1
|
Kilich G, Perelygina L, Sullivan KE. Rubella virus chronic inflammatory disease and other unusual viral phenotypes in inborn errors of immunity. Immunol Rev 2024; 322:113-137. [PMID: 38009321 DOI: 10.1111/imr.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Infectious susceptibility is a component of many inborn errors of immunity. Nevertheless, antibiotic use is often used as a surrogate in history taking for infectious susceptibility, thereby disadvantaging patients who present with viral infections as their phenotype. Further complicating clinical evaluations are unusual manifestations of viral infections which may be less familiar that the typical respiratory viral infections. This review covers several unusual viral phenotypes arising in patients with inborn errors of immunity and other settings of immune compromise. In some cases, chronic infections lead to oncogenesis or tumor-like growths and the conditions and mechanisms of viral-induced oncogenesis will be described. This review covers enterovirus, rubella, measles, papillomavirus, and parvovirus B19. It does not cover EBV and hemophagocytic lymphohistiocytosis nor lymphomagenesis related to EBV. EBV susceptibility has been recently reviewed. Our goal is to increase awareness of the unusual manifestations of viral infections in patients with IEI and to describe treatment modalities utilized in this setting. Coincidentally, each of the discussed viral infections can have a cutaneous component and figures will serve as a reminder of the physical features of these viruses. Given the high morbidity and mortality, early recognition can only improve outcomes.
Collapse
Affiliation(s)
- Gonench Kilich
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ludmila Perelygina
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | |
Collapse
|
2
|
Hewavisenti RV, Arena J, Ahlenstiel CL, Sasson SC. Human papillomavirus in the setting of immunodeficiency: Pathogenesis and the emergence of next-generation therapies to reduce the high associated cancer risk. Front Immunol 2023; 14:1112513. [PMID: 36960048 PMCID: PMC10027931 DOI: 10.3389/fimmu.2023.1112513] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 03/09/2023] Open
Abstract
Human papillomavirus (HPV), a common sexually transmitted virus infecting mucosal or cutaneous stratified epithelia, is implicated in the rising of associated cancers worldwide. While HPV infection can be cleared by an adequate immune response, immunocompromised individuals can develop persistent, treatment-refractory, and progressive disease. Primary immunodeficiencies (PIDs) associated with HPV-related disease include inborn errors of GATA, EVER1/2, and CXCR4 mutations, resulting in defective cellular function. People living with secondary immunodeficiency (e.g. solid-organ transplants recipients of immunosuppression) and acquired immunodeficiency (e.g. concurrent human immunodeficiency virus (HIV) infection) are also at significant risk of HPV-related disease. Immunocompromised people are highly susceptible to the development of cutaneous and mucosal warts, and cervical, anogenital and oropharyngeal carcinomas. The specific mechanisms underlying high-risk HPV-driven cancer development in immunocompromised hosts are not well understood. Current treatments for HPV-related cancers include surgery with adjuvant chemotherapy and/or radiotherapy, with clinical trials underway to investigate the use of anti-PD-1 therapy. In the setting of HIV co-infection, persistent high-grade anal intraepithelial neoplasia can occur despite suppressive antiretroviral therapy, resulting in an ongoing risk for transformation to overt malignancy. Although therapeutic vaccines against HPV are under development, the efficacy of these in the setting of PID, secondary- or acquired- immunodeficiencies remains unclear. RNA-based therapeutic targeting of the HPV genome or mRNA transcript has become a promising next-generation therapeutic avenue. In this review, we summarise the current understanding of HPV pathogenesis, immune evasion, and malignant transformation, with a focus on key PIDs, secondary immunodeficiencies, and HIV infection. Current management and vaccine regimes are outlined in relation to HPV-driven cancer, and specifically, the need for more effective therapeutic strategies for immunocompromised hosts. The recent advances in RNA-based gene targeting including CRISPR and short interfering RNA (siRNA), and the potential application to HPV infection are of great interest. An increased understanding of both the dysregulated immune responses in immunocompromised hosts and of viral persistence is essential for the design of next-generation therapies to eliminate HPV persistence and cancer development in the most at-risk populations.
Collapse
Affiliation(s)
- Rehana V. Hewavisenti
- Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Joshua Arena
- Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
- UNSW RNA Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Chantelle L. Ahlenstiel
- Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
- UNSW RNA Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Sarah C. Sasson
- Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Progneaux A, Evrard C, De Glas V, Fontaine A, Dotreppe C, De Vuyst E, Nikkels AF, García-González V, Dumoutier L, Lambert de Rouvroit C, Poumay Y. Keratinocytes activated by IL-4/IL-13 express IL-2Rγ with consequences on epidermal barrier function. Exp Dermatol 2023; 32:660-670. [PMID: 36645024 DOI: 10.1111/exd.14749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023]
Abstract
Atopic dermatitis (AD) is a Th2-type inflammatory disease characterized by an alteration of epidermal barrier following the release of IL-4 and IL-13. These cytokines activate type II IL-4Rα/IL-13Rα1 receptors in the keratinocyte. Whilst IL-2Rγ, that forms type I receptor for IL-4, is only expressed in haematopoietic cells, recent studies suggest its induction in keratinocytes, which questions about its role. We studied expression of IL-2Rγ in keratinocytes and its role in alteration of keratinocyte function and epidermal barrier. IL-2Rγ expression in keratinocytes was studied using both reconstructed human epidermis (RHE) exposed to IL-4/IL-13 and AD skin. IL-2Rγ induction by type II receptor has been analyzed using JAK inhibitors and RHE knockout (KO) for IL13RA1. IL-2Rγ function was investigated in RHE KO for IL2RG. In RHE, IL-4/IL-13 induce expression of IL-2Rγ at the mRNA and protein levels. Its mRNA expression is also visualized in keratinocytes of lesional AD skin. IL-2Rγ expression is low in RHE treated with JAK inhibitors and absent in RHE KO for IL13RA1. Exposure to IL-4/IL-13 alters epidermal barrier, but this alteration is absent in RHE KO for IL2RG. A more important induction of IL-13Rα2 is reported in RHE KO for IL2RG than in not edited RHE. These results demonstrate IL-2Rγ induction in keratinocytes through activation of type II receptor. IL-2Rγ is involved in the alteration of the epidermal barrier and in the regulation of IL-13Rα2 expression. Observation of IL-2Rγ expression by keratinocytes inside AD lesional skin suggests a role for this receptor subunit in the disease.
Collapse
Affiliation(s)
- Audrey Progneaux
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Céline Evrard
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Valérie De Glas
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Alix Fontaine
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Céline Dotreppe
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Evelyne De Vuyst
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Arjen F Nikkels
- Department of Dermatology, CHU of Sart Tilman, University of Liège, Liège, Belgium
| | | | - Laure Dumoutier
- Experimental Medicine Unit, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Catherine Lambert de Rouvroit
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Yves Poumay
- Research Unit of Molecular Physiology (URPhyM), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| |
Collapse
|
4
|
Leung D, Mu X, Duque JSR, Cheng SMS, Wang M, Zhang W, Zhang Y, Tam IYS, Lee TSS, Lam JHY, Chan SM, Cheang CH, Chung Y, Wong HHW, Lee AMT, Li WY, Chaothai S, Tsang LCH, Chua GT, Cheong KN, Au EYL, Kwok JSY, Chan KW, Chong PCY, Lee PPW, Ho MHK, Lee TL, Tu W, Peiris M, Lau YL. Safety and immunogenicity of 3 doses of BNT162b2 and CoronaVac in children and adults with inborn errors of immunity. Front Immunol 2022; 13:982155. [PMID: 36203563 PMCID: PMC9530261 DOI: 10.3389/fimmu.2022.982155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Our study (NCT04800133) aimed to determine the safety and immunogenicity in patients with IEIs receiving a 3-dose primary series of mRNA vaccine BNT162b2 (age 12+) or inactivated whole-virion vaccine CoronaVac (age 3+) in Hong Kong, including Omicron BA.1 neutralization, in a nonrandomized manner. Intradermal vaccination was also studied. Thirty-nine patients were vaccinated, including 16 with homologous intramuscular 0.3ml BNT162b2 and 17 with homologous intramuscular 0.5ml CoronaVac. Two patients received 3 doses of intradermal 0.5ml CoronaVac, and 4 patients received 2 doses of intramuscular BNT162b2 and the third dose with intradermal BNT162b2. No safety concerns were identified. Inadequate S-RBD IgG and surrogate virus neutralization responses were found after 2 doses in patients with humoral immunodeficiencies and especially so against BA.1. Dose 3 of either vaccine increased S-RBD IgG response. T cell responses against SARS-CoV-2 antigens were detected in vaccinated IEI patients by intracellular cytokine staining on flow cytometry. Intradermal third dose vaccine led to high antibody response in 4 patients. The primary vaccination series of BNT162b2 and CoronaVac in adults and children with IEIs should include 3 doses for optimal immunogenicity.
Collapse
Affiliation(s)
- Daniel Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaofeng Mu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jaime S. Rosa Duque
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Samuel M. S. Cheng
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Manni Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wenyue Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yanmei Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Issan Y. S. Tam
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Toby S. S. Lee
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jennifer H. Y. Lam
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sau Man Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Cheuk Hei Cheang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yuet Chung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Howard H. W. Wong
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Amos M. T. Lee
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wing Yan Li
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sara Chaothai
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Leo C. H. Tsang
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Gilbert T. Chua
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kai-Ning Cheong
- Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Elaine Y. L. Au
- Division of Clinical Immunology, Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Janette S. Y. Kwok
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Koon Wing Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Pamela P. W. Lee
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Tsz Leung Lee
- Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Wenwei Tu, ; Malik Peiris, ; Yu Lung Lau,
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Centre for Immunology and Infection C2i, Hong Kong, Hong Kong SAR, China
- *Correspondence: Wenwei Tu, ; Malik Peiris, ; Yu Lung Lau,
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Wenwei Tu, ; Malik Peiris, ; Yu Lung Lau,
| |
Collapse
|
5
|
T and NK Cells in IL2RG-Deficient Patient 50 Years After Hematopoietic Stem Cell Transplantation. J Clin Immunol 2022; 42:1205-1222. [PMID: 35527320 PMCID: PMC9537207 DOI: 10.1007/s10875-022-01279-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/25/2022] [Indexed: 10/26/2022]
Abstract
Abstract
The first successful European hematopoietic stem cell transplantation (HSCT) was performed in 1968 as treatment in a newborn with IL2RG deficiency using an HLA-identical sibling donor. Because of declining naive T and natural killer (NK) cells, and persistent human papilloma virus (HPV)-induced warts, the patient received a peripheral stem cell boost at the age of 37 years. NK and T cells were assessed before and up to 14 years after the boost by flow cytometry. The boost induced renewed reconstitution of functional NK cells that were 14 years later enriched for CD56dimCD27+ NK cells. T-cell phenotype and T-cell receptor (TCR) repertoire were simultaneously analyzed by including TCR Vβ antibodies in the cytometry panel. Naive T-cell numbers with a diverse TCR Vβ repertoire were increased by the boost. Before and after the boost, clonal expansions with a homogeneous TIGIT and PD-1 phenotype were identified in the CD27− and/or CD28− memory population in the patient, but not in the donor. TRB sequencing was applied on sorted T-cell subsets from blood and on T cells from skin biopsies. Abundant circulating CD8 memory clonotypes with a chronic virus-associated CD57+KLRG1+CX3CR1+ phenotype were also present in warts, but not in healthy skin of the patient, suggesting a link with HPV. In conclusion, we demonstrate in this IL2RG-deficient patient functional NK cells, a diverse and lasting naive T-cell compartment, supported by a stem cell boost, and an oligoclonal memory compartment half a century after HSCT.
Collapse
|
6
|
A novel humanized mouse model to study the function of human cutaneous memory T cells in vivo in human skin. Sci Rep 2020; 10:11164. [PMID: 32636404 PMCID: PMC7341892 DOI: 10.1038/s41598-020-67430-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/01/2020] [Indexed: 12/31/2022] Open
Abstract
Human skin contains a population of memory T cells that supports tissue homeostasis and provides protective immunity. The study of human memory T cells is often restricted to in vitro studies and to human PBMC serving as primary cell source. Because the tissue environment impacts the phenotype and function of memory T cells, it is crucial to study these cells within their tissue. Here we utilized immunodeficient NOD-scid IL2rγnull (NSG) mice that carried in vivo-generated engineered human skin (ES). ES was generated from human keratinocytes and fibroblasts and was initially devoid of skin-resident immune cells. Upon adoptive transfer of human PBMC, this reductionist system allowed us to study human T cell recruitment from a circulating pool of T cells into non-inflamed human skin in vivo. Circulating human memory T cells preferentially infiltrated ES and showed diverse functional profiles of T cells found in fresh human skin. The chemokine and cytokine microenvironment of ES closely resembled that of non-inflamed human skin. Upon entering the ES T cells assumed a resident memory T cell-like phenotype in the absence of infection, and a proportion of these cutaneous T cells can be locally activated upon injection of monocyte derived dendritic cells (moDCs) that presented Candida albicans. Interestingly, we found that CD69+ memory T cells produced higher levels of effector cytokines in response to Candida albicans, compared to CD69- T cells. Overall, this model has broad utility in many areas of human skin immunology research, including the study of immune-mediated skin diseases.
Collapse
|
7
|
Conti F, Carsetti R, Casanova JL, Fischer A, Cancrini C. A 23-Year Follow-Up of a Patient with Gain-of-Function IkB-Alpha Mutation and Stable Full Chimerism After Hematopoietic Stem Cell Transplantation. J Clin Immunol 2020; 40:927-933. [PMID: 32617782 DOI: 10.1007/s10875-020-00780-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/31/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Francesca Conti
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù, Piazza S. Onofrio 4, Rome, Italy
| | - Rita Carsetti
- Unit of Diagnostic Immunology, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015, Paris, France
- Imagine Institute, Paris Descartes University, 75015, Paris, France
- Pediatric Immunology, Hematology, and Rheumatology Unit, Hopital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris, 75015, Paris, France
- Howard Hughes Medical Institute, New York, NY, 10065, USA
| | - Alain Fischer
- Imagine Institute, Paris Descartes University, 75015, Paris, France
- Pediatric Immunology, Hematology, and Rheumatology Unit, Hopital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris, 75015, Paris, France
- Collège de France, Paris, France
- INSERM U1163, 75015, Paris, France
| | - Caterina Cancrini
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù, Piazza S. Onofrio 4, Rome, Italy.
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
8
|
Pseudouridylation defect due to DKC1 and NOP10 mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. Proc Natl Acad Sci U S A 2020; 117:15137-15147. [PMID: 32554502 DOI: 10.1073/pnas.2002328117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RNA modifications play a fundamental role in cellular function. Pseudouridylation, the most abundant RNA modification, is catalyzed by the H/ACA small ribonucleoprotein (snoRNP) complex that shares four core proteins, dyskerin (DKC1), NOP10, NHP2, and GAR1. Mutations in DKC1, NOP10, or NHP2 cause dyskeratosis congenita (DC), a disorder characterized by telomere attrition. Here, we report a phenotype comprising nephrotic syndrome, cataracts, sensorineural deafness, enterocolitis, and early lethality in two pedigrees: males with DKC1 p.Glu206Lys and two children with homozygous NOP10 p.Thr16Met. Females with heterozygous DKC1 p.Glu206Lys developed cataracts and sensorineural deafness, but nephrotic syndrome in only one case of skewed X-inactivation. We found telomere attrition in both pedigrees, but no mucocutaneous abnormalities suggestive of DC. Both mutations fall at the dyskerin-NOP10 binding interface in a region distinct from those implicated in DC, impair the dyskerin-NOP10 interaction, and disrupt the catalytic pseudouridylation site. Accordingly, we found reduced pseudouridine levels in the ribosomal RNA (rRNA) of the patients. Zebrafish dkc1 mutants recapitulate the human phenotype and show reduced 18S pseudouridylation, ribosomal dysregulation, and a cell-cycle defect in the absence of telomere attrition. We therefore propose that this human disorder is the consequence of defective snoRNP pseudouridylation and ribosomal dysfunction.
Collapse
|
9
|
Human genetic dissection of papillomavirus-driven diseases: new insight into their pathogenesis. Hum Genet 2020; 139:919-939. [PMID: 32435828 DOI: 10.1007/s00439-020-02183-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Human papillomaviruses (HPVs) infect mucosal or cutaneous stratified epithelia. There are 5 genera and more than 200 types of HPV, each with a specific tropism and virulence. HPV infections are typically asymptomatic or result in benign tumors, which may be disseminated or persistent in rare cases, but a few oncogenic HPVs can cause cancers. This review deals with the human genetic and immunological basis of interindividual clinical variability in the course of HPV infections of the skin and mucosae. Typical epidermodysplasia verruciformis (EV) is characterized by β-HPV-driven flat wart-like and pityriasis-like cutaneous lesions and non-melanoma skin cancers in patients with inborn errors of EVER1-EVER2-CIB1-dependent skin-intrinsic immunity. Atypical EV is associated with other infectious diseases in patients with inborn errors of T cells. Severe cutaneous or anogenital warts, including anogenital cancers, are also driven by certain α-, γ-, μ or ν-HPVs in patients with inborn errors of T lymphocytes and antigen-presenting cells. The genetic basis of HPV diseases at other mucosal sites, such as oral multifocal epithelial hyperplasia or juvenile recurrent respiratory papillomatosis (JRRP), remains poorly understood. The human genetic dissection of HPV-driven lesions will clarify the molecular and cellular basis of protective immunity to HPVs, and should lead to novel diagnostic, preventive, and curative approaches in patients.
Collapse
|
10
|
Deal C, Thauland TJ, Stiehm ER, Garcia-Lloret MI, Butte MJ. Intact B-Cell Signaling and Function With Host B-Cells 47 Years After Transplantation for X-SCID. Front Immunol 2020; 11:415. [PMID: 32265911 PMCID: PMC7099040 DOI: 10.3389/fimmu.2020.00415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/21/2020] [Indexed: 01/13/2023] Open
Abstract
Introduction: Severe Combined Immunodeficiency (SCID) is a life-threatening immunodeficiency caused by several pathogenic genetic variants, and it is characterized by profound defects in T-cell numbers and immune function. First performed in the late 1960's, hematopoietic stem cell transplantation remains the standard treatment for most cases of SCID. There is a growing number of post-transplant SCID patients, and it is imperative to assess the long-term outcomes of these patients. We have reported here the longest follow-up of a post-transplant SCID patient who, to our knowledge, bears the first gamma chain (γc) variant to show intact IL-21 signaling. Case Presentation: The patient presented at 5 months of age with recurrent thrush and Pneumocystis jiroveci pneumonia. In 1971, at the age of 11 months, he received an unconditioned, matched, related donor transplant comprising whole, unprocessed bone marrow. He is now 48 years old without significant illness and has never required immunoglobulin replacement. He exhibits T-dependent vaccine responses. He does suffer from chronic warts and bacterial infections that have worsened in recent years. We confirmed a known pathogenic variant in the IL2RG gene showing a hemizygous variant NM_000206.2:c.675C>A, resulting in p.Ser225Arg. His chimerism studies revealed donor T cells, host B cells, host myeloid cells, and mixed NK cells. Lymphocyte enumeration revealed normal numbers and distribution of B cells. The host B cells carry the pathogenic variant in IL2RG, but, when stimulated with IL-21, they demonstrated intact, γc-dependent signaling. Conclusions: Even with host B cells, reconstitution with donor T cells can be sufficient to allow over four decades of survival when B-cell function is intact. Our case demonstrates that satisfactory B-cell function can arise as a consequence of both intact IL-21 signaling due to a hypomorphic γc variant, and close HLA matching with the donor to allow for effective T-cell help.
Collapse
Affiliation(s)
- Christin Deal
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Timothy J Thauland
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States
| | - E Richard Stiehm
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Maria I Garcia-Lloret
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|