huang SH, Lee CS, Ko PC, Lin CY, Hsieh MH, Huang YT, Lin HC, Li LF, Chung FT, Wang CH, Huang HY. Epidemiology and outcomes of multidrug-resistant bacterial infection in non-cystic fibrosis bronchiectasis. Ann Clin Microbiol Antimicrob 2024; 23:15. [PMID: 38350983 PMCID: PMC10865664 DOI: 10.1186/s12941-024-00675-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/04/2024] [Indexed: 02/15/2024] Open
Abstract
PURPOSE Multidrug-resistant (MDR) bacteria impose a considerable health-care burden and are associated with bronchiectasis exacerbation. This study investigated the clinical outcomes of adult patients with bronchiectasis following MDR bacterial infection. METHODS From the Chang Gung Research Database, we identified patients with bronchiectasis and MDR bacterial infection from 2008 to 2017. The control group comprised patients with bronchiectasis who did not have MDR bacterial infection and were propensity-score matched at a 1:2 ratio. The main outcomes were in-hospital and 3-year mortality. RESULTS In total, 554 patients with both bronchiectasis and MDR bacterial infection were identified. The types of MDR bacteria that most commonly affected the patients were MDR- Acinetobacter baumannii (38.6%) and methicillin-resistant Staphylococcus aureus (18.4%), Extended-spectrum-beta-lactamases (ESBL)- Klebsiella pneumoniae (17.8%), MDR-Pseudomonas (14.8%), and ESBL-E. coli (7.5%). Compared with the control group, the MDR group exhibited lower body mass index scores, higher rate of chronic bacterial colonization, a higher rate of previous exacerbations, and an increased use of antibiotics. Furthermore, the MDR group exhibited a higher rate of respiratory failure during hospitalization (MDR vs. control, 41.3% vs. 12.4%; p < 0.001). The MDR and control groups exhibited in-hospital mortality rates of 26.7% and 7.6%, respectively (p < 0.001); 3-year respiratory failure rates of 33.5% and 13.5%, respectively (p < 0.001); and 3-year mortality rates of 73.3% and 41.5%, respectively (p < 0.001). After adjustments were made for confounding factors, the infection with MDR and MDR bacteria species were determined to be independent risk factors affecting in-hospital and 3-year mortality. CONCLUSIONS MDR bacteria were discovered in patients with more severe bronchiectasis and were independently associated with an increased risk of in-hospital and 3-year mortality. Given our findings, we recommend that clinicians identify patients at risk of MDR bacterial infection and follow the principle of antimicrobial stewardship to prevent the emergence of resistant bacteria among patients with bronchiectasis.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Department of Thoracic Medicine, New Taipei City Municipal TuCheng Hospital, Chang Gung Medical Foundation, New Taipei City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa North Road, Taipei, Taiwan
| | - Chiung-Hsin Chang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa North Road, Taipei, Taiwan
| | - Shih-Hao Huang
- Department of Thoracic Medicine, New Taipei City Municipal TuCheng Hospital, Chang Gung Medical Foundation, New Taipei City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa North Road, Taipei, Taiwan
| | - Chung-Shu Lee
- Department of Thoracic Medicine, New Taipei City Municipal TuCheng Hospital, Chang Gung Medical Foundation, New Taipei City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa North Road, Taipei, Taiwan
| | - Po-Chuan Ko
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Yu Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa North Road, Taipei, Taiwan
| | - Meng-Heng Hsieh
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa North Road, Taipei, Taiwan
| | - Yu-Tung Huang
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Horng-Chyuan Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa North Road, Taipei, Taiwan
| | - Li-Fu Li
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa North Road, Taipei, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Fu-Tsai Chung
- Department of Thoracic Medicine, New Taipei City Municipal TuCheng Hospital, Chang Gung Medical Foundation, New Taipei City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa North Road, Taipei, Taiwan
| | - Chun-Hua Wang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa North Road, Taipei, Taiwan
| | - Hung-Yu Huang
- Department of Thoracic Medicine, New Taipei City Municipal TuCheng Hospital, Chang Gung Medical Foundation, New Taipei City, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa North Road, Taipei, Taiwan.
| |
Collapse
|
4
|
Jiang JH, Cameron DR, Nethercott C, Aires-de-Sousa M, Peleg AY. Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages. Clin Microbiol Rev 2023; 36:e0014822. [PMID: 37982596 PMCID: PMC10732075 DOI: 10.1128/cmr.00148-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of severe and often fatal infections. MRSA epidemics have occurred in waves, whereby a previously successful lineage has been replaced by a more fit and better adapted lineage. Selection pressures in both hospital and community settings are not uniform across the globe, which has resulted in geographically distinct epidemiology. This review focuses on the mechanisms that trigger the establishment and maintenance of current, dominant MRSA lineages across the globe. While the important role of antibiotic resistance will be mentioned throughout, factors which influence the capacity of S. aureus to colonize and cause disease within a host will be the primary focus of this review. We show that while MRSA possesses a diverse arsenal of toxins including alpha-toxin, the success of a lineage involves more than just producing toxins that damage the host. Success is often attributed to the acquisition or loss of genetic elements involved in colonization and niche adaptation such as the arginine catabolic mobile element, as well as the activity of regulatory systems, and shift metabolism accordingly (e.g., the accessory genome regulator, agr). Understanding exactly how specific MRSA clones cause prolonged epidemics may reveal targets for therapies, whereby both core (e.g., the alpha toxin) and acquired virulence factors (e.g., the Panton-Valentine leukocidin) may be nullified using anti-virulence strategies.
Collapse
Affiliation(s)
- Jhih-Hang Jiang
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David R. Cameron
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Cara Nethercott
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Marta Aires-de-Sousa
- Laboratory of Molecular Genetics, Institutode Tecnologia Químicae Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa-Lisboa (ESSCVP-Lisboa), Lisbon, Portugal
| | - Anton Y. Peleg
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Lim LL, Worth LJ, Bull A. Identifying Methicillin-resistant Staphylococcus aureus Colonization or Infection Using Administratively Coded Data. Clin Infect Dis 2023; 77:331-332. [PMID: 36974614 DOI: 10.1093/cid/ciad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Affiliation(s)
- Lyn-Li Lim
- Victorian Healthcare Associated Infection Surveillance System (VICNISS), at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Leon J Worth
- Victorian Healthcare Associated Infection Surveillance System (VICNISS), at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Ann Bull
- Victorian Healthcare Associated Infection Surveillance System (VICNISS), at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|