1
|
Anti-Itching and Anti-Inflammatory Effects of Kushenol F via the Inhibition of TSLP Production. Pharmaceuticals (Basel) 2022; 15:ph15111347. [DOI: 10.3390/ph15111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that results from eczema, itching, disrupted barrier function and aberrant cutaneous immune responses. The aim of the present study was to assess the efficacy of kushenol F as an effective treatment for AD via the suppression of thymic stromal lymphopoietin (TSLP) production. The results of the present study demonstrated that the clinical symptoms of AD were less severe and there was reduced ear thickening and scratching behavior in kushenol F-treated Dermatophagoides farinae extract (DFE)/1-chloro-2,4-dinitrochlorobenzene (DNCB)-induced AD mice. Histopathological analysis demonstrated that kushenol F decreased the DFE/DNCB-induced infiltration of eosinophil and mast cells and TSLP protein expression levels. Furthermore, kushenol F-treated mice exhibited significantly lower concentrations of serum histamine, IgE and IgG2a compared with the DFE/DNCB-induced control mice. Kushenol F also significantly decreased phosphorylated NF-κB and IKK levels and the mRNA expression levels of IL-1β and IL-6 in cytokine combination-induced human keratinocytes. The results of the present study suggested that kushenol F may be a potential therapeutic candidate for the treatment of AD via reducing TSLP levels.
Collapse
|
2
|
Jung SY, You HJ, Kim MJ, Ko G, Lee S, Kang KS. Wnt-activating human skin organoid model of atopic dermatitis induced by Staphylococcus aureus and its protective effects by Cutibacterium acnes. iScience 2022; 25:105150. [PMID: 36193049 PMCID: PMC9526179 DOI: 10.1016/j.isci.2022.105150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/22/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
A recently developed human PSC-derived skin organoid model has opened up new avenues for studying skin development, diseases, and regeneration. The current model has limitations since the generated organoids are enclosed, circular aggregates with an inside-out morphology with unintended off-target development of cartilage. Here, we first demonstrated that Wnt signaling activation resulted in larger organoids without off-target cartilage. We optimized further using an air-liquid interface (ALI) culture method to recapitulate structural features representative of human skin tissue. Finally, we used the ALI-skin organoid platform to model atopic dermatitis by Staphylococcus aureus (SA) colonization and infection. SA infection led to a disrupted skin barrier and increased production of epidermal- and dermal-derived inflammatory cytokines. Additionally, we found that pre-treatment with Cutibacterium acnes had a protective effect on SA-infected organoids. Thus, this ALI-skin organoid platform may be a useful tool for modeling human skin diseases and evaluating the efficacy of novel therapeutics. Wnt signaling activation results in larger organoids without off-target cartilage Air-liquid interface culture is used to recapitulate human skin tissue structure S. aureus infection damaged the skin barrier and elevated inflammatory cytokines Pre-treated Cutibacterium acnes had a protective effect on Staphylococcus aureus-infected organoids
Collapse
Affiliation(s)
- Song-yi Jung
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Ju You
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- KoBioLabs, Inc., Seoul 08826, Republic of Korea
| | - Min-Ji Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Republic of Korea
- KoBioLabs, Inc., Seoul 08826, Republic of Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Seoul 08590, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Corresponding author
| |
Collapse
|
3
|
Wang Z, Yoo YJ, De La Torre R, Topham C, Hanifin J, Simpson E, Messing RO, Kulesz-Martin M, Liu Y. Inverse Correlation of TRIM32 and Protein Kinase C ζ in T Helper Type 2-Biased Inflammation. J Invest Dermatol 2021; 141:1297-1307.e3. [PMID: 33096083 PMCID: PMC8058116 DOI: 10.1016/j.jid.2020.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/21/2020] [Accepted: 09/11/2020] [Indexed: 01/22/2023]
Abstract
Atopic dermatitis (AD) is a T helper (Th)2-biased disease with elevated expression of Th2 cytokines that responds to Th2 signaling blockade. TRIM32 is an E3 ubiquitin ligase with innate antiviral activity. In our previous studies, we showed that Trim32 null mice developed Th2-biased skin inflammation in response to imiquimod and associated a low level of TRIM32 with AD. In this study, we provide evidence that TRIM32 deficiency contributes to enhanced Th2 cell differentiation in vitro. Analysis of TRIM32-associated proteins from public databases identified protein kinase C (PKC)ζ as a TRIM32-associated protein that contributes to the regulation of Th2 signaling. We demonstrated that PKCζ was specifically ubiquitinated by TRIM32 and, further, that PKCζ stability tended to be increased in Th2 cells with a Trim32 null background. Furthermore, Prkcz null mice showed compromised AD-like phenotypes in the MC903 AD model. Consistently, a high PKCζ and low TRIM32 ratio was associated with CD4+ cells in AD human skin compared with those in healthy controls. Taken together, these findings suggest that TRIM32 functions as a regulator of PKCζ that controls the differentiation of Th2 cells important for AD pathogenesis.
Collapse
Affiliation(s)
- Zhiping Wang
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Yeon Jung Yoo
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Rachel De La Torre
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Christina Topham
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Jon Hanifin
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Eric Simpson
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert O Messing
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA; Department of Neurology, University of Texas at Austin, Austin, Texas, USA
| | - Molly Kulesz-Martin
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Yuangang Liu
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|