1
|
Liu C, Guo X, Wei M, Xie J, Zhang X, Qi Q, Zhu K. Identification and validation of autophagy-related genes in SSc. Open Med (Wars) 2024; 19:20240942. [PMID: 38584837 PMCID: PMC10998681 DOI: 10.1515/med-2024-0942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Multiple organs are affected by the complex autoimmune illness known as systemic sclerosis (SSc), which has a high fatality rate. Genes linked to autophagy have been linked to the aetiology of SSc. It is yet unknown, though, whether autophagy-related genes play a role in the aetiology of SSc. After using bioinformatics techniques to examine two databases (the GSE76885 and GSE95065 datasets) and autophagy-related genes, we were able to identify 12 autophagy-related differentially expressed genes that are linked to the pathophysiology of SSc. Additional examination of the receiver operating characteristic curve revealed that SFRP4 (AUC = 0.944, P < 0.001) and CD93 (AUC = 0.904, P < 0.001) might be utilized as trustworthy biomarkers for the diagnosis of SSc. The SSc group's considerably greater CD93 and SFRP4 expression levels compared to the control group were further confirmed by qRT-PCR results. The autophagy-related genes SFRP4 and CD93 were found to be viable diagnostic indicators in this investigation. Our research sheds light on the processes by which genes linked to autophagy affect the pathophysiology of SSc.
Collapse
Affiliation(s)
- Chen Liu
- Department of Dermatology, Shenzhen People’s Hospital, Shenzhen, Guangdong Province, China
| | - Xiaofang Guo
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Maoyun Wei
- Department of Dermatology, Second Hospital Affiliated to Guangzhou Medical University, Guangzhou510260, China
| | - Jiaxin Xie
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xuting Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Qing Qi
- Department of Dermatology, Second Hospital Affiliated to Guangzhou Medical University, No. 250 Changgang Dong Road, Guangzhou510260, China
| | - Ke Zhu
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Airport Road No.16 Compound, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Roblin E, Clark KEN, Beesley C, Ong VH, Denton CP. Testing a candidate composite serum protein marker of skin severity in systemic sclerosis. Rheumatol Adv Pract 2024; 8:rkae039. [PMID: 38645474 PMCID: PMC11031358 DOI: 10.1093/rap/rkae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/05/2024] [Indexed: 04/23/2024] Open
Abstract
Objectives Using an integrated multi-omic analysis, we previously derived a candidate marker that estimates the modified Rodnan Skin Score (mRSS) and thus the severity of skin involvement in SSc. In the present study we explore technical and biological validation of this composite marker in a well-characterized cohort of SSc patients. Methods Cartilage oligomeric matrix protein (COMP), collagen type IV (COL4A1), tenascin-C (TNC) and spondin-1 (SPON1) were examined in serum samples from two independent cohorts of patients with dcSSc. The BIOlogical Phenotyping of diffuse SYstemic sclerosis cohort had previously been used to derive the composite marker and Molecular Determinants to Improve Scleroderma (SSc) treatment (MODERNISE) was a novel validation cohort. Multiple regression analysis derived a formula to predict the mRSS based on serum ELISA protein concentration. Results The serum concentration of two of the proteins-COMP and TNC-positively correlated with the mRSS, particularly in early dcSSc patients. Interpretable data could not be obtained for SPON1 due to technical limitations of the ELISA. COL4A1 showed a correlation with disease duration but not overall mRSS. Patients receiving MMF showed lower serum concentrations of COMP, COL4A1 and TNC and a lower composite biomarker score not established on treatment. A revised ELISA-based three-protein composite formula was derived for future validation studies. Conclusions Although more validation is required, our findings represent a further step towards a composite serum protein assay to assess skin severity in SSc. Future work will establish its utility as a predictive or prognostic biomarker.
Collapse
Affiliation(s)
- Elen Roblin
- Department of Rheumatology, Royal Free Hospital, London, UK
| | | | - Claire Beesley
- Centre for Rheumatology, University College London, London, UK
| | - Voon H Ong
- Centre for Rheumatology, University College London, London, UK
| | | |
Collapse
|
3
|
Szabo I, Badii M, Gaál IO, Szabo R, Sîrbe C, Humiță O, Joosten LAB, Crișan TO, Rednic S. Immune Profiling of Patients with Systemic Sclerosis through Targeted Proteomic Analysis. Int J Mol Sci 2023; 24:17601. [PMID: 38139427 PMCID: PMC10744051 DOI: 10.3390/ijms242417601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
High-throughput proteomic analysis could offer new insights into the pathogenesis of systemic sclerosis (SSc) and reveal non-invasive biomarkers for diagnosis and severity. This study aimed to assess the protein signature of patients with SSc compared to that of healthy volunteers, decipher various disease endotypes using circulating proteins, and determine the diagnostic performance of significantly expressed plasma analytes. We performed targeted proteomic profiling in a cohort of fifteen patients with SSc and eighteen controls using the Olink® (Olink Bioscience, Uppsala, Sweden)Target 96 Inflammation Panels. Seventeen upregulated proteins involved in angiogenesis, innate immunity, and co-stimulatory pathways discriminated between patients with SSc and healthy controls (HCs) and further classified them into two clusters, a low-inflammatory and a high-inflammatory endotype. Younger age, shorter disease duration, and lack of reflux esophagitis characterized patients in the low-inflammatory endotype. TNF, CXCL9, TNFRSF9, and CXCL10 positively correlated with disease progression, while the four-protein panel comprising TNF, CXCL9, CXCL10, and CX3CL1 showed high diagnostic performance. Collectively, this study identified a distinct inflammatory signature in patients with SSc that reflects a persistent T helper type 1 (Th 1) immune response irrespective of disease duration, while the multi-protein panel might improve early diagnosis in SSc.
Collapse
Affiliation(s)
- Iulia Szabo
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.S.)
- Department of Rheumatology, County Emergency Hospital, 400347 Cluj-Napoca, Romania
| | - Medeea Badii
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Ildikó O. Gaál
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Robert Szabo
- 2nd Anesthesia Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Anesthesia and Intensive Care, County Emergency Hospital, 400347 Cluj-Napoca, Romania
| | - Claudia Sîrbe
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- 2nd Pediatric Clinic, Center of Expertise in Pediatric Liver Rare Disorders, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Oana Humiță
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.S.)
| | - Leo A. B. Joosten
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Tania O. Crișan
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Simona Rednic
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.S.)
- Department of Rheumatology, County Emergency Hospital, 400347 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Motta F, Tonutti A, Isailovic N, Ceribelli A, Costanzo G, Rodolfi S, Selmi C, De Santis M. Proteomic aptamer analysis reveals serum biomarkers associated with disease mechanisms and phenotypes of systemic sclerosis. Front Immunol 2023; 14:1246777. [PMID: 37753072 PMCID: PMC10518467 DOI: 10.3389/fimmu.2023.1246777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Background Systemic sclerosis (SSc) is an autoimmune connective tissue disease that affects multiple organs, leading to elevated morbidity and mortality with limited treatment options. The early detection of organ involvement is challenging as there is currently no serum marker available to predict the progression of SSc. The aptamer technology proteomic analysis holds the potential to correlate SSc manifestations with serum proteins up to femtomolar concentrations. Methods This is a two-tier study of serum samples from women with SSc (including patients with interstitial lung disease - ILD - at high-resolution CT scan) and age-matched healthy controls (HC) that were first analyzed with aptamer-based proteomic analysis for over 1300 proteins. Proposed associated proteins were validated by ELISA first in an independent cohort of patients with SSc and HC, and selected proteins subject to further validation in two additional cohorts. Results The preliminary aptamer-based proteomic analysis identified 33 proteins with significantly different concentrations in SSc compared to HC sera and 9 associated with SSc-ILD, including proteins involved in extracellular matrix formation and cell-cell adhesion, angiogenesis, leukocyte recruitment, activation, and signaling. Further validations in independent cohorts ultimately confirmed the association of specific proteins with early SSc onset, specific organ involvement, and serum autoantibodies. Conclusions Our multi-tier proteomic analysis identified serum proteins discriminating patients with SSc and HC or associated with different SSc subsets, disease duration, and manifestations, including ILD, skin involvement, esophageal disease, and autoantibodies.
Collapse
Affiliation(s)
- Francesca Motta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Antonio Tonutti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Natasa Isailovic
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Angela Ceribelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Giovanni Costanzo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Stefano Rodolfi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Maria De Santis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
5
|
Vonk MC, Assassi S, Hoffmann-Vold AM. Scleroderma Skin: How Is Treatment Best Guided by Data and Implemented in Clinical Practice? Rheum Dis Clin North Am 2023; 49:249-262. [PMID: 37028833 DOI: 10.1016/j.rdc.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
As skin involvement is the hall mark of systemic sclerosis (SSc) and changes of skin involvement have shown to correlate with internal organ involvement, assessing the extend of skin involvement is key. Although the modified Rodnan skin score is a validated tool used to evaluate the skin in SSc, it has its drawbacks. Novel imagine methods are promising but should be further evaluated. As for molecule markers for skin progression there are conflicting data on the predictive significance of baseline SSc skin gene expression profiles, but immune cell type signature in SSc skin correlates with progression.
Collapse
Affiliation(s)
- Madelon C Vonk
- Department of Rheumatology, Radboud University Nijmegen Medical Centre, Huispost 667, PO Box 9101, Nijmegen 6500HB, the Netherlands.
| | - Shervin Assassi
- Division of Rheumatology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, USA
| | - Anna-Maria Hoffmann-Vold
- Department of Rheumatology, Oslo University Hospital - Rikshospitalet, Pb 4950, Nydalen, Oslo 0424, Norway
| |
Collapse
|
6
|
Moccaldi B, De Michieli L, Binda M, Famoso G, Depascale R, Perazzolo Marra M, Doria A, Zanatta E. Serum Biomarkers in Connective Tissue Disease-Associated Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24044178. [PMID: 36835590 PMCID: PMC9967966 DOI: 10.3390/ijms24044178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening complication of connective tissue diseases (CTDs) characterised by increased pulmonary arterial pressure and pulmonary vascular resistance. CTD-PAH is the result of a complex interplay among endothelial dysfunction and vascular remodelling, autoimmunity and inflammatory changes, ultimately leading to right heart dysfunction and failure. Due to the non-specific nature of the early symptoms and the lack of consensus on screening strategies-except for systemic sclerosis, with a yearly transthoracic echocardiography as recommended-CTD-PAH is often diagnosed at an advanced stage, when the pulmonary vessels are irreversibly damaged. According to the current guidelines, right heart catheterisation is the gold standard for the diagnosis of PAH; however, this technique is invasive, and may not be available in non-referral centres. Hence, there is a need for non-invasive tools to improve the early diagnosis and disease monitoring of CTD-PAH. Novel serum biomarkers may be an effective solution to this issue, as their detection is non-invasive, has a low cost and is reproducible. Our review aims to describe some of the most promising circulating biomarkers of CTD-PAH, classified according to their role in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Beatrice Moccaldi
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Laura De Michieli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Marco Binda
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Giulia Famoso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Roberto Depascale
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-0498212190
| | - Elisabetta Zanatta
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| |
Collapse
|
7
|
Bellocchi C, Assassi S, Lyons M, Marchini M, Mohan C, Santaniello A, Beretta L. Proteomic aptamer analysis reveals serum markers that characterize preclinical systemic sclerosis (SSc) patients at risk for progression toward definite SSc. Arthritis Res Ther 2023; 25:15. [PMID: 36707842 PMCID: PMC9881382 DOI: 10.1186/s13075-023-02989-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/04/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The study of molecular mechanisms characterizing disease progression may be relevant to get insights into systemic sclerosis (SSc) pathogenesis and to intercept patients at very early stage. We aimed at investigating the proteomic profile of preclinical systemic sclerosis (PreSSc) via a discovery/validation two-step approach. METHODS SOMAcan aptamer-based analysis was performed on a serum sample of 13 PreSSc (discovery cohort) according to 2001 LeRoy and Medsger criteria (characterized solely by Raynaud phenomenon plus a positive nailfold capillaroscopy and SSc-specific antibodies without any other sign of definite disease) and 8 healthy controls (HCs) age, gender, and ethnicity matched. Prospective data were available up to 4±0.6 years to determine the progression to definite SSc according to the EULAR/ACR 2013 classification criteria. In proteins with relative fluorescence units (RFU) > |1.5|-fold vs HCs values, univariate analysis was conducted via bootstrap aggregating models to determine the predicting accuracy (progression vs non-progression) of categorized baseline protein values. Gene Ontologies (GO terms) and Reactome terms of significant proteins at the adjusted 0.05 threshold were explored. Significant proteins from the discovery cohort were finally validated via ELISAs in an independent validation cohort of 50 PreSSc with clinical prospective data up to 5 years. Time-to-event analysis for interval-censored data was used to evaluate disease progression. RESULTS In the discovery cohort, 286 out of 1306 proteins analyzed via SomaScan, were differentially expressed versus HCs. Ten proteins were significantly associated with disease progression; analysis through GO and Reactome showed differentially enriched pathways involving angiogenesis, endothelial cell chemotaxis, and endothelial cell chemotaxis to fibroblast growth factor (FGF). In the validation cohort, endostatin (HR=10.23, CI95=2.2-47.59, p=0.003) was strongly associated with disease progression, as well as bFGF (HR=0.84, CI95=0.709-0.996, p=0.045) and PAF-AHβ (HR=0.372, CI95=0.171-0.809, p=0.013) CONCLUSIONS: A distinct protein profile characterized PreSSc from HCs and proteins associated with hypoxia, vasculopathy, and fibrosis regulation are linked with the progression from preclinical to definite SSc. These proteins, in particular endostatin, can be regarded both as markers of severity and molecules with pathogenetic significance as well as therapeutic targets.
Collapse
Affiliation(s)
- Chiara Bellocchi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Shervin Assassi
- Department of Internal Medicine – Rheumatology, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Marka Lyons
- Department of Internal Medicine – Rheumatology, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Maurizio Marchini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX USA
| | - Alessandro Santaniello
- Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Beretta
- Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
8
|
Piera-Velazquez S, Dillon ST, Gu X, Libermann TA, Jimenez SA. Aptamer proteomics of serum exosomes from patients with Primary Raynaud's and patients with Raynaud's at risk of evolving into Systemic Sclerosis. PLoS One 2022; 17:e0279461. [PMID: 36548367 PMCID: PMC9779033 DOI: 10.1371/journal.pone.0279461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A major unmet need for Systemic Sclerosis (SSc) clinical management is the lack of biomarkers for the early diagnosis of patients with Raynaud's Phenomenon at high risk of evolving into SSc. OBJECTIVE To identify proteins contained within serum exosomes employing an aptamer proteomic analysis that may serve to reveal patients with Raynaud's Phenomenon at risk of developing SSc. METHODS Exosomes were isolated from serum samples from patients with Primary Raynaud's Phenomenon and from patients with Raynaud's Phenomenon harbouring serum antinuclear antibodies (ANA) who may be at high risk of evolving into SSc. The expression of 1,305 proteins was quantified using SOMAscan aptamer proteomics, and associations of the differentially elevated or reduced proteins with the clinical subsets of Raynaud's Phenomenon were assessed. RESULTS Twenty one differentially elevated and one differentially reduced (absolute fold change >|1.3|) proteins were identified. Principal component analysis using these 22 most differentially expressed proteins resulted in excellent separation of the two Raynaud's Phenomenon clinical subsets. Remarkably, the most differentially elevated proteins are involved in enhanced inflammatory responses, immune cell activation and cell migration, and abnormal vascular functions. CONCLUSION Aptamer proteomic analysis of circulating exosomes identified differentially elevated or reduced proteins between Raynaud's Phenomenon at high risk of evolving into SSc and Primary Raynaud's Phenomenon patients. Some of these proteins are involved in relevant biological pathways that may play a role in SSc pathogenesis including enhanced inflammatory responses, immune cell activation, and endothelial cell and vascular abnormalities.
Collapse
Affiliation(s)
- Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine, Scleroderma Center of Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Simon T. Dillon
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xuesong Gu
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Towia A. Libermann
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SAJ); (TAL)
| | - Sergio A. Jimenez
- Jefferson Institute of Molecular Medicine, Scleroderma Center of Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (SAJ); (TAL)
| |
Collapse
|
9
|
Assassi S. Plasma protein correlates of skin severity in systemic sclerosis. THE LANCET. RHEUMATOLOGY 2022; 4:e457-e458. [PMID: 38294014 DOI: 10.1016/s2665-9913(22)00162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2024]
Affiliation(s)
- Shervin Assassi
- Division of Rheumatology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Clark KEN, Csomor E, Campochiaro C, Galwey N, Nevin K, Morse MA, Teo YV, Freudenberg J, Ong VH, Derrett-Smith E, Wisniacki N, Flint SM, Denton CP. Integrated analysis of dermal blister fluid proteomics and genome-wide skin gene expression in systemic sclerosis: an observational study. THE LANCET. RHEUMATOLOGY 2022; 4:e507-e516. [PMID: 36404995 PMCID: PMC9669928 DOI: 10.1016/s2665-9913(22)00094-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background Skin fibrosis is a hallmark feature of systemic sclerosis. Skin biopsy transcriptomics and blister fluid proteomics give insight into the local environment of the skin. We have integrated these modalities with the aim of developing a surrogate for the modified Rodnan skin score (mRSS), using candidate genes and proteins from the skin and blister fluid as anchors to identify key analytes in the plasma. Methods In this single-centre, prospective observational study at the Royal Free Campus, University College London, London, UK, transcriptional and proteomic analyses of blood and skin were performed in a cohort of patients with systemic sclerosis (n=52) and healthy controls (n=16). Weighted gene co-expression network analysis was used to explore the association of skin transcriptomics data, clinical traits, and blister fluid proteomic results. Candidate hub analytes were identified as those present in both blister and skin gene sets (modules), and which correlated with plasma (module membership >0·7 and gene significance >0·6). Hub analytes were confirmed using RNA transcript data obtained from skin biopsy samples from patients with early diffuse cutaneous systemic sclerosis at 12 months. Findings We identified three modules in the skin, and two in blister fluid, which correlated with a diagnosis of early diffuse cutaneous systemic sclerosis. From these modules, 11 key hub analytes were identified, present in both skin and blister fluid modules, whose transcript and protein levels correlated with plasma protein concentrations, mRSS, and showed statistically significant correlation on repeat transcriptomic samples taken at 12 months. Multivariate analysis identified four plasma analytes as correlates of mRSS (COL4A1, COMP, SPON1, and TNC), which can be used to differentiate disease subtype. Interpretation This unbiased approach has identified potential biological candidates that might be drivers of local skin pathogenesis in systemic sclerosis. By focusing on measurable analytes in the plasma, we generated a promising composite plasma protein biomarker that could be used for assessment of skin severity, case stratification, and as a potential outcome measure for clinical trials and practice. Once fully validated, the biomarker score could replace a clinical score such as the mRSS, which carries substantial variability. Funding GlaxoSmithKline and UK Medical Research Council.
Collapse
Affiliation(s)
| | | | | | | | | | - Mary A Morse
- Immunoinflammation, GlaxoSmithKline, Stevenage, UK
| | - Yee Voan Teo
- Computational Biology, GlaxoSmithKline, California, USA
| | | | - Voon H Ong
- Centre for Rheumatology, University College London, London, UK
| | | | | | | | | |
Collapse
|
11
|
Noviani M, Chellamuthu VR, Albani S, Low AHL. Toward Molecular Stratification and Precision Medicine in Systemic Sclerosis. Front Med (Lausanne) 2022; 9:911977. [PMID: 35847779 PMCID: PMC9279904 DOI: 10.3389/fmed.2022.911977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023] Open
Abstract
Systemic sclerosis (SSc), a complex multi-systemic disease characterized by immune dysregulation, vasculopathy and fibrosis, is associated with high mortality. Its pathogenesis is only partially understood. The heterogenous pathological processes that define SSc and its stages present a challenge to targeting appropriate treatment, with differing treatment outcomes of SSc patients despite similar initial clinical presentations. Timing of the appropriate treatments targeted at the underlying disease process is critical. For example, immunomodulatory treatments may be used for patients in a predominantly inflammatory phase, anti-fibrotic treatments for those in the fibrotic phase, or combination therapies for those in the fibro-inflammatory phase. In advancing personalized care through precision medicine, groups of patients with similar disease characteristics and shared pathological processes may be identified through molecular stratification. This would improve current clinical sub-setting systems and guide personalization of therapies. In this review, we will provide updates in SSc clinical and molecular stratification in relation to patient outcomes and treatment responses. Promises of molecular stratification through advances in high-dimensional tools, including omic-based stratification (transcriptomics, genomics, epigenomics, proteomics, cytomics, microbiomics) and machine learning will be discussed. Innovative and more granular stratification systems that integrate molecular characteristics to clinical phenotypes would potentially improve therapeutic approaches through personalized medicine and lead to better patient outcomes.
Collapse
Affiliation(s)
- Maria Noviani
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore, Singapore
- Duke–National University of Singapore Medical School, Singapore, Singapore
| | | | - Salvatore Albani
- Duke–National University of Singapore Medical School, Singapore, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Andrea Hsiu Ling Low
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore, Singapore
- Duke–National University of Singapore Medical School, Singapore, Singapore
- *Correspondence: Andrea Hsiu Ling Low
| |
Collapse
|
12
|
Herrick AL, Assassi S, Denton CP. Skin involvement in early diffuse cutaneous systemic sclerosis: an unmet clinical need. Nat Rev Rheumatol 2022; 18:276-285. [PMID: 35292731 PMCID: PMC8922394 DOI: 10.1038/s41584-022-00765-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 12/23/2022]
Abstract
Diffuse cutaneous systemic sclerosis (dcSSc) is associated with high mortality resulting from early internal-organ involvement. Clinicians therefore tend to focus on early diagnosis and treatment of potentially life-threatening cardiorespiratory and renal disease. However, the rapidly progressive painful, itchy skin tightening that characterizes dcSSc is the symptom that has the greatest effect on patients' quality of life, and there is currently no effective disease-modifying treatment for it. Considerable advances have been made in predicting the extent and rate of skin-disease progression (which vary between patients), including the development of techniques such as molecular analysis of skin biopsy samples. Risk stratification for progressive skin disease is especially relevant now that haematopoietic stem-cell transplantation is a treatment option, because stratification will inform the balance of risk versus benefit for each patient. Measurement of skin disease is a major challenge. Results from clinical trials have highlighted limitations of the modified Rodnan skin score (the current gold standard). Alternative patient-reported and other potential outcome measures have been and are being developed. Patients with early dcSSc should be referred to specialist centres to ensure best-practice management, including the management of their skin disease, and to maximize opportunities for inclusion in clinical trials.
Collapse
Affiliation(s)
- Ariane L Herrick
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Shervin Assassi
- McGovern Medical School, The University of Texas, Houston, TX, USA
| | | |
Collapse
|
13
|
Farutin V, Kurtagic E, Pradines JR, Capila I, Mayes MD, Wu M, Manning AM, Assassi S. Multiomic study of skin, peripheral blood, and serum: is serum proteome a reflection of disease process at the end-organ level in systemic sclerosis? Arthritis Res Ther 2021; 23:259. [PMID: 34654463 PMCID: PMC8518248 DOI: 10.1186/s13075-021-02633-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/24/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Serum proteins can be readily assessed during routine clinical care. However, it is unclear to what extent serum proteins reflect the molecular dysregulations of peripheral blood cells (PBCs) or affected end-organs in systemic sclerosis (SSc). We conducted a multiomic comparative analysis of SSc serum profile, PBC, and skin gene expression in concurrently collected samples. METHODS Global gene expression profiling was carried out in skin and PBC samples obtained from 49 SSc patients enrolled in the GENISOS observational cohort and 25 unaffected controls. Levels of 911 proteins were determined by Olink Proximity Extension Assay in concurrently collected serum samples. RESULTS Both SSc PBC and skin transcriptomes showed a prominent type I interferon signature. The examination of SSc serum profile revealed an upregulation of proteins involved in pro-fibrotic homing and extravasation, as well as extracellular matrix components/modulators. Notably, several soluble receptor proteins such as EGFR, ERBB2, ERBB3, VEGFR2, TGFBR3, and PDGF-Rα were downregulated. Thirty-nine proteins correlated with severity of SSc skin disease. The differential expression of serum protein in SSc vs. control comparison significantly correlated with the differential expression of corresponding transcripts in skin but not in PBCs. Moreover, the differentially expressed serum proteins were significantly more connected to the Well-Associated-Proteins in the skin than PBC gene expression dataset. The assessment of the concordance of between-sample similarities revealed that the molecular profile of serum proteins and skin gene expression data were significantly concordant in patients with SSc but not in healthy controls. CONCLUSIONS SSc serum protein profile shows an upregulation of profibrotic cytokines and a downregulation of soluble EGF and other key receptors. Our multilevel comparative analysis indicates that the serum protein profile in SSc correlates more closely with molecular dysregulations of skin than PBCs and might serve as a reflection of disease severity at the end-organ level.
Collapse
Affiliation(s)
- Victor Farutin
- Momenta Pharmaceuticals Inc, Cambridge, MA, USA.,Janssen Pharmaceutical Companies of Johnson & Johnson, 301 Binney St, Cambridge, MA, 02142, USA
| | - Elma Kurtagic
- Momenta Pharmaceuticals Inc, Cambridge, MA, USA. .,Janssen Pharmaceutical Companies of Johnson & Johnson, 301 Binney St, Cambridge, MA, 02142, USA.
| | | | | | - Maureen D Mayes
- Department of Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, 6431 Fannin, MSB 5.270, Houston, TX, 77030, USA
| | - Minghua Wu
- Department of Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, 6431 Fannin, MSB 5.270, Houston, TX, 77030, USA
| | - Anthony M Manning
- Momenta Pharmaceuticals Inc, Cambridge, MA, USA.,Janssen Pharmaceutical Companies of Johnson & Johnson, 301 Binney St, Cambridge, MA, 02142, USA
| | - Shervin Assassi
- Department of Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, 6431 Fannin, MSB 5.270, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Günther F, Straub RH, Hartung W, Luchner A, Fleck M, Ehrenstein B. Increased Serum Levels of soluble ST2 as a Predictor of Disease Progression in Systemic Sclerosis. Scand J Rheumatol 2021; 51:315-322. [PMID: 34474647 DOI: 10.1080/03009742.2021.1929457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Interleukin-33 (IL-33) has been investigated as a mediator in the pathogenesis of fibrosis in lung, liver, and heart. There is accumulating evidence for the involvement of the IL-33/IL-33 receptor ST2L signalling pathway in systemic sclerosis (SSc). Little is known about the role of serum sST2 in SSc, which is the subject of the present investigation. METHOD Serum levels of sST2 were measured in 49 patients with SSc, recruited prospectively between November 2017 and March 2019. Patients were divided into those with progressive and those with stable disease. Receiver operating characteristics (ROC) curve analysis was applied to study sST2 as a marker for identifying patients with progressive disease. We used multivariate logistic regression analysis to evaluate the predictive value of sST2 for progressive disease after adjustment for potential confounding factors. RESULTS Serum sST2 levels in patients with progressive disease were significantly elevated compared with patients with stable disease (mean ± sem: 50.4 ± 4.7 ng/mL vs 29.2 ± 2.97 ng/mL, p < 0.001). ROC curve analysis identified an sST2 cut-off value of 37.8 ng/mL as optimal for discriminating patients with progressive disease from those with stable disease (sensitivity 80.0%, specificity 79.3%, area under the curve 0.80). After controlling for potential confounding factors (age, gender, C-reactive protein, pro-brain natriuretic peptide, and sum of internal medicine comorbidities), sST2 remained predictive of progressive disease (odds ratio 1.070, 95% confidence interval 1.017-1.126, p < 0.009). CONCLUSION In the present study, sST2 serum levels were predictive of disease progression in patients with SSc.
Collapse
Affiliation(s)
- F Günther
- Department of Rheumatology and Clinical Immunology, Asklepios Clinic, Bad Abbach, Germany
| | - R H Straub
- Department of Internal Medicine I, University Medical Center, Regensburg, Germany
| | - W Hartung
- Department of Rheumatology and Clinical Immunology, Asklepios Clinic, Bad Abbach, Germany
| | - A Luchner
- Department of Cardiology, Barmherzige Brüder Hospital, Regensburg, Germany
| | - M Fleck
- Department of Rheumatology and Clinical Immunology, Asklepios Clinic, Bad Abbach, Germany.,Department of Internal Medicine I, University Medical Center, Regensburg, Germany
| | - B Ehrenstein
- Department of Rheumatology and Clinical Immunology, Asklepios Clinic, Bad Abbach, Germany.,Department of Internal Medicine I, University Medical Center, Regensburg, Germany
| |
Collapse
|
15
|
Kitko CL, Pidala J, Schoemans HM, Lawitschka A, Flowers ME, Cowen EW, Tkaczyk E, Farhadfar N, Jain S, Steven P, Luo ZK, Ogawa Y, Stern M, Yanik GA, Cuvelier GDE, Cheng GS, Holtan SG, Schultz KR, Martin PJ, Lee SJ, Pavletic SZ, Wolff D, Paczesny S, Blazar BR, Sarantopoulos S, Socie G, Greinix H, Cutler C. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IIa. The 2020 Clinical Implementation and Early Diagnosis Working Group Report. Transplant Cell Ther 2021; 27:545-557. [PMID: 33839317 PMCID: PMC8803210 DOI: 10.1016/j.jtct.2021.03.033] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Recognition of the earliest signs and symptoms of chronic graft-versus-host disease (GVHD) that lead to severe manifestations remains a challenge. The standardization provided by the National Institutes of Health (NIH) 2005 and 2014 consensus projects has helped improve diagnostic accuracy and severity scoring for clinical trials, but utilization of these tools in routine clinical practice is variable. Additionally, when patients meet the NIH diagnostic criteria, many already have significant morbidity and possibly irreversible organ damage. The goals of this early diagnosis project are 2-fold. First, we provide consensus recommendations regarding implementation of the current NIH diagnostic guidelines into routine transplant care, outside of clinical trials, aiming to enhance early clinical recognition of chronic GVHD. Second, we propose directions for future research efforts to enable discovery of new, early laboratory as well as clinical indicators of chronic GVHD, both globally and for highly morbid organ-specific manifestations. Identification of early features of chronic GVHD that have high positive predictive value for progression to more severe manifestations of the disease could potentially allow for future pre-emptive clinical trials.
Collapse
Affiliation(s)
- Carrie L Kitko
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Joseph Pidala
- Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Hélène M Schoemans
- Department of Hematology, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Anita Lawitschka
- St. Anna Children's Hospital, Children's Cancer Research Institute, Vienna, Austria
| | - Mary E Flowers
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland
| | - Eric Tkaczyk
- Research & Dermatology Services, Department of Veterans Affairs, Nashville, Tennessee; Vanderbilt Dermatology Translational Research Clinic, Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Nosha Farhadfar
- Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, Florida
| | - Sandeep Jain
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, Illinois
| | - Philipp Steven
- Division for Dry-Eye Disease and Ocular GVHD, Department of Ophthalmology, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Zhonghui K Luo
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard University, Boston, Massachusetts
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Michael Stern
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, Illinois; ImmunEyez LLC, Irvine, California
| | - Greg A Yanik
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Geoffrey D E Cuvelier
- Pediatric Blood and Marrow Transplantation, Department of Pediatric Oncology-Hematology-BMT, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Guang-Shing Cheng
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Shernan G Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Kirk R Schultz
- Pediatric Hematology/Oncology/BMT, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Paul J Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Steven Z Pavletic
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Daniel Wolff
- Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, Minnesota
| | - Stephanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Duke University Department of Medicine, Duke Cancer Institute, Durham, North Carolina
| | - Gerard Socie
- Hematology Transplantation, AP-HP Saint Louis Hospital & University of Paris, INSERM U976, Paris, France
| | - Hildegard Greinix
- Clinical Division of Hematology, Medical University of Graz, Graz, Austria
| | - Corey Cutler
- Division of Stem Cell Transplantation and Cellular Therapy, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
16
|
Bellocchi C, Ying J, Goldmuntz EA, Keyes-Elstein L, Varga J, Hinchcliff ME, Lyons MA, McSweeney P, Furst DE, Nash R, Crofford LJ, Welch B, Goldin JG, Pinckney A, Mayes MD, Sullivan KM, Assassi S. Large-Scale Characterization of Systemic Sclerosis Serum Protein Profile: Comparison to Peripheral Blood Cell Transcriptome and Correlations With Skin/Lung Fibrosis. Arthritis Rheumatol 2021; 73:660-670. [PMID: 33131208 DOI: 10.1002/art.41570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To provide a large-scale assessment of serum protein dysregulation in diffuse cutaneous systemic sclerosis (dcSSc) and to investigate serum protein correlates of SSc fibrotic features. METHODS We investigated serum protein profiles of 66 participants with dcSSc at baseline who were enrolled in the Scleroderma: Cyclophosphamide or Transplant Trial and 66 age- and sex-matched healthy control subjects. A panel of 230 proteins, including several cytokines and chemokines, was investigated. Whole blood gene expression profiling in concomitantly collected samples was performed. RESULTS Among the participants with dcSSc, the mean disease duration was 2.3 years. All had interstitial lung disease (ILD), and none were being treated with immunosuppressive agents at baseline. Ninety proteins were differentially expressed in participants with dcSSc compared to healthy control subjects. Similar to previous global skin transcript results, hepatic fibrosis, granulocyte and agranulocyte adhesion, and diapedesis were the top overrepresented pathways. Eighteen proteins correlated with the modified Rodnan skin thickness score (MRSS). Soluble epidermal growth factor receptor was significantly down-regulated in dcSSc and showed the strongest negative correlation with the MRSS, being predictive of the score's course over time, whereas α1 -antichymotrypsin was significantly up-regulated in dcSSc and showed the strongest positive correlation with the MRSS. Furthermore, higher levels of cancer antigen 15-3 correlated with more severe ILD, based on findings of reduced forced vital capacity and higher scores of disease activity on high-resolution computed tomography. Only 14 genes showed significant differential expression in the same direction in serum protein and whole blood RNA gene expression analyses. CONCLUSION Diffuse cutaneous SSc has a distinct serum protein profile with prominent dysregulation of proteins related to fibrosis and immune cell adhesion/diapedesis. The differential expression for most serum proteins in SSc is likely to originate outside the peripheral blood cells.
Collapse
Affiliation(s)
- Chiara Bellocchi
- The University of Texas Health Science Center at Houston and McGovern Medical School, Houston, and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Jun Ying
- The University of Texas Health Science Center at Houston and McGovern Medical School, Houston
| | - Ellen A Goldmuntz
- National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | | | - John Varga
- Northwestern University, Chicago, Illinois
| | | | - Marka A Lyons
- The University of Texas Health Science Center at Houston and McGovern Medical School, Houston
| | | | - Daniel E Furst
- University of California Los Angeles, University of Washington, Seattle, and University of Florence, Florence, Italy
| | | | | | - Beverly Welch
- National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | | | | | - Maureen D Mayes
- The University of Texas Health Science Center at Houston and McGovern Medical School, Houston
| | | | - Shervin Assassi
- The University of Texas Health Science Center at Houston and McGovern Medical School, Houston
| |
Collapse
|
17
|
Correia C, Mawe S, Lofgren S, Marangoni RG, Lee J, Saber R, Aren K, Cheng M, Teaw S, Hoffmann A, Goldberg I, Cowper SE, Khatri P, Hinchcliff M, Mahoney JM. High-throughput quantitative histology in systemic sclerosis skin disease using computer vision. Arthritis Res Ther 2020; 22:48. [PMID: 32171325 PMCID: PMC7071594 DOI: 10.1186/s13075-020-2127-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/06/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Skin fibrosis is the clinical hallmark of systemic sclerosis (SSc), where collagen deposition and remodeling of the dermis occur over time. The most widely used outcome measure in SSc clinical trials is the modified Rodnan skin score (mRSS), which is a semi-quantitative assessment of skin stiffness at seventeen body sites. However, the mRSS is confounded by obesity, edema, and high inter-rater variability. In order to develop a new histopathological outcome measure for SSc, we applied a computer vision technology called a deep neural network (DNN) to stained sections of SSc skin. We tested the hypotheses that DNN analysis could reliably assess mRSS and discriminate SSc from normal skin. METHODS We analyzed biopsies from two independent (primary and secondary) cohorts. One investigator performed mRSS assessments and forearm biopsies, and trichrome-stained biopsy sections were photomicrographed. We used the AlexNet DNN to generate a numerical signature of 4096 quantitative image features (QIFs) for 100 randomly selected dermal image patches/biopsy. In the primary cohort, we used principal components analysis (PCA) to summarize the QIFs into a Biopsy Score for comparison with mRSS. In the secondary cohort, using QIF signatures as the input, we fit a logistic regression model to discriminate between SSc vs. control biopsy, and a linear regression model to estimate mRSS, yielding Diagnostic Scores and Fibrosis Scores, respectively. We determined the correlation between Fibrosis Scores and the published Scleroderma Skin Severity Score (4S) and between Fibrosis Scores and longitudinal changes in mRSS on a per patient basis. RESULTS In the primary cohort (n = 6, 26 SSc biopsies), Biopsy Scores significantly correlated with mRSS (R = 0.55, p = 0.01). In the secondary cohort (n = 60 SSc and 16 controls, 164 biopsies; divided into 70% training and 30% test sets), the Diagnostic Score was significantly associated with SSc-status (misclassification rate = 1.9% [training], 6.6% [test]), and the Fibrosis Score significantly correlated with mRSS (R = 0.70 [training], 0.55 [test]). The DNN-derived Fibrosis Score significantly correlated with 4S (R = 0.69, p = 3 × 10- 17). CONCLUSIONS DNN analysis of SSc biopsies is an unbiased, quantitative, and reproducible outcome that is associated with validated SSc outcomes.
Collapse
Affiliation(s)
- Chase Correia
- Department of Internal Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Seamus Mawe
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, HSRF 408 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Shane Lofgren
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Roberta G Marangoni
- Department of Internal Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jungwha Lee
- Institute for Public Health and Medicine, Chicago, IL, USA
- Department of Preventive Medicine, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Rana Saber
- Department of Internal Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Institute for Public Health and Medicine, Chicago, IL, USA
| | - Kathleen Aren
- Department of Internal Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michelle Cheng
- Yale School of Medicine, Department of Medicine, Section of Rheumatology, Allergy & Immunology, New Haven, CT, USA
| | - Shannon Teaw
- Yale School of Medicine, Department of Medicine, Section of Rheumatology, Allergy & Immunology, New Haven, CT, USA
| | - Aileen Hoffmann
- Department of Internal Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Isaac Goldberg
- Department of Internal Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shawn E Cowper
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Purvesh Khatri
- Department of Medicine (Biomedical Informatics - Research Institute for Immunity, Transplantation and Infection) and of Biomedical Data Science, Stanford University, Palo Alto, CA, USA
| | - Monique Hinchcliff
- Department of Internal Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Institute for Public Health and Medicine, Chicago, IL, USA.
- Yale School of Medicine, Department of Medicine, Section of Rheumatology, Allergy & Immunology, New Haven, CT, USA.
| | - J Matthew Mahoney
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, HSRF 408 149 Beaumont Avenue, Burlington, VT, 05405, USA.
- Department of Computer Science, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
18
|
Renaud L, da Silveira WA, Takamura N, Hardiman G, Feghali-Bostwick C. Prominence of IL6, IGF, TLR, and Bioenergetics Pathway Perturbation in Lung Tissues of Scleroderma Patients With Pulmonary Fibrosis. Front Immunol 2020; 11:383. [PMID: 32210969 PMCID: PMC7075854 DOI: 10.3389/fimmu.2020.00383] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 12/21/2022] Open
Abstract
Scleroderma-associated pulmonary fibrosis (SSc-PF) and idiopathic pulmonary fibrosis (IPF) are two of many chronic fibroproliferative diseases that are responsible for nearly 45% of all deaths in developed countries. While sharing several pathobiological characteristics, they also have very distinct features. Currently no effective anti-fibrotic treatments exist that can halt the progression of PF or reverse it. Our goal is to uncover potential gene targets for the development of anti-fibrotic therapies efficacious in both diseases, and those specific to SSc-PF, by identifying universal pathways and molecules driving fibrosis in SSc-PF and IPF tissues as well as those unique to SSc-PF. Using DNA microarray data, a meta-analysis of the differentially expressed (DE) genes in SSc-PF and IPF lung tissues (diseased vs. normal) was performed followed by a full systems level analysis of the common and unique transcriptomic signatures obtained. Protein-protein interaction networks were generated to identify hub proteins and explore the data using the centrality principle. Our results suggest that therapeutic strategies targeting IL6 trans-signaling, IGFBP2, IGFL2, and the coagulation cascade may be efficacious in both SSc-PF and IPF. Further, our data suggest that the expression of matrikine-producing collagens is also perturbed in PF. Lastly, an overall perturbation of bioenergetics, specifically between glycolysis and fatty acid metabolism, was uncovered in SSc-PF. Our findings provide insights into potential targets for the development of anti-fibrotic therapies that could be effective in both IPF and SSc-PF.
Collapse
Affiliation(s)
- Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Willian A. da Silveira
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, United Kingdom
| | - Naoko Takamura
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Gary Hardiman
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, United Kingdom
| | - Carol Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
19
|
Martinović Kaliterna D, Petrić M. Biomarkers of skin and lung fibrosis in systemic sclerosis. Expert Rev Clin Immunol 2019; 15:1215-1223. [DOI: 10.1080/1744666x.2020.1670062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Marin Petrić
- Department of Clinical Immunology and Rheumatology, Department of Internal Medicine, University Hospital of Split, Split, Croatia
| |
Collapse
|
20
|
Paczesny S, Metzger J. Clinical Proteomics for Post-Hematopoeitic Stem Cell Transplantation Outcomes. Proteomics Clin Appl 2019; 13:e1800145. [PMID: 30307119 PMCID: PMC6440827 DOI: 10.1002/prca.201800145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 09/28/2018] [Indexed: 12/20/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is the most effective form of tumor immunotherapy available to date. However, while HSCT can induce beneficial graft-versus-leukemia (GVL) effect, the adverse effect of graft-versus-host disease (GVHD), which is closely linked to GVL, is the major source of morbidity and mortality following HSCT. Until recently, available diagnostic and staging tools frequently fail to identify those at higher risk of disease progression or death. Furthermore, there are shortcomings in the prediction of the need for therapeutic interventions or the response rates to different forms of therapy. The past decade has been characterized by an explosive evolution of proteomics technologies, largely due to important advances in high-throughput MS instruments and bioinformatics. Building on these opportunities, blood biomarkers have been identified and validated both as promising diagnostic tools, prognostic tools that risk-stratify patients before future occurrence of GVHD and as predictive tools for responsiveness to GVHD therapy and non-relapse mortality. These biomarkers might facilitate timely and selective therapeutic intervention. This review summarizes current information on clinical proteomics for GVHD as well as other complications following HSCT. Finally, it proposes future directions for the translation of clinical proteomics to discovery of new potential therapeutic targets to the development of drugs.
Collapse
Affiliation(s)
- Sophie Paczesny
- Department of Pediatrics, Department of Microbiology Immunology, and Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | |
Collapse
|
21
|
Rice LM, Mantero JC, Stratton EA, Warburton R, Roberts K, Hill N, Simms RW, Domsic R, Farber HW, Layfatis R. Serum biomarker for diagnostic evaluation of pulmonary arterial hypertension in systemic sclerosis. Arthritis Res Ther 2018; 20:185. [PMID: 30115106 PMCID: PMC6097341 DOI: 10.1186/s13075-018-1679-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023] Open
Abstract
Background Systemic sclerosis-associated pulmonary arterial hypertension (SSc-PAH) is one of the leading causes of death in SSc. Identification of a serum-based proteomic diagnostic biomarker for SSc-PAH would allow for rapid non-invasive screening and could positively impact patient survival. Identification and validation of novel proteins could potentially facilitate the identification of SSc-PAH, and might also point to important protein mediators in pathogenesis. Methods Thirteen treatment-naïve SSc-PAH patients had serum collected at time of diagnosis and were used as the discovery cohort for the protein-expression biomarker. Two proteins, Midkine and Follistatin-like 3 (FSTL3) were then validated by enzyme-linked immunosorbent assays. Midkine and FSTL3 were tested in combination to identify SSc-PAH and were validated in two independent cohorts of SSc-PAH (n = 23, n = 11). Results Eighty-two proteins were found to be differentially regulated in SSc-PAH sera. Two proteins (Midkine and FSTL3) were also shown to be elevated in publicly available data and their expression was evaluated in independent cohorts. In the validation cohorts, the combination of Midkine and FSTL3 had an area under the receiver operating characteristic curve (AUC) of 0.85 and 0.92 with respective corresponding measures of sensitivity of 76% and 91%, and specificity measures of 76% and 80%. Conclusions These findings indicate that there is a clear delineation between overall protein expression in sera from SSc patients and those with SSc-PAH. The combination of Midkine and FSTL3 can serve as an SSc-PAH biomarker and are potential drug targets for this rare disease population. Electronic supplementary material The online version of this article (10.1186/s13075-018-1679-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lisa M Rice
- Boston University School of Medicine, E5 Arthritis Center, 72 E Concord Street, Boston, MA, 0211, USA.
| | - Julio C Mantero
- Boston University School of Medicine, E5 Arthritis Center, 72 E Concord Street, Boston, MA, 0211, USA
| | - Eric A Stratton
- Boston University School of Medicine, E5 Arthritis Center, 72 E Concord Street, Boston, MA, 0211, USA
| | | | | | | | - Robert W Simms
- Boston University School of Medicine, E5 Arthritis Center, 72 E Concord Street, Boston, MA, 0211, USA
| | - Robyn Domsic
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Harrison W Farber
- Boston University School of Medicine, E5 Arthritis Center, 72 E Concord Street, Boston, MA, 0211, USA
| | - Robert Layfatis
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Ramadan AM, Daguindau E, Rech JC, Chinnaswamy K, Zhang J, Hura GL, Griesenauer B, Bolten Z, Robida A, Larsen M, Stuckey JA, Yang CY, Paczesny S. From proteomics to discovery of first-in-class ST2 inhibitors active in vivo. JCI Insight 2018; 3:99208. [PMID: 30046004 DOI: 10.1172/jci.insight.99208] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
Abstract
Soluble cytokine receptors function as decoy receptors to attenuate cytokine-mediated signaling and modulate downstream cellular responses. Dysregulated overproduction of soluble receptors can be pathological, such as soluble ST2 (sST2), a prognostic biomarker in cardiovascular diseases, ulcerative colitis, and graft-versus-host disease (GVHD). Although intervention using an ST2 antibody improves survival in murine GVHD models, sST2 is a challenging target for drug development because it binds to IL-33 via an extensive interaction interface. Here, we report the discovery of small-molecule ST2 inhibitors through a combination of high-throughput screening and computational analysis. After in vitro and in vivo toxicity assessment, 3 compounds were selected for evaluation in 2 experimental GVHD models. We show that the most effective compound, iST2-1, reduces plasma sST2 levels, alleviates disease symptoms, improves survival, and maintains graft-versus-leukemia activity. Our data suggest that iST2-1 warrants further optimization to develop treatment for inflammatory diseases mediated by sST2.
Collapse
Affiliation(s)
- Abdulraouf M Ramadan
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Etienne Daguindau
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jason C Rech
- Department of Internal Medicine, Hematology and Oncology Division, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Jilu Zhang
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Greg L Hura
- Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Brad Griesenauer
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zachary Bolten
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aaron Robida
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Martha Larsen
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Chao-Yie Yang
- Department of Internal Medicine, Hematology and Oncology Division, University of Michigan, Ann Arbor, Michigan, USA
| | - Sophie Paczesny
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
23
|
Jiang B, Jia Y, He C. Promoting new concepts of skincare via skinomics and systems biology-From traditional skincare and efficacy-based skincare to precision skincare. J Cosmet Dermatol 2018; 17:968-976. [PMID: 29749695 DOI: 10.1111/jocd.12663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2018] [Indexed: 12/18/2022]
Abstract
Traditional skincare involves the subjective classification of skin into 4 categories (oily, dry, mixed, and neutral) prior to skin treatment. Following the development of noninvasive methods in skin and skin imaging technology, scientists have developed efficacy-based skincare products based on the physiological characteristics of skin under different conditions. Currently, the emergence of skinomics and systems biology has facilitated the development of precision skincare. In this article, the evolution of skincare based on the physiological states of the skin (from traditional skincare and efficacy-based skincare to precision skincare) is described. In doing so, we highlight skinomics and systems biology, with particular emphasis on the importance of skin lipidomics and microbiomes in precision skincare. The emerging trends of precision skincare are anticipated.
Collapse
Affiliation(s)
- Biao Jiang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Yan Jia
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Congfen He
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
24
|
Ren HG, Adom D, Paczesny S. The search for drug-targetable diagnostic, prognostic and predictive biomarkers in chronic graft-versus-host disease. Expert Rev Clin Immunol 2018; 14:389-404. [PMID: 29629613 DOI: 10.1080/1744666x.2018.1463159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Chronic graft-versus-host disease (cGVHD) continues to be the leading cause of late morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT), which is an increasingly applied curative method for both benign and malignant hematologic disorders. Biomarker identification is crucial for the development of noninvasive and cost-effective cGVHD diagnostic, prognostic, and predictive test for use in clinic. Furthermore, biomarkers may help to gain a better insight on ongoing pathophysiological processes. The recent widespread application of omics technologies including genomics, transcriptomics, proteomics and cytomics provided opportunities to discover novel biomarkers. Areas covered: This review focuses on biomarkers identified through omics that play a critical role in target identification for drug development, and that were verified in at least two independent cohorts. It also summarizes the current status on omics tools used to identify these useful cGVHD targets. We briefly list the biomarkers identified and verified so far. We further address challenges associated to their exploitation and application in the management of cGVHD patients. Finally, insights on biomarkers that are drug targetable and represent potential therapeutic targets are discussed. Expert commentary: We focus on biomarkers that play an essential role in target identification.
Collapse
Affiliation(s)
- Hong-Gang Ren
- a Department of Pediatrics , Indiana University , Indianapolis , IN , USA.,b Department of Microbiology Immunology , Indiana University , Indianapolis , IN , USA.,c Melvin and Bren Simon Cancer Center , Indiana University , Indianapolis , IN , USA
| | - Djamilatou Adom
- a Department of Pediatrics , Indiana University , Indianapolis , IN , USA.,b Department of Microbiology Immunology , Indiana University , Indianapolis , IN , USA.,c Melvin and Bren Simon Cancer Center , Indiana University , Indianapolis , IN , USA
| | - Sophie Paczesny
- a Department of Pediatrics , Indiana University , Indianapolis , IN , USA.,b Department of Microbiology Immunology , Indiana University , Indianapolis , IN , USA.,c Melvin and Bren Simon Cancer Center , Indiana University , Indianapolis , IN , USA
| |
Collapse
|
25
|
Wermuth PJ, Piera-Velazquez S, Jimenez SA. Identification of novel systemic sclerosis biomarkers employing aptamer proteomic analysis. Rheumatology (Oxford) 2017; 57:1698-1706. [DOI: 10.1093/rheumatology/kex404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Peter J Wermuth
- Jefferson Institute of Molecular Medicine and The Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine and The Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine and The Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
26
|
Controversies on the Use of Steroids in Systemic Sclerosis. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2017. [DOI: 10.5301/jsrd.5000234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of corticosteroids in patients with systemic sclerosis (SSc) always requires caution (especially because corticosteroids are a risk factor for scleroderma renal crisis [SRC]), and is often controversial. This review focuses on the main area of controversy, that is whether corticosteroids should be prescribed in patients with early diffuse cutaneous SSc (dcSSc). The arguments for and against corticosteroids in this clinical situation are presented, along with two case histories to illustrate the clinical dilemma. In favour of corticosteroids, is that these might suppress the musculoskeletal manifestations and itch that are so disabling in early disease, the argument against is that patients with early dcSSc are those at highest risk of SRC. That current opinion is divided amongst clinicians is evidenced by a roughly even split between patients previously prescribed and those not prescribed corticosteroids in the recent European Scleroderma Observational Study of early dcSSc (43% of 326 patients were on corticosteroids at their baseline visit or had previously been prescribed these). Other clinical situations in which corticosteroids may be considered in patients with SSc (mainly overlap syndromes and pulmonary involvement) are briefly discussed. Finally, some additional concerns relating to corticosteroid use specifically in patients with SSc are highlighted.
Collapse
|
27
|
Matsushita T, Takehara K. An update on biomarker discovery and use in systemic sclerosis. Expert Rev Mol Diagn 2017; 17:823-833. [DOI: 10.1080/14737159.2017.1356722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuhiko Takehara
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
28
|
Griesenauer B, Paczesny S. The ST2/IL-33 Axis in Immune Cells during Inflammatory Diseases. Front Immunol 2017; 8:475. [PMID: 28484466 PMCID: PMC5402045 DOI: 10.3389/fimmu.2017.00475] [Citation(s) in RCA: 426] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/05/2017] [Indexed: 12/16/2022] Open
Abstract
Il1rl1 (also known as ST2) is a member of the IL-1 superfamily, and its only known ligand is IL-33. ST2 exists in two forms as splice variants: a soluble form (sST2), which acts as a decoy receptor, sequesters free IL-33, and does not signal, and a membrane-bound form (ST2), which activates the MyD88/NF-κB signaling pathway to enhance mast cell, Th2, regulatory T cell (Treg), and innate lymphoid cell type 2 functions. sST2 levels are increased in patients with active inflammatory bowel disease, acute cardiac and small bowel transplant allograft rejection, colon and gastric cancers, gut mucosal damage during viral infection, pulmonary disease, heart disease, and graft-versus-host disease. Recently, sST2 has been shown to be secreted by intestinal pro-inflammatory T cells during gut inflammation; on the contrary, protective ST2-expressing Tregs are decreased, implicating that ST2/IL-33 signaling may play an important role in intestinal disease. This review will focus on what is known on its signaling during various inflammatory disease states and highlight potential avenues to intervene in ST2/IL-33 signaling as treatment options.
Collapse
Affiliation(s)
- Brad Griesenauer
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
- Department of Microbiology Immunology, Indiana University, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
- Department of Microbiology Immunology, Indiana University, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| |
Collapse
|