1
|
Wright QG, Sinha D, Wells JW, Frazer IH, Gonzalez Cruz JL, Leggatt GR. Peritumoral administration of immunomodulatory antibodies as a triple combination suppresses skin tumor growth without systemic toxicity. J Immunother Cancer 2024; 12:e007960. [PMID: 38296598 PMCID: PMC10831460 DOI: 10.1136/jitc-2023-007960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Skin cancers, particularly keratinocyte cancers, are the most commonly diagnosed tumors. Although surgery is often effective in early-stage disease, skin tumors are not always easily accessible, can reoccur and have the ability to metastasize. More recently, immunotherapies, including intravenously administered checkpoint inhibitors, have been shown to control some skin cancers, but with off-target toxicities when used in combination. Our study investigated whether peritumoral administration of an antibody combination targeting PD-1, 4-1BB (CD137) and VISTA might control skin tumors and lead to circulating antitumor immunity without off-target toxicity. METHODS The efficacy of combination immunotherapy administered peritumorally or intravenously was tested using transplantable tumor models injected into mouse ears (primary tumors) or subcutaneously in flank skin (secondary tumors). Changes to the tumor microenvironment were tracked using flow cytometry while tumor-specific, CD8 T cells were identified through enzyme-linked immunospot (ELISPOT) assays. Off-target toxicity of the combination immunotherapy was assessed via serum alanine aminotransferase ELISA and histological analysis of liver sections. RESULTS The data showed that local administration of antibody therapy eliminated syngeneic murine tumors transplanted in the ear skin at a lower dose than required intravenously, and without measured hepatic toxicity. Tumor elimination was dependent on CD8 T cells and was associated with an increased percentage of CD8 T cells expressing granzyme B, KLRG1 and Eomes, and a decreased population of CD4 T cells including CD4+FoxP3+ cells in the treated tumor microenvironment. Importantly, untreated, distal tumors regressed following antibody treatment of a primary tumor, and immune memory prevented growth of subcutaneous flank tumors administered 50 days after regression of a primary tumor. CONCLUSIONS Together, these data suggest that peritumoral immunotherapy for skin tumors offers advantages over conventional intravenous delivery, allowing antibody dose sparing, improved safety and inducing long-term systemic memory. Future clinical trials of immunotherapy for primary skin cancer should focus on peritumoral delivery of combinations of immune checkpoint antibodies.
Collapse
Affiliation(s)
- Quentin G Wright
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Debottam Sinha
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - James W Wells
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Ian H Frazer
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
2
|
Shekari N, Shanehbandi D, Kazemi T, Zarredar H, Baradaran B, Jalali SA. VISTA and its ligands: the next generation of promising therapeutic targets in immunotherapy. Cancer Cell Int 2023; 23:265. [PMID: 37936192 PMCID: PMC10631023 DOI: 10.1186/s12935-023-03116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
V-domain immunoglobulin suppressor of T cell activation (VISTA) is a novel negative checkpoint receptor (NCR) primarily involved in maintaining immune tolerance. It has a role in the pathogenesis of autoimmune disorders and cancer and has shown promising results as a therapeutic target. However, there is still some ambiguity regarding the ligands of VISTA and their interactions with each other. While V-Set and Immunoglobulin domain containing 3 (VSIG-3) and P-selectin glycoprotein ligand-1(PSGL-1) have been extensively studied as ligands for VISTA, the others have received less attention. It seems that investigating VISTA ligands, reviewing their functions and roles, as well as outcomes related to their interactions, may allow an understanding of their full functionality and effects within the cell or the microenvironment. It could also help discover alternative approaches to target the VISTA pathway without causing related side effects. In this regard, we summarize current evidence about VISTA, its related ligands, their interactions and effects, as well as their preclinical and clinical targeting agents.
Collapse
Affiliation(s)
- Najibeh Shekari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Shigematsu M, Takeda K, Matsunaga S, Sendai Y, Matsuura N, Suzuki R, Azuma T, Sasaki H, Okumura K, Sekine H, Yajima Y, Ohno T. Subgingival titanium wire implantation induces weak inflammatory responses but does not promote substantial T cell activation. Dent Mater J 2023; 42:633-640. [PMID: 37423721 DOI: 10.4012/dmj.2022-258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Titanium is a biocompatible material commonly used for dental treatments. However, the detailed mechanism underlying the weak biological activity of titanium has not been elucidated. We investigated both the inflammatory responses and T cell activation induced by solid titanium in the gingiva in mice. Both titanium and nickel wire implantation promoted neutrophil infiltration into the gingiva on day 2. Nickel, but not titanium, wire implantation enhanced proinflammatory cytokine expression and dendritic cell activity in gingival tissue by day 2. Nickel wire implantation enhanced the activity of T cells in draining lymph nodes on day 5. Moreover, T cell and neutrophil infiltration and elevated proinflammatory cytokine expression in the gingival tissue were still observed on day 5. However, no such augmented biological responses were observed after titanium wire implantation. These findings suggest that, unlike nickel, solid titanium does not induce sufficient inflammatory responses leading to T cell activation in gingival tissue.
Collapse
Affiliation(s)
- Masaki Shigematsu
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
| | - Kazuyoshi Takeda
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University
- Laboratory of Cell Biology, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University
| | - Satoru Matsunaga
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Department of Anatomy, Tokyo Dental College
| | - Yuka Sendai
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
- Department of Dental Anesthesiology, Tokyo Dental College
| | - Nobutaka Matsuura
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
- Department of Dental Anesthesiology, Tokyo Dental College
| | - Reiya Suzuki
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
| | - Toshifumi Azuma
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
- Department of Biochemistry, Tokyo Dental College
| | - Hodaka Sasaki
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
- Tokyo Dental College Research Branding Project, Tokyo Dental College
| | - Ko Okumura
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University
- Atopy Research Center, Graduate School of Medicine, Juntendo University
| | - Hideshi Sekine
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Department of Fixed Prosthodontics, Tokyo Dental College
| | - Yasutomo Yajima
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
| | - Tatsukuni Ohno
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University
| |
Collapse
|
4
|
Zheng M, Zhang Z, Yu L, Wang Z, Dong Y, Tong A, Yang H. Immune-checkpoint protein VISTA in allergic, autoimmune disease and transplant rejection. Front Immunol 2023; 14:1194421. [PMID: 37435070 PMCID: PMC10330820 DOI: 10.3389/fimmu.2023.1194421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
Negative checkpoint regulators (NCRs) reduce the T cell immune response against self-antigens and limit autoimmune disease development. V-domain Ig suppressor of T cell activation (VISTA), a novel immune checkpoint in the B7 family, has recently been identified as one of the NCRs. VISTA maintains T cell quiescence and peripheral tolerance. VISTA targeting has shown promising results in treating immune-related diseases, including cancer and autoimmune disease. In this review, we summarize and discuss the immunomodulatory role of VISTA, its therapeutic potential in allergic, autoimmune disease, and transplant rejection, as well as the current therapeutic antibodies, to present a new method for regulating immune responses and achieving durable tolerance for the treatment of autoimmune disease and transplantation.
Collapse
Affiliation(s)
- Meijun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Lingyu Yu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Zeng Wang
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yijun Dong
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Hui Yang
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Yang F, Zhang Y, Chen Z, Zhang L. VISTA Blockade Aggravates Bone Loss in Experimental Murine Apical Periodontitis. Front Immunol 2021; 12:738586. [PMID: 34691045 PMCID: PMC8529274 DOI: 10.3389/fimmu.2021.738586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
V-domain Ig suppressor of T cell activation (VISTA) is a novel coinhibitory immune checkpoint molecule that maintains immune homeostasis. The present study explored the role of VISTA in human and murine inflammatory tissues of apical periodontitis (AP). VISTA was upregulated in inflammatory tissues of human AP. In mice, the expression of VISTA gradually increased with the development of mouse experimental apical periodontitis (MAP), the CD3+ T cells, CD11b+ myeloid cells, and FOXP3+ regulatory T cells also gradually accumulated. Moreover, a blockade of VISTA using a mouse in vivo anti-VISTA antibody aggravated periapical bone loss and enhanced the infiltration of immune cells in an experimental mouse periapical periodontitis model. The collective results suggest that VISTA serves as a negative regulator of the development and bone loss of apical periodontitis.
Collapse
Affiliation(s)
- Fuhua Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yifei Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
High-Affinity Anti-VISTA Antibody Protects against Sepsis by Inhibition of T Lymphocyte Apoptosis and Suppression of the Inflammatory Response. Mediators Inflamm 2021; 2021:6650329. [PMID: 34366711 PMCID: PMC8339895 DOI: 10.1155/2021/6650329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/08/2021] [Accepted: 07/06/2021] [Indexed: 12/29/2022] Open
Abstract
Background B7 family members and ligands have been identified as critical checkpoints in orchestrating the immune response during sepsis. V-domain Ig suppressor of T cell activation (VISTA) is a new inhibitory immune checkpoint involved in restraining T cell response. Previous studies demonstrated that VISTA engagement on T cells and myeloid cells could transmit inhibitory signals, resulting in reduced activation and function. The current study was designed to determine the potential therapeutic effects of a high-affinity anti-VISTA antibody (clone MH5A) in a murine model of sepsis. Methods Polymicrobial sepsis was induced in male C57BL/6 mice via cecal ligation and puncture. Expression profiles of VISTA on T lymphocytes and macrophage were examined at 24 and 72 h postsurgery. The effects of anti-VISTA mAb on the 7-day survival, lymphocyte apoptosis, cytokine expression, bacterial burden, and vital organ damage were determined. Furthermore, the effects of anti-VISTA mAb on CD3+ T cell apoptosis and macrophage activation were determined in vitro. Results VISTA was substantially expressed on T cells and macrophages in sham-operated mice; septic peritonitis did not induce significant changes in the expression profiles. Treatment with MH5A improved the survival of septic mice, accompanied by reduced lymphocyte apoptosis, decreased cytokine expression, and enhanced bacterial clearance. Engagement of VISTA receptor with MH5A mitigated CD3+ T cell apoptosis cultured from CLP mice and suppressed LPS-induced cytokine production by macrophage in vitro. Conclusion The present study identified VISTA as a novel immune checkpoint in the regulation of T cell and macrophage response during sepsis. Modulation of the VISTA pathway might offer a promising opportunity in the immunotherapy for sepsis.
Collapse
|
7
|
Wang G, Tai R, Wu Y, Yang S, Wang J, Yu X, Lei L, Shan Z, Li N. The expression and immunoregulation of immune checkpoint molecule VISTA in autoimmune diseases and cancers. Cytokine Growth Factor Rev 2020; 52:1-14. [DOI: 10.1016/j.cytogfr.2020.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/24/2022]
|
8
|
Kunishige T, Taniguchi H, Ohno T, Azuma M, Hori J. VISTA Is Crucial for Corneal Allograft Survival and Maintenance of Immune Privilege. Invest Ophthalmol Vis Sci 2020; 60:4958-4965. [PMID: 31790558 DOI: 10.1167/iovs.19-27322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose V-domain immunoglobulin suppressor of T cell activation (VISTA) is a novel immune checkpoint receptor and ligand for regulating T cell proliferation and cytokine production. The purpose of the present study was to determine the role of VISTA in the immune privilege of corneal allografts. Methods Expression of VISTA mRNA in mouse eyes was assessed with reverse-transcription PCR. Corneas of C57BL/6 mice were orthotopically transplanted into the eyes of BALB/c wild-type recipients treated with anti-VISTA mAb, and graft survival was assessed. A separate set of BALB/c mice treated with anti-VISTA mAb or rat IgG received injection of C57BL/6 splenocytes into the anterior chamber, and induction of allospecific anterior chamber-associated immune deviation (ACAID) was assessed. CD4+ and CD8+ T cells in the spleen were assessed with flow cytometry. Results VISTA mRNA was constitutively expressed in the cornea, and the expression of VISTA was localized to CD11b+ cells on the corneal stroma. Survival of allografts treated with anti-VISTA mAb was less than that of the control. ACAID was induced less efficiently in BALB/c mice treated with VISTA mAb. The proportions of CD8+ T cells and CD8+ CD103+ T cells (CD8+ T regulatory cells) in the spleen of BALB/c mice treated with anti-VISTA mAb were significantly lower than those of the control. Conclusions VISTA may play an essential role in the acceptance of corneal allografts via involvement with allospecific ACAID, which suppresses T cell infiltration into the cornea.
Collapse
Affiliation(s)
| | - Hiroko Taniguchi
- Department of Ophthalmology, Nippon Medical School, Tokyo, Japan
| | - Tatsukuni Ohno
- Department of Molecular Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miyuki Azuma
- Department of Molecular Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junko Hori
- Department of Ophthalmology, Nippon Medical School, Tokyo, Japan.,Department of Ophthalmology, Nippon Medical School Tama Nagayama Hospital, Tokyo, Japan
| |
Collapse
|
9
|
Ohno T, Zhang C, Kondo Y, Kang S, Furusawa E, Tsuchiya K, Miyazaki Y, Azuma M. The immune checkpoint molecule VISTA regulates allergen-specific Th2-mediated immune responses. Int Immunol 2019; 30:3-11. [PMID: 29267882 DOI: 10.1093/intimm/dxx070] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022] Open
Abstract
V-domain immunoglobulin suppressor of T-cell activation (VISTA) is a novel immune checkpoint receptor and ligand that regulates T-cell activation. We investigated the functional involvement of VISTA in Th2 cell-mediated immune responses using an ovalbumin (OVA)-induced allergic asthma model. Treatment with an anti-VISTA monoclonal antibody (mAb) during allergen sensitization increased the production of antibodies, including total IgE, OVA-specific IgG1 and IgG2a and allergen-specific IL-5 and IL-13; it also increased the expression of IL-13 by splenic CD4+ T cells. However, treatment with the anti-VISTA mAb during sensitization did not accelerate asthmatic responses, including airway hyper-responsiveness (AHR) or the number of eosinophils in bronchoalveolar lavage (BAL) fluid. In contrast, treatment with the anti-VISTA mAb during allergen challenge significantly augmented AHR and BAL fluid eosinophilia. This treatment also increased the production of IL-5 and IL-13 in BAL fluid and the expression of IL-13 by CD4+ T cells in draining lymph nodes. These results suggest that VISTA is involved in the regulation of Th2 cell generation and Th2 cell-mediated antibody production and regulates asthmatic responses, especially in the effector phase.
Collapse
Affiliation(s)
- Tatsukuni Ohno
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Chenyang Zhang
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Yuta Kondo
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Siwen Kang
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Emi Furusawa
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Kimitake Tsuchiya
- Department of Respiratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Miyuki Azuma
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
10
|
VISTA expressed in tumour cells regulates T cell function. Br J Cancer 2018; 120:115-127. [PMID: 30382166 PMCID: PMC6325144 DOI: 10.1038/s41416-018-0313-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/24/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022] Open
Abstract
Background V-domain Ig suppressor of T cell activation (VISTA) is a novel inhibitory immune-checkpoint protein. VISTA expression on tumour cells and the associated regulatory mechanisms remain unclear. We investigated VISTA expression and function in tumour cells, and evaluated its mechanism and activity. Methods VISTA in tumour cells was assessed by tissue microarray analysis, immunohistochemical staining and western blot. A series of in vitro assays were used to determine the function of tumour-expressed VISTA. In vivo efficacy was evaluated in syngeneic models. Results VISTA was highly expressed in human ovarian and endometrial cancers. Upregulation of VISTA in endometrial cancer was related to the methylation status of the VISTA promoter. VISTA in tumour cells suppressed T cell proliferation and cytokine production in vitro, and decreased the tumour-infiltrating CD8+ T cells in vivo. Anti-VISTA antibody prolonged the survival of tumour-bearing mice. Conclusions This is the first demonstration that VISTA is highly expressed in human ovarian and endometrial cancer cells, and that anti-VISTA antibody treatment significantly prolongs the survival of mice bearing tumours expressing high levels of VISTA. The data suggest that VISTA is a novel immunosuppressive factor within the tumour microenvironment, as well as a new target for cancer immunotherapy.
Collapse
|