1
|
Liu AW, Gillis JE, Sumpter TL, Kaplan DH. Neuroimmune interactions in atopic and allergic contact dermatitis. J Allergy Clin Immunol 2023; 151:1169-1177. [PMID: 37149370 PMCID: PMC10167546 DOI: 10.1016/j.jaci.2023.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
The skin is a barrier organ populated by many types of skin-resident immune cells and sensory neurons. It has become increasingly appreciated that neuroimmune interactions are an important component of inflammatory diseases such as atopic dermatitis and allergic contact dermatitis. Neuropeptides secreted from nerve terminals play an important role in mediating cutaneous immune cell function, and soluble mediators derived from immune cells interact with neurons to induce itch. In this review article, we will explore emerging research describing neuronal effector functions on skin immune cells in mouse models of atopic and contact dermatitis. We will also discuss the contributions of both specific neuronal subsets and secreted immune factors to itch induction and the associated inflammatory processes. Finally, we will explore how treatment strategies have emerged around these findings and discuss the relationship between scratching and dermatitis.
Collapse
Affiliation(s)
- Andrew W Liu
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, Pittsburgh, Pa
| | - Jacob E Gillis
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, Pittsburgh, Pa
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, Pittsburgh, Pa
| | - Daniel H Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
2
|
Docq M, Vétillard M, Gallego C, Jaracz-Ros A, Mercier-Nomé F, Bachelerie F, Schlecht-Louf G. Multi-Tissue Characterization of GILZ Expression in Dendritic Cell Subsets at Steady State and in Inflammatory Contexts. Cells 2021; 10:3153. [PMID: 34831376 PMCID: PMC8623566 DOI: 10.3390/cells10113153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs) are key players in the control of tolerance and immunity. Glucocorticoids (GCs) are known to regulate DC function by promoting their tolerogenic differentiation through the induction of inhibitory ligands, cytokines, and enzymes. The GC-induced effects in DCs were shown to critically depend on increased expression of the Glucocorticoid-Induced Leucine Zipper protein (GILZ). GILZ expression levels were further shown to control antigen-presenting cell function, as well as T-cell priming capacity of DCs. However, the pattern of GILZ expression in DC subsets across tissues remains poorly described, as well as the modulation of its expression levels in different pathological settings. To fill in this knowledge gap, we conducted an exhaustive analysis of GILZ relative expression levels in DC subsets from various tissues using multiparametric flow cytometry. This study was performed at steady state, in the context of acute as well as chronic skin inflammation, and in a model of cancer. Our results show the heterogeneity of GILZ expression among DC subsets as well as the complexity of its modulation, that varies in a cell subset- and context-specific manner. Considering the contribution of GILZ in the control of DC functions and its potential as an immune checkpoint in cancer settings, these results are of high relevance for optimal GILZ targeting in therapeutic strategies.
Collapse
Affiliation(s)
- Molène Docq
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
| | - Mathias Vétillard
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
| | - Carmen Gallego
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
| | - Agnieszka Jaracz-Ros
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
| | - Françoise Mercier-Nomé
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
- IPSIT SFR-UMS, CNRS, Inserm, Institut Paris Saclay d’Innovation Thérapeutique, Université Paris-Saclay, 92296 Chatenay-Malabry, France
| | - Françoise Bachelerie
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
| | - Géraldine Schlecht-Louf
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
| |
Collapse
|
3
|
Homma T, Takeda Y, Nakano T, Akatsuka S, Kinoshita D, Kurahashi T, Saitoh S, Yamada KI, Miyata S, Asao H, Goto K, Watanabe T, Watanabe M, Toyokuni S, Fujii J. Defective biosynthesis of ascorbic acid in Sod1-deficient mice results in lethal damage to lung tissue. Free Radic Biol Med 2021; 162:255-265. [PMID: 33096250 DOI: 10.1016/j.freeradbiomed.2020.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 01/27/2023]
Abstract
Superoxide dismutase 1 (Sod1) plays pivotal roles in antioxidation via accelerating the conversion of superoxide anion radicals into hydrogen peroxide, thus inhibiting the subsequent radical chain reactions. While Sod1 deficient cells inevitably undergo death in culture conditions, Sod1-knockout (KO) mice show relatively mild phenotypes and live approximately two years. We hypothesized that the presence of abundant levels of ascorbic acid (AsA), which is naturally produced in mice, contributes to the elimination of reactive oxygen species (ROS) in Sod1-KO mice. To verify this hypothesis, we employed mice with a genetic ablation of aldehyde reductase (Akr1a), an enzyme that is involved in the biosynthesis of AsA, and established double knockout (DKO) mice that lack both Sod1 and Akr1a. Supplementation of AsA (1.5 mg/ml in drinking water) was required for the DKO mice to breed, and, upon terminating the AsA supplementation, they died within approximately two weeks regardless of age or gender. We explored the etiology of the death from pathophysiological standpoints in principal organs of the mice. Marked changes were observed in the lungs in the form of macroscopic damage after the AsA withdrawal. Histological and immunological analyses of the lungs indicated oxidative damage of tissue and activated immune responses. Thus, preferential oxidative injury that occurred in pulmonary tissues appeared to be primary cause of the death in the mice. These collective results suggest that the pivotal function of AsA in coping with ROS in vivo, is largely in pulmonary tissues that are exposed to a hyperoxygenic microenvironment.
Collapse
Affiliation(s)
- Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan.
| | - Yuji Takeda
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Tomoyuki Nakano
- Department of Anatomy and Cell Biology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Kinoshita
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Toshihiro Kurahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan
| | - Shinichi Saitoh
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Ken-Ichi Yamada
- Faculty of Pharmaceutical Sciences, Physical Chemistry for Life Science Laboratory, Kyushu University, Fukuoka, Japan
| | - Satoshi Miyata
- Miyata Diabetes and Metabolism Clinic, 5-17-21 Fukushima, Fukushima-ku, Osaka, 553-0003, Japan
| | - Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Masafumi Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan
| |
Collapse
|
4
|
Hirata S, Nagatake T, Sawane K, Hosomi K, Honda T, Ono S, Shibuya N, Saito E, Adachi J, Abe Y, Isoyama J, Suzuki H, Matsunaga A, Tomonaga T, Kiyono H, Kabashima K, Arita M, Kunisawa J. Maternal ω3 docosapentaenoic acid inhibits infant allergic dermatitis through TRAIL-expressing plasmacytoid dendritic cells in mice. Allergy 2020; 75:1939-1955. [PMID: 32027039 PMCID: PMC7496639 DOI: 10.1111/all.14217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/26/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
Background Maternal dietary exposures are considered to influence the development of infant allergies through changes in the composition of breast milk. Cohort studies have shown that ω3 polyunsaturated fatty acids (PUFAs) in breast milk may have a beneficial effect on the preventing of allergies in infants; however, the underlying mechanisms remain to be investigated. We investigated how the maternal intake of dietary ω3 PUFAs affects fatty acid profiles in the breast milk and their pups and reduced the incidence of allergic diseases in the pups. Methods Contact hypersensitivity (CHS) induced by 2,4‐dinitrofluorobenzene (DNFB) and fluorescein isothiocyanate was applied to the skin in pups reared by mother maintained with diets mainly containing ω3 or ω6 PUFAs. Skin inflammation, immune cell populations, and expression levels of immunomodulatory molecules in pups and/or human cell line were investigated by using flow cytometric, immunohistologic, and quantitative RT‐PCR analyses. ω3 PUFA metabolites in breast milk and infant's serum were evaluated by lipidomics analysis using LC‐MS/MS. Results We show that maternal intake of linseed oil, containing abundant ω3 α‐linolenic acid, resulted in the increased levels of ω3 docosapentaenoic acid (DPA) and its 14‐lipoxygenation products in the breast milk of mouse dams; these metabolites increased the expression of TNF‐related apoptosis‐inducing ligand (TRAIL) on plasmacytoid dendritic cells (pDCs) in their pups and thus inhibited infant CHS. Indeed, the administration of DPA‐derived 14‐lipoxygenation products to mouse pups ameliorated their DNFB CHS. Conclusion These findings suggest that an inhibitory mechanism in infant skin allergy is induced through maternal metabolism of dietary ω3 PUFAs in mice.
Collapse
Affiliation(s)
- So‐ichiro Hirata
- Laboratory of Vaccine Materials Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
- Department of Microbiology and Immunology Kobe University Graduate School of Medicine Kobe‐city Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
| | - Kento Sawane
- Laboratory of Vaccine Materials Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
- Nippon Flour Mills Co., Ltd., Innovation Center Atsugi‐city Japan
- Graduate School of Pharmaceutical Sciences Osaka University Suita‐city Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
| | - Tetsuya Honda
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto‐city Japan
| | - Sachiko Ono
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto‐city Japan
| | - Noriko Shibuya
- Department of Pediatrics Maternal & Child Health Center, Aiiku Clinic Tokyo Japan
| | - Emiko Saito
- Department of Human Nutrition Tokyo Kasei Gakuin University Tokyo Japan
| | - Jun Adachi
- Laboratory of Proteome Research National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
| | - Yuichi Abe
- Laboratory of Proteome Research National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
| | - Junko Isoyama
- Laboratory of Proteome Research National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
| | - Hidehiko Suzuki
- Laboratory of Vaccine Materials Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
| | - Ayu Matsunaga
- Laboratory of Vaccine Materials Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal Vaccines The Institute of Medical ScienceThe University of Tokyo Tokyo Japan
- Division of Gastroenterology Department of Medicine University of California San Diego (UCSD) San Diego CA USA
- Chiba University (CU)‐UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV) UCSD San Diego CA USA
- Department of Immunology Graduate School of Medicine Chiba University Chiba‐city Japan
| | - Kenji Kabashima
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto‐city Japan
| | - Makoto Arita
- Laboratory for Metabolomics RIKEN Center for Integrative Medical Sciences Yokohama‐city Japan
- Division of Physiological Chemistry and Metabolism Graduate School of Pharmaceutical Sciences Keio University Tokyo Japan
- Graduate School of Medical Life Science Yokohama City University Yokohama‐city Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city Japan
- Department of Microbiology and Immunology Kobe University Graduate School of Medicine Kobe‐city Japan
- Graduate School of Pharmaceutical Sciences Osaka University Suita‐city Japan
- International Research and Development Center for Mucosal Vaccines The Institute of Medical ScienceThe University of Tokyo Tokyo Japan
- Graduate School of Medicine and Graduate School of Dentistry Osaka University Suita‐city Japan
| |
Collapse
|