1
|
Zhang L, Ge T, Cui J. FLI-1-driven regulation of endothelial cells in human diseases. J Transl Med 2024; 22:740. [PMID: 39107790 PMCID: PMC11302838 DOI: 10.1186/s12967-024-05546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are widely distributed in the human body and play crucial roles in the circulatory and immune systems. ECs dysfunction contributes to the progression of various chronic cardiovascular, renal, and metabolic diseases. As a key transcription factor in ECs, FLI-1 is involved in the differentiation, migration, proliferation, angiogenesis and blood coagulation of ECs. Imbalanced FLI-1 expression in ECs can lead to various diseases. Low FLI-1 expression leads to systemic sclerosis by promoting fibrosis and vascular lesions, to pulmonary arterial hypertension by promoting a local inflammatory state and vascular lesions, and to tumour metastasis by promoting the EndMT process. High FLI-1 expression leads to lupus nephritis by promoting a local inflammatory state. Therefore, FLI-1 in ECs may be a good target for the treatment of the abovementioned diseases. This comprehensive review provides the first overview of FLI-1-mediated regulation of ECs processes, with a focus on its influence on the abovementioned diseases and existing FLI-1-targeted drugs. A better understanding of the role of FLI-1 in ECs may facilitate the design of more effective targeted therapies for clinical applications, particularly for tumour treatment.
Collapse
Affiliation(s)
- Lili Zhang
- Cancer Center, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China
| | - Tingwen Ge
- Cancer Center, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China.
| |
Collapse
|
2
|
Ren H, Liu L, Xiao Y, Shi Y, Zeng Z, Ding Y, Zou P, Xiao R. Further insight into systemic sclerosis from the vasculopathy perspective. Biomed Pharmacother 2023; 166:115282. [PMID: 37567070 DOI: 10.1016/j.biopha.2023.115282] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by immune dysfunction, vascular system dysfunction, and tissue fibrosis. Vascular injury, vascular remodeling, and endothelial dysfunction are the hallmark pathological changes of the disease. In the early stages of SSc development, endothelial cell injury and apoptosis can lead to vascular and perivascular inflammation, oxidative stress, and tissue hypoxia, which can cause clinical manifestations in various organs from the skin to the parenchymal organs. Early diagnosis and rational treatment can improve patient survival and quality of life. Ancillary examinations such as nailfold capillaroscopy as well as optical coherence tomography can help early detect vascular injury in SSc patients. Studies targeting the mechanisms of vascular lesions will provide new perspectives for treatment of SSc.
Collapse
Affiliation(s)
- Hao Ren
- Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Licong Liu
- Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, Second Xiangya Hospital, Central South University, Changsha 410011, China; Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yaqian Shi
- Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Ding
- Department of Dermatology, Hainan Provincial Dermatology Disease Hospital, Haikou, China
| | - Puyu Zou
- Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
3
|
Mikhailova EV, Romanova IV, Bagrov AY, Agalakova NI. Fli1 and Tissue Fibrosis in Various Diseases. Int J Mol Sci 2023; 24:ijms24031881. [PMID: 36768203 PMCID: PMC9915382 DOI: 10.3390/ijms24031881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Being initially described as a factor of virally-induced leukemias, Fli1 (Friend leukemia integration 1) has attracted considerable interest lately due to its role in both healthy physiology and a variety of pathological conditions. Over the past few years, Fli1 has been found to be one of the crucial regulators of normal hematopoiesis, vasculogenesis, and immune response. However, abnormal expression of Fli1 due to genetic predisposition, epigenetic reprogramming (modifications), or environmental factors is associated with a few diseases of different etiology. Fli1 hyperexpression leads to malignant transformation of cells and progression of cancers such as Ewing's sarcoma. Deficiency in Fli1 is implicated in the development of systemic sclerosis and hypertensive disorders, which are often accompanied by pronounced fibrosis in different organs. This review summarizes the initial findings and the most recent advances in defining the role of Fli1 in diseases of different origin with emphasis on its pro-fibrotic potential.
Collapse
Affiliation(s)
- Elena V. Mikhailova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, 194223 Saint-Petersburg, Russia
| | - Irina V. Romanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, 194223 Saint-Petersburg, Russia
| | | | - Natalia I. Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, 194223 Saint-Petersburg, Russia
| |
Collapse
|
4
|
Fukui Y, Nakamura K, Hirabayashi M, Miyagawa T, Toyama S, Omatsu J, Awaji K, Ikawa T, Norimatsu Y, Yoshizaki A, Sato S, Asano Y. Serum vasohibin-1 levels: A potential marker of dermal and pulmonary fibrosis in systemic sclerosis. Exp Dermatol 2021; 30:951-958. [PMID: 33682189 DOI: 10.1111/exd.14321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022]
Abstract
Vasohibin-1 (VASH-1) is a potent anti-angiogenic factor mainly produced by endothelial cells. In addition, VASH-1 prevents TGF-β-dependent activation of renal fibroblasts. Since systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy and fibrosis of multiple organs, VASH-1 may be involved in the development of this disease. In this study, we investigated the potential role of VASH-1 in SSc by evaluating the clinical correlation between serum VASH-1 levels and the expression of VASH-1 in SSc-involved skin. Serum VASH-1 levels were higher in SSc patients, especially those with diffuse cutaneous involvement, than in healthy controls and positively correlated with skin score. Furthermore, SSc patients with interstitial lung disease had significantly elevated levels of serum VASH-1 as compared to those without. Importantly, serum VASH-1 levels correlated inversely with both the percentage of predicted vital capacity and the percentage of predicted diffusion lung capacity for carbon monoxide and positively with serum KL-6 levels, but not serum surfactant protein D levels. In SSc-involved skin, VASH1 mRNA was remarkably upregulated compared with healthy control skin, but the major source of VASH-1 was not clear. Fli1 deficiency, a predisposing factor inducing SSc-like endothelial properties, did not affect VASH-1 expression in human dermal microvascular endothelial cells. Collectively, these results suggest that VASH-1 upregulation in the skin and sera is linked to dermal and pulmonary fibrotic changes in SSc, while the contribution of VASH-1 to SSc vasculopathy seems to be limited.
Collapse
Affiliation(s)
- Yuki Fukui
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kouki Nakamura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Megumi Hirabayashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takuya Miyagawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Toyama
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Jun Omatsu
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kentaro Awaji
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuya Ikawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yuta Norimatsu
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|