1
|
Ventero MP, Marin C, Migura-Garcia L, Tort-Miro C, Giler N, Gomez I, Escribano I, Marco-Fuertes A, Montoro-Dasi L, Lorenzo-Rebenaque L, Vega S, Pérez-Gracia MT, Rodríguez JC. Identification of Antimicrobial-Resistant Zoonotic Bacteria in Swine Production: Implications from the One Health Perspective. Antibiotics (Basel) 2024; 13:883. [PMID: 39335056 PMCID: PMC11428682 DOI: 10.3390/antibiotics13090883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance poses a major threat to global health and food security and is primarily driven by antimicrobial use in human and veterinary medicine. Understanding its epidemiology at farm level is crucial for effective control measures. Despite the significant reduction in antibiotic use in conventional livestock production, the swine sector traditionally has a higher level of antibiotic use in veterinary medicine. Consequently, multidrug resistance (MDR) among microbial isolates of swine origin has been relatively frequent. The aim of this study was to assess the presence of multidrug-resistant (MDR) bacteria, enteric pathogens and resistance genes to the main antibiotics used in clinical practice, both within the environment and in animals across pig farms characterized by varying degrees of sanitary status. A total of 274 samples were collected. Of these, 34 samples were collected from the environment (wall swabs, slat swabs and slurry pit), and 240 samples were collected from animals (sows' and piglets' rectal faeces). All samples were analysed for MDR bacteria and enteric pathogens. The study revealed a high frequency of extended-spectrum beta-lactamases (ESBL)-producing Enterobacterales and Campylobacter spp., with ESBL-producing Enterobacterales predominating in high health status farms (environment and animals) and Campylobacter spp. in both high health status and low health status environments. Additionally, a high percentage of methicillin-resistant Staphylococcus aureus (MRSA) was found, mainly in environmental samples from high health status farms, and Clostridioides difficile was distributed ubiquitously among farms and samples. Furthermore, though less frequently, vancomycin-resistant Enterococcus faecium (VRE) was isolated only in high health status farms, and Gram-negative bacilli resistant to carbapenems were isolated only in environmental samples of high health status and low health status farms. This study underscores the importance of surveillance for MDR bacteria in farm animals and their environment, including their waste. Such ecosystems serve as crucial reservoirs of bacteria, requiring national-level surveillance to promote responsible antibiotic use and pandemic control.
Collapse
Affiliation(s)
- Maria Paz Ventero
- Servicio de Microbiología, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (I.G.); (I.E.); (J.C.R.)
| | - Clara Marin
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera—CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-F.); (L.M.-D.); (S.V.)
| | - Lourdes Migura-Garcia
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.T.-M.); (N.G.)
- IRTA. Programa de Sanitat Animal, CReSA, Collaborating Centre of the World Organisation for Animal Health for Research and Control of Emerging and Re-Emerging Pig Diseases, Europe Campus de la UAB, 08193 Bellaterra, Spain
| | - Carla Tort-Miro
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.T.-M.); (N.G.)
- IRTA. Programa de Sanitat Animal, CReSA, Collaborating Centre of the World Organisation for Animal Health for Research and Control of Emerging and Re-Emerging Pig Diseases, Europe Campus de la UAB, 08193 Bellaterra, Spain
| | - Noemi Giler
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.T.-M.); (N.G.)
- IRTA. Programa de Sanitat Animal, CReSA, Collaborating Centre of the World Organisation for Animal Health for Research and Control of Emerging and Re-Emerging Pig Diseases, Europe Campus de la UAB, 08193 Bellaterra, Spain
| | - Inmaculada Gomez
- Servicio de Microbiología, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (I.G.); (I.E.); (J.C.R.)
| | - Isabel Escribano
- Servicio de Microbiología, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (I.G.); (I.E.); (J.C.R.)
| | - Ana Marco-Fuertes
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera—CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-F.); (L.M.-D.); (S.V.)
| | - Laura Montoro-Dasi
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera—CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-F.); (L.M.-D.); (S.V.)
| | - Laura Lorenzo-Rebenaque
- Institute of Science and Animal Technology, Universitat Politècnica de Valencia, 46022 Valencia, Spain;
| | - Santiago Vega
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera—CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-F.); (L.M.-D.); (S.V.)
| | - Maria Teresa Pérez-Gracia
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera–CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain;
| | - Juan Carlos Rodríguez
- Servicio de Microbiología, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (I.G.); (I.E.); (J.C.R.)
- Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández de Elche, 03010 Alicante, Spain
| |
Collapse
|
3
|
Csukovich G, Pratscher B, Burgener IA. The World of Organoids: Gastrointestinal Disease Modelling in the Age of 3R and One Health with Specific Relevance to Dogs and Cats. Animals (Basel) 2022; 12:ani12182461. [PMID: 36139322 PMCID: PMC9495014 DOI: 10.3390/ani12182461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
One Health describes the importance of considering humans, animals, and the environment in health research. One Health and the 3R concept, i.e., the replacement, reduction, and refinement of animal experimentation, shape today’s research more and more. The development of organoids from many different organs and animals led to the development of highly sophisticated model systems trying to replace animal experiments. Organoids may be used for disease modelling in various ways elucidating the manifold host–pathogen interactions. This review provides an overview of disease modelling approaches using organoids of different kinds with a special focus on animal organoids and gastrointestinal diseases. We also provide an outlook on how the research field of organoids might develop in the coming years and what opportunities organoids hold for in-depth disease modelling and therapeutic interventions.
Collapse
|
4
|
Tashiro S, Mihara T, Sasaki M, Shimamura C, Shimamura R, Suzuki S, Yoshikawa M, Hasegawa T, Enoki Y, Taguchi K, Matsumoto K, Ohge H, Suzuki H, Nakamura A, Mori N, Morinaga Y, Yamagishi Y, Yoshizawa S, Yanagihara K, Mikamo H, Kunishima H. Oral fidaxomicin versus vancomycin for the treatment of Clostridioides difficile infection: A systematic review and meta-analysis of randomized controlled trials. J Infect Chemother 2022; 28:1536-1545. [PMID: 35964806 DOI: 10.1016/j.jiac.2022.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Fidaxomicin (FDX) has received considerable attention as a novel therapeutic alternative agent to vancomycin (VCM) for Clostridioides difficile infection (CDI). However, the superiority and efficacy profile of FDX are not sufficiently determined by high-quality evidence. This study aimed to clarify the superiority of FDX for CDI treatment through a systematic review and meta-analysis. METHODS We conducted a meta-analysis of randomized controlled trials (RCTs) which evaluated the efficacy and safety of FDX and VCM in patients with CDI. Electronic databases (PubMed, Cochrane Library, Web of Science, and Clinicaltrials.gov) were searched for studies published until October 15, 2021. The primary endpoint was global cure. The secondary endpoints were clinical cure, recurrence, and adverse event. Risk ratios (RRs), risk differences (RDs), and 95% confidence intervals were calculated using Mantel-Haenszel random-effects model. The risk of bias was assessed using Cochrane Handbook for Systematic Reviews of Interventions and Assessment Criteria. RESULTS Six RCTs were included in this meta-analysis. Compared to VCM, FDX was associated with significantly higher global cure rates (RR = 1.18, P < 0.00001; RD = 0.11, 95% CI = 0.07-0.16). In addition, clinical cure rates were comparable between FDX and VCM (P = 0.31). FDX was associated with significantly lower recurrence rates compared to VCM (RR = 0.59, P < 0.0001). In addition, adverse event rates were not significantly different between the drugs (P = 0.41). CONCLUSION FDX achieves significantly higher global cure rates and lower recurrence rates and is comparable to VCM in clinical cure rates and adverse event rates in patients with CDI. Collectively, FDX is superior to VCM as a therapeutic agent for CDI.
Collapse
Affiliation(s)
- Sho Tashiro
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Takayuki Mihara
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Moe Sasaki
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Chiaki Shimamura
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Rina Shimamura
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Shiho Suzuki
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Maiko Yoshikawa
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Tatsuki Hasegawa
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Yuki Enoki
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan.
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan
| | - Hiromichi Suzuki
- Department of Infectious Diseases, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Atsushi Nakamura
- Department of Infection Prevention and Control, Graduate School of Medical Sciences, Nagoya City University, Aichi, Japan
| | - Nobuaki Mori
- Department of General Internal Medicine and Infectious Diseases, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Yoshitomo Morinaga
- Department of Microbiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Kochi Medical School, Kochi, Japan
| | - Sadako Yoshizawa
- Department of Clinical Laboratory / Department of Microbiology and Infectious Diseases, Toho University Faculty of Medicine, Tokyo, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, Aichi, Japan
| | - Hiroyuki Kunishima
- Department of Infectious Diseases, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|