1
|
Gorbokon N, Wößner N, Lennartz M, Dwertmann Rico S, Kind S, Reiswich V, Viehweger F, Lutz F, Fraune C, Luebke AM, Hube-Magg C, Menz A, Schlichter R, Krech T, Hinsch A, Burandt E, Sauter G, Simon R, Steurer S, Marx AH, Lebok P, Dum D, Minner S, Jacobsen F, Clauditz TS, Hackert T, Uzunoǧlu FG, Bubendorf L, Bernreuther C, Kluth M. Prevalence of S-methyl-5'-thioadenosine Phosphorylase (MTAP) Deficiency in Human Cancer: A Tissue Microarray Study on 13,067 Tumors From 149 Different Tumor Types. Am J Surg Pathol 2024; 48:1245-1258. [PMID: 39132873 PMCID: PMC11404761 DOI: 10.1097/pas.0000000000002297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Loss of S-methyl-5'-thioadenosine phosphorylase (MTAP) expression is a common event in cancer leading to a critical vulnerability of cancer cells towards anti-cancer drugs. Homozygous MTAP deletions result in a complete expression loss that can be detected by immunohistochemistry (IHC). In this study, a tissue microarray containing 17,078 samples from 149 different tumor entities was analyzed by IHC, and complete MTAP loss was validated by fluorescence in situ hybridization. MTAP loss was observed in 83 of 149 tumor categories, including neuroendocrine neoplasms (up to 80%), Hodgkin lymphoma (50.0%), mesothelioma (32.0% to 36.8%), gastro-intestinal adenocarcinoma (4.0% to 40.5%), urothelial neoplasms (10.5% to 36.7%), squamous cell carcinomas (up to 38%), and various types of sarcomas (up to 20%) and non-Hodgkin lymphomas (up to 14%). Homozygous MTAP deletion was found in 90% to 100% of cases with MTAP expression loss in most tumor categories. However, neuroendocrine tumors, Hodgkin lymphomas, and other lymphomas lacked MTAP deletions. MTAP deficiency was significantly linked to unfavorable tumor phenotype in selected tumor entities and the presence of PD-L1 expression on tumor cells, absence of PD-L1 expression on immune cells, and a low density of CD8 + lymphocytes. In summary, MTAP deficiency can occur in various tumor entities and is linked to unfavorable tumor phenotype and noninflamed tumor microenvironment, but is not always related to deletions. MTAP IHC is of considerable diagnostic value for the detection of neoplastic transformation in multiple different applications.
Collapse
Affiliation(s)
- Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Niklas Wößner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Sebastian Dwertmann Rico
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Am Finkenhügel, Osnabrück, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Thilo Hackert
- Department of Pathology, Academic Hospital Fuerth, Jakob-Henle-Straße, Fürth, Germany
| | - Faik G Uzunoǧlu
- Department of Pathology, Academic Hospital Fuerth, Jakob-Henle-Straße, Fürth, Germany
| | - Lukas Bubendorf
- Institute of Pathology, University Hospital Basel, Schönbeinstrasse, Basel, Switzerland
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| |
Collapse
|
2
|
Febres-Aldana CA, Chang JC, Jungbluth AA, Adusumilli PS, Bodd FM, Frosina D, Geronimo JA, Hernandez E, Irawan H, Offin MD, Rekhtman N, Travis WD, Vanderbilt C, Zauderer MG, Zhang Y, Ladanyi M, Yang SR, Sauter JL. Comparison of Immunohistochemistry, Next-generation Sequencing and Fluorescence In Situ Hybridization for Detection of MTAP Loss in Pleural Mesothelioma. Mod Pathol 2024; 37:100420. [PMID: 38185249 DOI: 10.1016/j.modpat.2023.100420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/28/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
9p21 deletions involving MTAP/CDKN2A genes are detected in diffuse pleural mesotheliomas (DPM) but are absent in benign mesothelial proliferations. Loss of MTAP expression by immunohistochemistry (IHC) is well accepted as a surrogate for 9p21 deletion to support a diagnosis of DPM. Accurate interpretation can be critical in the diagnosis of DPM, but variations in antibody performance may impact interpretation. The objectives of this study were to compare the performance of MTAP monoclonal antibodies (mAbs) EPR6893 and 1813 and to compare MTAP expression by IHC with 9p21 copy number status in DPM. Cytoplasmic expression of MTAP IHC with mAbs EPR6893 (ab126770; Abcam) and 1813 (NBP2-75730, Novus Biologicals) was evaluated in 56 DPM (47 epithelioid, 7 biphasic, and 2 sarcomatoid) profiled by targeted next-generation sequencing. 9p21 Copy number status was assessed by Fraction and Allele-Specific Copy Number Estimates from Tumor Sequencing (FACETS) analysis and also by CDKN2A fluorescence in situ hybridization in discrepant cases when material was available. MTAP mAb 1813 showed stronger immunoreactivity, more specific staining, and no equivocal interpretations compared to mAb EPR6893 which showed equivocal staining in 19 (34%) of cases due to weak or heterogenous immunoreactivity, lack of definitive internal positive control, and/or nonspecific background staining. MTAP expression with mAb 1813 showed near perfect agreement with 9p21 copy number by combined FACETS/fluorescence in situ hybridization calls (κ = 0.85; 95% CI, 0.71-0.99; P < .001). MTAP IHC with mAb 1813 was 96% sensitive, 86% specific, and 93% accurate for 9p21 homozygous deletion. The findings of this study suggest that interpretation of MTAP IHC is improved with mAb 1813 because mAb EPR6893 was often limited by equivocal interpretations. We show that MTAP IHC and molecular assays are complementary in detecting 9p21 homozygous deletion. MTAP IHC may be particularly useful for low tumor purity samples and in low-resource settings.
Collapse
Affiliation(s)
| | - Jason C Chang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Achim A Jungbluth
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Francis M Bodd
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Denise Frosina
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jerica A Geronimo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Enmily Hernandez
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Helen Irawan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael D Offin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Natasha Rekhtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D Travis
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chad Vanderbilt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marjorie G Zauderer
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yanming Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jennifer L Sauter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
3
|
Gjuka D, Adib E, Garrison K, Chen J, Zhang Y, Li W, Boutz D, Lamb C, Tanno Y, Nassar A, El Zarif T, Kale N, Rakaee M, Mouhieddine TH, Alaiwi SA, Gusev A, Rogers T, Gao J, Georgiou G, Kwiatkowski DJ, Stone E. Enzyme-mediated depletion of methylthioadenosine restores T cell function in MTAP-deficient tumors and reverses immunotherapy resistance. Cancer Cell 2023; 41:1774-1787.e9. [PMID: 37774699 PMCID: PMC10591910 DOI: 10.1016/j.ccell.2023.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Chromosomal region 9p21 containing tumor suppressors CDKN2A/B and methylthioadenosine phosphorylase (MTAP) is one of the most frequent genetic deletions in cancer. 9p21 loss is correlated with reduced tumor-infiltrating lymphocytes (TILs) and resistance to immune checkpoint inhibitor (ICI) therapy. Previously thought to be caused by CDKN2A/B loss, we now show that it is loss of MTAP that leads to poor outcomes on ICI therapy and reduced TIL density. MTAP loss causes accumulation of methylthioadenosine (MTA) both intracellularly and extracellularly and profoundly impairs T cell function via the inhibition of protein arginine methyltransferase 5 (PRMT5) and by adenosine receptor agonism. Administration of MTA-depleting enzymes reverses this immunosuppressive effect, increasing TILs and drastically impairing tumor growth and importantly, synergizes well with ICI therapy. As several studies have shown ICI resistance in 9p21/MTAP null/low patients, we propose that MTA degrading therapeutics may have substantial therapeutic benefit in these patients by enhancing ICI effectiveness.
Collapse
Affiliation(s)
- Donjeta Gjuka
- Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Elio Adib
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Lank Genitourinary Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kendra Garrison
- Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Jianfeng Chen
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuxue Zhang
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenjiao Li
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Boutz
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Candice Lamb
- Department of Chemical Engineering, University of Texas, Austin, TX, USA; Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Yuri Tanno
- Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Amin Nassar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Talal El Zarif
- Lank Genitourinary Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Neil Kale
- Worcester Polytechnic Institute, Worcester, MA, USA
| | - Mehrdad Rakaee
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Tarek H Mouhieddine
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, USA
| | - Sarah Abou Alaiwi
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Lank Genitourinary Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexander Gusev
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas Rogers
- Children's Medical Center Research Institute, University of Texas Southwestern, Dallas, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas, Austin, TX, USA; Department of Molecular Biosciences, University of Texas, Austin, TX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA; Department of Oncology, University of Texas Dell Medical School, LiveSTRONG Cancer Institutes, Austin, TX, USA
| | | | - Everett Stone
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA; Department of Oncology, University of Texas Dell Medical School, LiveSTRONG Cancer Institutes, Austin, TX, USA.
| |
Collapse
|
4
|
Chang W, Chen Y, Hsiao Y, Chiang C, Wang C, Chang Y, Hong Q, Lin C, Lin S, Chang G, Chen H, Chen Y, Chen C, Yang P, Yu S. Reduced symmetric dimethylation stabilizes vimentin and promotes metastasis in
MTAP‐
deficient lung cancer. EMBO Rep 2022; 23:e54265. [PMID: 35766227 PMCID: PMC9346486 DOI: 10.15252/embr.202154265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Wen‐Hsin Chang
- Institute of Molecular Medicine College of Medicine, National Taiwan University Taipei Taiwan
| | - Yi‐Ju Chen
- Institute of Chemistry Academia Sinica Taipei Taiwan
| | - Yi‐Jing Hsiao
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University Taipei Taiwan
| | - Ching‐Cheng Chiang
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University Taipei Taiwan
| | - Chia‐Yu Wang
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University Taipei Taiwan
| | - Ya‐Ling Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University Taipei Taiwan
| | - Qi‐Sheng Hong
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University Taipei Taiwan
| | - Chien‐Yu Lin
- Institute of Statistical Science Academia Sinica Taipei Taiwan
| | - Shr‐Uen Lin
- Graduate Institute of Oncology College of Medicine, National Taiwan University Taipei Taiwan
| | - Gee‐Chen Chang
- Division of Chest Medicine, Department of Internal Medicine Taichung Veterans General Hospital Taichung Taiwan
- School of Medicine Chung Shan Medical University Taichung Taiwan
| | - Hsuan‐Yu Chen
- Institute of Statistical Science Academia Sinica Taipei Taiwan
| | - Yu‐Ju Chen
- Institute of Chemistry Academia Sinica Taipei Taiwan
| | - Ching‐Hsien Chen
- Division of Pulmonary, Critical Care, and Sleep Medicine Department of Internal Medicine University of California Davis Davis CA USA
- Division of Nephrology, Department of Internal Medicine University of California Davis Davis CA USA
- Comprehensive Cancer Center University of California Davis Davis CA USA
| | - Pan‐Chyr Yang
- Institute of Molecular Medicine College of Medicine, National Taiwan University Taipei Taiwan
- Department of Internal Medicine, College of Medicine National Taiwan University Taipei Taiwan
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | - Sung‐Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University Taipei Taiwan
- Institute of Medical Device and Imaging, College of Medicine National Taiwan University Taipei Taiwan
- Graduate Institute of Pathology, College of Medicine National Taiwan University Taipei Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine National Taiwan University Taipei Taiwan
- Department of Laboratory Medicine National Taiwan University Hospital Taipei Taiwan
| |
Collapse
|
5
|
Targeting the insulin-like growth factor-1 receptor in MTAP-deficient renal cell carcinoma. Signal Transduct Target Ther 2019; 4:2. [PMID: 30701095 PMCID: PMC6345872 DOI: 10.1038/s41392-019-0035-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 02/06/2023] Open
Abstract
Renal cell carcinoma (RCC) has emerged as a metabolic disease characterized by dysregulated expression of metabolic enzymes. Patients with metastatic RCC have an unusually poor prognosis and near-universal resistance to all current therapies. To improve RCC treatment and the survival rate of patients with RCC, there is an urgent need to reveal the mechanisms by which metabolic reprogramming regulates aberrant signaling and oncogenic progression. Through an integrated analysis of RCC metabolic pathways, we showed that methylthioadenosine phosphorylase (MTAP) and its substrate methylthioadenosine (MTA) are dysregulated in aggressive RCC. A decrease in MTAP expression was observed in RCC tissues and correlated with higher tumor grade and shorter overall survival. Genetic manipulation of MTAP demonstrated that MTAP expression inhibits the epithelial-mesenchymal transition, invasion and migration of RCC cells. Interestingly, we found a decrease in the protein methylation level with a concomitant increase in tyrosine phosphorylation after MTAP knockout. A phospho-kinase array screen identified the type 1 insulin-like growth factor-1 receptor (IGF1R) as the candidate with the highest upregulation in tyrosine phosphorylation in response to MTAP loss. We further demonstrated that IGF1R phosphorylation acts upstream of Src and STAT3 signaling in MTAP-knockout RCC cells. IGF1R suppression by a selective inhibitor of IGF1R, linsitinib, impaired the cell migration and invasion capability of MTAP-deleted cells. Surprisingly, an increase in linsitinib-mediated cytotoxicity occurred in RCC cells with MTAP deficiency. Our data suggest that IGF1R signaling is a driver pathway that contributes to the aggressive nature of MTAP-deleted RCC. A receptor that is triggered by an enzyme deficiency in kidney cancer could act as an anticancer drug target. Ching-Hsien Chen of the University of California Davis and colleagues in the USA and Taiwan found that renal cell carcinomas are deficient in the enzyme methylthioadenosine phosphorylase (MTAP). This deficiency, which correlates with higher tumour grade and shorter overall survival, leads to the activation of type 1 insulin-like growth factor-1 receptor (IGF1R). This in turn activates signaling pathways that support cancer cell survival, growth, and invasiveness. The team found that a selective IGF1R inhibitor, called linsitinib, suppressed colony-forming ability and reduced cell motility in renal carcinoma cells. The findings suggest that IGF1R signaling drives pathways that contribute to the aggressive nature of renal carcinoma cells lacking MTAP.
Collapse
|
6
|
Demina OM, Akilov OE, Rumyantsev AG. Cutaneous T-cell lymphomas: modern data of pathogenesis, clinics and therapy. ONCOHEMATOLOGY 2018. [DOI: 10.17650/1818-8346-2018-13-3-25-38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Cutaneous T-cell lymphomas (CTCL) are a heterogeneous group of extranodal non-Hodgkin’s lymphomas that are characterized by skin infiltration with malignant monoclonal T lymphocytes. More common in adults aged 55 to 60 years, the annual incidence is about 0.5 per 100 000 people. Mycosis fungoides, Sézary syndrome and CD30+ lymphoproliferative diseases are the main subtypes of CTCL. To date, CTCL have a complex concept of etiopathogenesis, diagnosis, therapy and prognosis. The article presented summary data on these issues.
Collapse
Affiliation(s)
- O. M. Demina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
| | - O. E. Akilov
- University of Pittsburgh, Department of Dermatology, Cutaneous Lymphoma Clinics
| | - A. G. Rumyantsev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
| |
Collapse
|
7
|
Gros A, Laharanne E, Vergier M, Prochazkova-Carlotti M, Pham-Ledard A, Bandres T, Poglio S, Berhouet S, Vergier B, Vial JP, Chevret E, Beylot-Barry M, Merlio JP. TP53 alterations in primary and secondary Sézary syndrome: A diagnostic tool for the assessment of malignancy in patients with erythroderma. PLoS One 2017; 12:e0173171. [PMID: 28301507 PMCID: PMC5354275 DOI: 10.1371/journal.pone.0173171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
Recent massive parallel sequencing data have evidenced the genetic diversity and complexity of Sézary syndrome mutational landscape with TP53 alterations being the most prevalent genetic abnormality. We analyzed a cohort of 35 patients with SS and a control group of 8 patients with chronic inflammatory dermatoses. TP53 status was analyzed at different clinical stages especially in 9 patients with a past-history of mycosis fungoides (MF), coined secondary SS. TP53 mutations were only detected in 10 patients with either primary or secondary SS (29%) corresponding to point mutations, small insertions and deletions which were unique in each case. Interestingly, TP53 mutations were both detected in sequential unselected blood mononuclear cells and in skin specimens. Cytogenetic analysis of blood specimens of 32 patients with SS showed a TP53 deletion in 27 cases (84%). Altogether 29 out of 35 cases exhibited TP53 mutation and/or deletion (83%). No difference in prognosis was observed according to TP53 status while patients with secondary SS had a worse prognosis than patients with primary SS. Interestingly, patients with TP53 alterations displayed a younger age and the presence of TP53 alteration at initial diagnosis stage supports a pivotal oncogenic role for TP53 mutation in SS as well as in erythrodermic MF making TP53 assessment an ancillary method for the diagnosis of patients with erythroderma as patients with inflammatory dermatoses did not display TP53 alteration.
Collapse
Affiliation(s)
- Audrey Gros
- INSERM U1053, Bordeaux Research in Translational Oncology University Bordeaux, Bordeaux, France.,Tumor Bank and Tumor Biology Laboratory, CHU de Bordeaux, Pessac, France
| | - Elodie Laharanne
- INSERM U1053, Bordeaux Research in Translational Oncology University Bordeaux, Bordeaux, France.,Tumor Bank and Tumor Biology Laboratory, CHU de Bordeaux, Pessac, France
| | - Marie Vergier
- Tumor Bank and Tumor Biology Laboratory, CHU de Bordeaux, Pessac, France
| | | | - Anne Pham-Ledard
- INSERM U1053, Bordeaux Research in Translational Oncology University Bordeaux, Bordeaux, France.,Dermatology Department, CHU de Bordeaux, Bordeaux, France
| | - Thomas Bandres
- Tumor Bank and Tumor Biology Laboratory, CHU de Bordeaux, Pessac, France
| | - Sandrine Poglio
- INSERM U1053, Bordeaux Research in Translational Oncology University Bordeaux, Bordeaux, France
| | - Sabine Berhouet
- Tumor Bank and Tumor Biology Laboratory, CHU de Bordeaux, Pessac, France
| | - Béatrice Vergier
- INSERM U1053, Bordeaux Research in Translational Oncology University Bordeaux, Bordeaux, France.,Pathology Department, CHU de Bordeaux, Pessac, France
| | | | - Edith Chevret
- INSERM U1053, Bordeaux Research in Translational Oncology University Bordeaux, Bordeaux, France
| | - Marie Beylot-Barry
- INSERM U1053, Bordeaux Research in Translational Oncology University Bordeaux, Bordeaux, France.,Dermatology Department, CHU de Bordeaux, Bordeaux, France
| | - Jean-Philippe Merlio
- INSERM U1053, Bordeaux Research in Translational Oncology University Bordeaux, Bordeaux, France.,Tumor Bank and Tumor Biology Laboratory, CHU de Bordeaux, Pessac, France
| |
Collapse
|
8
|
Fu W, Yi S, Qiu L, Sun J, Tu P, Wang Y. BCL11B-Mediated Epigenetic Repression Is a Crucial Target for Histone Deacetylase Inhibitors in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2017; 137:1523-1532. [PMID: 28288848 DOI: 10.1016/j.jid.2017.02.980] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/13/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
The treatment options for advanced cutaneous T-cell lymphoma (CTCL) are limited because of its unclear pathogenesis. Histone deacetylase (HDAC) inhibitors (HDACis) are recently developed therapeutics approved for refractory CTCL. However, the response rate is relatively low and unpredictable. Previously, we discovered that BCL11B, a key T-cell development regulator, was aberrantly overexpressed in mycosis fungoides, the most common CTCL, as compared with benign inflammatory skin. In this study, we identified a positive correlation between BCL11B expression and sensitivity to HDACi in CTCL lines. BCL11B suppression in BCL11B-high cells induced cell apoptosis by de-repressing apoptotic pathways and showed synergistic effects with suberoylanilide hydroxamic acid (SAHA), a pan-HDACi. Next, we identified the physical interaction and shared downstream genes between BCL11B and HDAC1/2 in CTCL lines. This interaction was essential in the anti-apoptosis effect of BCL11B, and the synergism between BCL11B suppression and HDACi treatment. Further, in clinical samples from 46 mycosis fungoides patients, BCL11B showed increased but varied expression in advanced tumor stage. Analysis of four patients receiving SAHA treatment suggested a positive correlation between BCL11B expression and favorable response to SAHA treatment. In conclusion, BCL11B may serve as a therapeutic target and a useful marker for improving HDACi efficacy in advanced CTCL.
Collapse
Affiliation(s)
- Wenjing Fu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China; Department of Dermatology and Venerology, Binzhou Medical University Hospital, Binzhou, China
| | - Shengguo Yi
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Lei Qiu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Jingru Sun
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Ping Tu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
9
|
Abstract
Cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of extranodal non-Hodgkin’s lymphomas that are characterized by a cutaneous infiltration of malignant monoclonal T lymphocytes. They typically afflict adults with a median age of 55 to 60 years, and the annual incidence is about 0.5 per 100,000. Mycosis fungoides, Sézary syndrome, and primary cutaneous peripheral T cell lymphomas not otherwise specified are the most important subtypes of CTCL. CTCL is a complicated concept in terms of etiopathogenesis, diagnosis, therapy, and prognosis. Herein, we summarize advances which have been achieved in these fields.
Collapse
Affiliation(s)
| | - Bruce R Smoller
- Department of Dermatology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| |
Collapse
|
10
|
Mlacker S, Aldahan AS, Shah VV, Samarkandy S, Molla A, Hsu VM, Nouri K. Cells to Surgery Quiz: June 2016. J Invest Dermatol 2016; 136:e63. [PMID: 30477676 DOI: 10.1016/j.jid.2016.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Stephanie Mlacker
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Adam S Aldahan
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Vidhi V Shah
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sahal Samarkandy
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Dermatology, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Amr Molla
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Vincent M Hsu
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Keyvan Nouri
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|