1
|
Wang C, Zhao X, Huang X, Xu F, Gu C, Yu S, Zhang X, Qian J. Simultaneous detection of multiple mycotoxins using MXene-based electrochemical aptasensor array and a self-developed multi-channel portable device. Talanta 2024; 278:126450. [PMID: 38908138 DOI: 10.1016/j.talanta.2024.126450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
In response to the pressing need for highly efficient simultaneous detection of multiple mycotoxins, which are often found co-occurring in food raw materials and feed, an MXene-based electrochemical aptasensor array (MBEAA) was developed. This aptasensor array utilizes high-specificity aptamers as recognition elements, enabling the capture of electrical signal changes in the presence of target mycotoxins. Based on this platform, a multi-channel portable electrochemical device, enabling rapid, cost-effective, and simultaneous detection of aflatoxin B1 (AFB1), ochratoxin A (OTA), and zealenone (ZEN) was further developed. The developed system boasts a wide detection range of 1.0 × 10-1 to 10.0 ng mL-1, with remarkable performance characterized by ultra-low detection limits of 41.2 pg mL-1, 27.6 pg mL-1, and 33.0 pg mL-1 for AFB1, OTA, and ZEN, respectively. Successfully applied in corn samples, this method offers a portable, easy-to-operate, and cost-effective solution for simultaneous multi-mycotoxin detection. Moreover, the application of the self-developed detection system could be expanded for simultaneous detection of many different targets when their specific aptamers or antibodies were available.
Collapse
Affiliation(s)
- Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xin Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xingyi Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Foyan Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chengdong Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shanshan Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaorui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
Bounegru AV, Bounegru I. Chitosan-Based Electrochemical Sensors for Pharmaceuticals and Clinical Applications. Polymers (Basel) 2023; 15:3539. [PMID: 37688165 PMCID: PMC10490380 DOI: 10.3390/polym15173539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Chitosan (CTS), a biocompatible and multifunctional material derived from chitin, has caught researchers' attention in electrochemical detection due to its unique properties. This review paper provides a comprehensive overview of the recent progress and applications of CTS-based electrochemical sensors in the analysis of pharmaceutical products and other types of samples, with a particular focus on the detection of medicinal substances. The review covers studies and developments from 2003 to 2023, highlighting the remarkable properties of CTS, such as biocompatibility, chemical versatility, and large surface area, that make it an excellent candidate for sensor modification. Combining CTS with various nanomaterials significantly enhances the detection capabilities of electrochemical sensors. Various types of CTS-based sensors are analyzed, including those utilizing carbon nanomaterials, metallic nanoparticles, conducting polymers, and molecularly imprinted CTS. These sensors exhibit excellent sensitivity, selectivity, and stability, enabling the precise and reliable detection of medications. The manufacturing strategies used for the preparation of CTS-based sensors are described, the underlying detection mechanisms are elucidated, and the integration of CTS sensors with transducer systems is highlighted. The prospects of CTS-based electrochemical sensors are promising, with opportunities for miniaturization, simultaneous detection, and real-time monitoring applications.
Collapse
Affiliation(s)
- Alexandra Virginia Bounegru
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Iulian Bounegru
- Competences Centre: Interfaces-Tribocorrosion-Electrochemical Systems, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
- Faculty of Medicine and Pharmacy, "Dunărea de Jos" University of Galati, 35 Al. I. Cuza Street, 800010 Galati, Romania
| |
Collapse
|
3
|
Lu Y, Yan J, Ou G, Fu L. A Review of Recent Progress in Drug Doping and Gene Doping Control Analysis. Molecules 2023; 28:5483. [PMID: 37513354 PMCID: PMC10386588 DOI: 10.3390/molecules28145483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The illicit utilization of performance-enhancing substances, commonly referred to as doping, not only infringes upon the principles of fair competition within athletic pursuits but also poses significant health hazards to athletes. Doping control analysis has emerged as a conventional approach to ensuring equity and integrity in sports. Over the past few decades, extensive advancements have been made in doping control analysis methods, catering to the escalating need for qualitative and quantitative analysis of numerous banned substances exhibiting diverse chemical and biological characteristics. Progress in science, technology, and instrumentation has facilitated the proliferation of varied techniques for detecting doping. In this comprehensive review, we present a succinct overview of recent research developments within the last ten years pertaining to these doping detection methodologies. We undertake a comparative analysis, evaluating the merits and limitations of each technique, and offer insights into the prospective future advancements in doping detection methods. It is noteworthy that the continual design and synthesis of novel synthetic doping agents have compelled researchers to constantly refine and innovate doping detection methods in order to address the ever-expanding range of covertly employed doping agents. Overall, we remain in a passive position for doping detection and are always on the road to doping control.
Collapse
Affiliation(s)
- Yuze Lu
- Laboratory of Biochemistry, School of Physical Education, China University of Geosciences, Wuhan 430074, China
| | - Jiayu Yan
- Laboratory of Biochemistry, School of Physical Education, China University of Geosciences, Wuhan 430074, China
| | - Gaozhi Ou
- Laboratory of Biochemistry, School of Physical Education, China University of Geosciences, Wuhan 430074, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
4
|
Anzar N, Suleman S, Bano H, Parvez S, Khanuja M, Pilloton R, Narang J. Paper-Based Electrodes Decorated with Silver and Zinc Oxide Nanocomposite for Electro-Chemical Sensing of Methamphetamine. SENSORS (BASEL, SWITZERLAND) 2023; 23:5519. [PMID: 37420685 DOI: 10.3390/s23125519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/09/2023]
Abstract
We present the development of an electrochemical paper-based analytical device (ePAD) for the detection of methamphetamine. Methamphetamine is a stimulant that young people use as an addictive narcotic, and it must be detected quickly since it may be hazardous. The suggested ePAD has the advantages of being simple, affordable, and recyclable. This ePAD was developed by immobilizing a methamphetamine-binding aptamer onto Ag-ZnO nanocomposite electrodes. The Ag-ZnO nanocomposites were synthesized via a chemical method and were further characterized via scanning electron microscopy, Fourier transform infrared spectroscopy, and UV-vis spectrometry in terms of their size, shape, and colloidal activity. The developed sensor showed a limit of detection of about 0.1 μg/mL, with an optimum response time of about 25 s, and its extensive linear range was between 0.01 and 6 μg/mL. The application of the sensor was recognized by spiking different beverages with methamphetamine. The developed sensor has a shelf life of about 30 days. This cost-effective and portable platform might prove to be highly successful in forensic diagnostic applications and will benefit those who cannot afford expensive medical tests.
Collapse
Affiliation(s)
- Nigar Anzar
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India
| | - Shariq Suleman
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India
| | - Husnara Bano
- Department of Biochemistry, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life science, Jamia Hamdard University, New Delhi 110062, India
| | - Manika Khanuja
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Roberto Pilloton
- Institute of Crystallography, National Research Council (CNR-IC), 00015 Rome, Italy
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India
| |
Collapse
|
5
|
Ultrasensitive and rapid detection of methamphetamine in forensic biological fluids using fluorescent apta-nanobiosensors based on CdTe quantum dots. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
6
|
Methamphetamine detection using nanoparticle-based biosensors: A comprehensive review. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|