1
|
Onishi R, Shigemura K, Osawa K, Yang YM, Maeda K, Fang SB, Sung SY, Onuma K, Uda A, Miyara T, Fujisawa M. The Antimicrobial Resistance Characteristics of Imipenem-Non-Susceptible, Imipenemase-6-Producing Escherichia coli. Antibiotics (Basel) 2021; 11:antibiotics11010032. [PMID: 35052909 PMCID: PMC8772982 DOI: 10.3390/antibiotics11010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Imipenemase-6 (IMP-6) type carbapenemase-producing Enterobacteriaceae is regarded as dangerous due to its unique lack of antimicrobial susceptibility. It is resistant to meropenem (MEPM) but susceptible to imipenem (IPM). In addition to carbapenemase, outer membrane porins and efflux pumps also play roles in carbapenem resistance by reducing the antimicrobial concentration inside cells. Extended-spectrum β-lactamase (ESBL) is transmitted with IMP-6 by the plasmid and broadens the spectrum of antimicrobial resistance. We collected 42 strains of IMP-6-producing Escherichia coli and conducted a molecular analysis of carbapenemase, ESBL, porin, efflux, and epidemiological characteristics using plasmid replicon typing. Among the 42 isolates, 21 strains were susceptible to IPM (50.0%) and 1 (2.4%) to MEPM. Seventeen strains (40.5%) co-produced CTX-M-2 type ESBL. We found that the relative expression of ompC and ompF significantly correlated with the MIC of IPM (p = 0.01 and p = 0.03, respectively). Sixty-eight% of CTX-M-2-non-producing strains had IncI1, which was significantly different from CTX-M-2-producing strains (p < 0.001). In conclusion, 50.0% of our IMP-6-producing strains were non-susceptible to IPM, which is different from the typical pattern and can be attributed to decreased porin expression. Further studies investigating other types of carbapenemase are warranted.
Collapse
Affiliation(s)
- Reo Onishi
- Department of Public Health, Division of Infectious Diseases, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe 654-0142, Japan;
| | - Katsumi Shigemura
- Department of Public Health, Division of Infectious Diseases, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe 654-0142, Japan;
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.-M.Y.); (K.M.); (M.F.)
- Correspondence: ; Tel.: +81-78-382-6155
| | - Kayo Osawa
- Department of Medical Technology, Kobe Tokiwa University, 2-6-2 Otani-cho, Nagata-ku, Kobe 653-0838, Japan;
| | - Young-Min Yang
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.-M.Y.); (K.M.); (M.F.)
| | - Koki Maeda
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.-M.Y.); (K.M.); (M.F.)
| | - Shiuh-Bin Fang
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Shuang Ho Hospital, Taipei Medical University, 291 Jhong Jheng Road, Jhong Ho District, New Taipei City 23561, Taiwan;
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Shian-Ying Sung
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Kenichiro Onuma
- Department of Infection Control and Prevention, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (K.O.); (A.U.); (T.M.)
| | - Atsushi Uda
- Department of Infection Control and Prevention, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (K.O.); (A.U.); (T.M.)
| | - Takayuki Miyara
- Department of Infection Control and Prevention, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (K.O.); (A.U.); (T.M.)
| | - Masato Fujisawa
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.-M.Y.); (K.M.); (M.F.)
| |
Collapse
|
2
|
Effect of Imipenem and Amikacin Combination against Multi-Drug Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10111429. [PMID: 34827367 PMCID: PMC8615098 DOI: 10.3390/antibiotics10111429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic nosocomial pathogen associated with high morbidity and mortality rates. Combination of antibiotics has been found to combat multi-drug resistant or extensively drug resistance P. aeruginosa. In this study we investigate the in vitro and in vivo effect of amikacin and imipenem combination against resistant P. aeruginosa. The checkerboard technique and time-killing curve have been performed for in vitro studies showed synergistic effect for combination. A peritonitis mouse model has been used for evaluation of the therapeutic efficacy of this combination which confirmed this synergistic effect. The in vitro and in vivo techniques showed synergistic interaction between tested drugs with fractional inhibitory concentration indices (FICIs) of ≤0.5. Conventional PCR and quantitative real-time PCR techniques were used in molecular detection of bla IMP and aac(6')-Ib as 35.5% and 42.2% of P. aeruginosa harbored bla IMP and aac(6')-Ib respectively. Drug combination viewed statistically significant reduction in bacterial counts (p value < 0.5). The lowest bla IMP and aac(6')-Ib expression was observed after treatment with 0.25 MIC of imipenem + 0.5 MIC of amikacin. Morphological changes in P. aeruginosa isolates were detected by scanning electron microscope (SEM) showing cell shrinkage and disruption in the outer membrane of P. aeruginosa that were more prominent with combination therapy than with monotherapy.
Collapse
|
3
|
Lu Q, Okanda T, Yang Y, Khalifa HO, Haque A, Takemura H, Matsumoto T. High-Speed Quenching Probe-Polymerase Chain Reaction Assay for the Rapid Detection of Carbapenemase-Producing Gene Using GENECUBE: A Fully Automatic Gene Analyzer. Mol Diagn Ther 2021; 25:231-238. [PMID: 33453050 DOI: 10.1007/s40291-020-00511-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND The prevalence of carbapenemase-producing organisms (CPOs) globally poses a public health threat; however, detecting carbapenemases is a challenge because of their variety. METHODS GENECUBE, a fully automated gene analyzer, detects a target gene in a short time and simultaneously detects its single nucleotide polymorphism. We used this property to develop for the first time a rapid assay for detecting CPOs from cultured bacteria using GENECUBE. The original primer-probe sets were used to detect blaKPC, blaIMP, blaVIM, blaNDM, and blaOXA-48-like from 149 CPOs (nine types) and 61 non-CPOs. RESULTS The sensitivity, specificity, and positive and negative predictions of the GENECUBE assay were 100%. This assay detected carbapenemase single-producers and carbapenemase co-producers with 100% accuracy. The time required for detects of four types of carbapenemase at one run was about 30 min, but it took about 1 h to detect all five types. In addition, this assay performed the rapid detection and classification of blaOXA-48, blaOXA-181, blaOXA-232, and blaOXA-244 simultaneously. CONCLUSIONS The GENECUBE assay is a promising tool for controlling the spread of CPOs and helping to select accurate and rapid antibiotic therapies.
Collapse
Affiliation(s)
- Qi Lu
- Department of Infectious Diseases, International University of Health and Welfare, Narita, Japan
- Department of Neonatology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Takashi Okanda
- Department of Infectious Diseases, International University of Health and Welfare, Narita, Japan.
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki, Japan.
| | - Yu Yang
- Department of Infectious Diseases, International University of Health and Welfare, Narita, Japan
| | - Hazim O Khalifa
- Department of Infectious Diseases, International University of Health and Welfare, Narita, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Anwarul Haque
- Department of Infectious Diseases, International University of Health and Welfare, Narita, Japan
| | - Hiromu Takemura
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, International University of Health and Welfare, Narita, Japan
| |
Collapse
|
4
|
Okanda T, Haque A, Koshikawa T, Islam A, Huda Q, Takemura H, Matsumoto T, Nakamura S. Characteristics of Carbapenemase-Producing Klebsiella pneumoniae Isolated in the Intensive Care Unit of the Largest Tertiary Hospital in Bangladesh. Front Microbiol 2021; 11:612020. [PMID: 33519767 PMCID: PMC7844882 DOI: 10.3389/fmicb.2020.612020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/04/2020] [Indexed: 11/30/2022] Open
Abstract
For addressing the issue of antimicrobial drug resistance in developing countries, it is important to investigate the characteristics of carbapenemase-producing organisms. We aimed to genetically characterize a carbapenemase-producing Klebsiella pneumoniae (CPKP) isolated in the intensive care unit of a tertiary hospital in Bangladesh. The number of CPKP isolates were 43/145 (30%), of which pandrug-resistant (PDR) strains were 14%. These carbapenemases were New Delhi metallo-beta-lactamase (NDM)-1 (53%), NDM-5 (14%), oxacillinase (OXA)-181 (12%), OXA-232 (10%), NDM-5 + OXA-181 (5%), and NDM-5 + OXA-232 (2%). Many CPKP isolates harbored a variety of resistance genes, and the prevalence of 16S rRNA methyltransferase was particularly high (91%). The 43 CPKP isolates were classified into 14 different sequence types (STs), and the common STs were ST34 (26%), ST147 (16%), ST11 (9%), ST14 (9%), ST25 (7%), and ST231 (7%). In this study, PDR strains were of three types, ST147, ST231, and ST14, and their PDR rates were 57, 33, and 25%, respectively. The spread of the antimicrobial drug resistance of CPKP in Bangladesh was identified. In particular, the emergence of PDR is problem, and there may be its spread as a superbug of antimicrobial treatment.
Collapse
Affiliation(s)
- Takashi Okanda
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan.,Department of Microbiology, St. Marianna University School of Medicine, Kawasaki, Japan.,Department of Infectious Diseases, International University of Health and Welfare, Narita, Japan
| | - Anwarul Haque
- Department of Infectious Diseases, International University of Health and Welfare, Narita, Japan
| | - Takuro Koshikawa
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Amirul Islam
- Department of Anesthesia, Analgesia and Intensive Care Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Qumrul Huda
- Department of Anesthesia, Analgesia and Intensive Care Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Hiromu Takemura
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, International University of Health and Welfare, Narita, Japan
| | - Shigeki Nakamura
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|