1
|
Rotem G, Kadar A. New Technologies in the Treatment of Base of Thumb Osteoarthritis. J Am Acad Orthop Surg 2024:00124635-990000000-01115. [PMID: 39383011 DOI: 10.5435/jaaos-d-23-01059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 08/29/2024] [Indexed: 10/11/2024] Open
Abstract
Symptomatic osteoarthritis (OA) of the first carpometacarpal (CMC) joint is prevalent and debilitating, commonly affecting the elderly and postmenopausal population. This review highlights the latest advancements in the treatment of thumb CMC OA, which historically includes a range of nonsurgical and surgical options without a consensus benchmark. We will focus on innovative and emerging technologies. Nonsurgical treatments typically comprise custom braces and corticosteroid injections. In addition, this review explores advanced approaches such as 3D printed braces, which have improved patient satisfaction, and novel intra-articular injectables such as autologous fat, optimized by ultrasonography to enhance treatment precision and outcomes. Although standard surgical treatments include trapeziectomy, with or without ligament reconstruction and tendon interposition, more recent implant arthroplasty designs show promising long-term survival. Newer interventions include patient-specific instrumentation for metacarpal osteotomies, selective joint denervation, and innovative suspensionplasty devices, all marked by their increased precision and personalized care. However, it is important to note that these novel technologies are not yet established as superior to standard treatments of thumb CMC OA.
Collapse
Affiliation(s)
- Gilad Rotem
- From the Division of Orthopedic Surgery, University of Western Ontario, Roth-McFarlane Hand and Upper Limb Center, St Joseph's Health Care, London, Ontario, Canada (Dr. Rotem and Dr. Kadar), and the Department of Hand Surgery, Sheba Medical Center, Tel Aviv University School of Medicine, Tel Hashomer, Israel (Dr. Rotem)
| | | |
Collapse
|
2
|
Liu H, Binoy A, Ren S, Martino TC, Miller AE, Willis CRG, Veerabhadraiah SR, Sukul A, Bons J, Rose JP, Schilling B, Jurynec MJ, Zhu S. Sirt5 regulates chondrocyte metabolism and osteoarthritis development through protein lysine malonylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604872. [PMID: 39091806 PMCID: PMC11291161 DOI: 10.1101/2024.07.23.604872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Objectives Chondrocyte metabolic dysfunction plays an important role in osteoarthritis (OA) development during aging and obesity. Protein post-translational modifications (PTMs) have recently emerged as an important regulator of cellular metabolism. We aim to study one type of PTM, lysine malonylation (MaK) and its regulator Sirt5 in OA development. Methods Human and mouse cartilage tissues were used to measure SIRT5 and MaK levels. Both systemic and cartilage-specific conditional knockout mouse models were subject to high-fat diet (HFD) treatment to induce obesity and OA. Proteomics analysis was performed in Sirt5 -/- and WT chondrocytes. SIRT5 mutation was identified in the Utah Population Database (UPDB). Results We found that SIRT5 decreases while MAK increases in the cartilage during aging. A combination of Sirt5 deficiency and obesity exacerbates joint degeneration in a sex dependent manner in mice. We further delineate the malonylome in chondrocytes, pinpointing MaK's predominant impact on various metabolic pathways such as carbon metabolism and glycolysis. Lastly, we identified a rare coding mutation in SIRT5 that dominantly segregates in a family with OA. The mutation results in substitution of an evolutionally invariant phenylalanine (Phe-F) to leucine (Leu-L) (F101L) in the catalytic domain. The mutant protein results in higher MaK level and decreased expression of cartilage ECM genes and upregulation of inflammation associated genes. Conclusions We found that Sirt5 mediated MaK is an important regulator of chondrocyte cellular metabolism and dysregulation of Sirt5-MaK could be an important mechanism underlying aging and obesity associated OA development.
Collapse
Affiliation(s)
- Huanhuan Liu
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
- Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
| | - Anupama Binoy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
- Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
| | - Siqi Ren
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
- Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
| | - Thomas C. Martino
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
- Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
| | - Anna E. Miller
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
- Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
| | - Craig R. G. Willis
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | | | - Abhijit Sukul
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
- Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Jacob P. Rose
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Michael J. Jurynec
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, 84108 USA
| | - Shouan Zhu
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
- Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
- Diabetes Institute (DI), Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
3
|
Henkel C, Erikstrup C, Ostrowski SR, Pedersen OB, Troelsen A. Genetics may affect the risk of undergoing surgery for rhizarthrosis. J Orthop Res 2024; 42:1001-1008. [PMID: 38263870 DOI: 10.1002/jor.25753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/25/2023] [Accepted: 11/28/2023] [Indexed: 01/25/2024]
Abstract
Osteoarthritis is a prevalent and severe disease. Involvement of the trapeziometacarpal joint is common and can lead to both pain and disability. Genetics are known to affect the risk of osteoarthritis, but it remains unclear how genetics affect disease trajectories. In this study, we investigated whether the genetic associations of trapeziometacarpal osteoarthritis (rhizarthrosis) vary with the need for surgical treatment. The study was conducted as a case-control genome-wide association study using individuals from the Copenhagen Hospital Biobank pain and degenerative musculoskeletal disease study and the Danish Blood Donor Study (N = 208,342). We identified patients diagnosed with rhizarthrosis and grouped them by treatment status, resulting in two case groups: surgical (N = 1083) and nonsurgical (N = 1888). The case groups were tested against osteoarthritis-free controls in two genome-wide association studies. We then compared variants suggestive of association (p < 10-6) in either of these analyses directly between the treatment groups (surgical vs. nonsurgical rhizarthrosis). We identified 10 variants suggestive of association with either surgical (seven variants) or nonsurgical (three variants) rhizarthrosis. None of the variants reached nominal significance in the opposite treatment group (p ≥ 0.14), and all 10 variants were significantly different between the treatment groups at a false discovery rate of 5%. These results suggest possible differences in the genetic associations of rhizarthrosis depending on surgical treatment. Clinical significance: Uncovering genetic differences between clinically distinct patient groups can reveal biological determinants of disease trajectories.
Collapse
Affiliation(s)
- Cecilie Henkel
- Clinical Orthopaedic Research Hvidovre (CORH), Department of Orthopaedic Surgery, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Clinical Academic Group: Research OsteoArthritis Denmark (CAG ROAD), Greater Copenhagen Health Science Partners, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole B Pedersen
- Clinical Academic Group: Research OsteoArthritis Denmark (CAG ROAD), Greater Copenhagen Health Science Partners, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital Køge, Køge, Denmark
| | - Anders Troelsen
- Clinical Orthopaedic Research Hvidovre (CORH), Department of Orthopaedic Surgery, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Clinical Academic Group: Research OsteoArthritis Denmark (CAG ROAD), Greater Copenhagen Health Science Partners, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|