1
|
Ishida-Yamamoto A, Yamanishi H, Igawa S, Kishibe M, Kusumi S, Watanabe T, Koga D. Secretion Bias of Lamellar Granules Revealed by Three-Dimensional Electron Microscopy. J Invest Dermatol 2023; 143:1310-1312.e3. [PMID: 37059354 DOI: 10.1016/j.jid.2023.03.1674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Affiliation(s)
| | | | - Satomi Igawa
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan
| | - Mari Kishibe
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan
| | - Satoshi Kusumi
- Division of Morphological Sciences, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tsuyoshi Watanabe
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan
| | - Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
2
|
Engevik MA, Engevik AC. Myosins and membrane trafficking in intestinal brush border assembly. Curr Opin Cell Biol 2022; 77:102117. [PMID: 35870341 DOI: 10.1016/j.ceb.2022.102117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Abstract
Myosins are a class of motors that participate in a wide variety of cellular functions including organelle transport, cell adhesion, endocytosis and exocytosis, movement of RNA, and cell motility. Among the emerging roles for myosins is regulation of the assembly, morphology, and function of actin protrusions such as microvilli. The intestine harbors an elaborate apical membrane composed of highly organized microvilli. Microvilli assembly and function are intricately tied to several myosins including Myosin 1a, non-muscle Myosin 2c, Myosin 5b, Myosin 6, and Myosin 7b. Here, we review the research progress made in our understanding of myosin mediated apical assembly.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina
| | - Amy C Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina.
| |
Collapse
|
3
|
Peskoller M, Bhosale A, Göbel K, Löhr J, Miceli S, Perot S, Persa O, Rübsam M, Shah J, Zhang H, Niessen CM. ESDR 50th Anniversary Lecture summary: How to build and regenerate a functional skin barrier: the adhesive and cell shaping travels of a keratinocyte. J Invest Dermatol 2022; 142:1020-1025. [DOI: 10.1016/j.jid.2021.12.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023]
|
4
|
Pavel P, Leman G, Hermann M, Ploner C, Eichmann TO, Minzaghi D, Radner FP, Del Frari B, Gruber R, Dubrac S. Peroxisomal Fatty Acid Oxidation and Glycolysis Are Triggered in Mouse Models of Lesional Atopic Dermatitis. JID INNOVATIONS 2021; 1:100033. [PMID: 34909730 PMCID: PMC8659757 DOI: 10.1016/j.xjidi.2021.100033] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Alterations of the lipid profile of the stratum corneum have an important role in the pathogenesis of atopic dermatitis (AD) because they contribute to epidermal barrier impairment. However, they have not previously been envisioned as a cellular response to altered metabolic requirements in AD epidermis. In this study, we report that the lipid composition in the epidermis of flaky tail, that is, ft/ft mice mimics that of human lesional AD (ADL) epidermis, both showing a shift toward shorter lipid species. The amounts of C24 and C26 free fatty acids and C24 and C26 ceramides-oxidized exclusively in peroxisomes-were reduced in the epidermis of ft/ft mice despite increased lipid synthesis, similar to that seen in human ADL edpidermis. Increased ACOX1 protein and activity in granular keratinocytes of ft/ft epidermis, altered lipid profile in human epidermal equivalents overexpressing ACOX1, and increased ACOX1 immunostaining in skin biopsies from patients with ADL suggest that peroxisomal β-oxidation significantly contributes to lipid signature in ADL epidermis. Moreover, we show that increased anaerobic glycolysis in ft/ft mouse epidermis is essential for keratinocyte proliferation and adenosine triphosphate synthesis but does not contribute to local inflammation. Thus, this work evidenced a metabolic shift toward enhanced peroxisomal β-oxidation and anaerobic glycolysis in ADL epidermis.
Collapse
Key Words
- AD, atopic dermatitis
- ADL, lesional atopic dermatitis
- ATP, adenosine triphosphate
- Cer, ceramide
- CoA, coenzyme A
- FA, fatty acid
- FFA, free fatty acid
- HEE, human epidermal equivalent
- IMQ, imiquimod
- KC, keratinocyte
- KO, knockout
- LB, lamellar body
- PPAR, peroxisome proliferator–activated receptor
- SC, stratum corneum
- TEWL, transepidermal water loss
- ULCFA, ultra long-chain fatty acid
- VLCFA, very-long-chain fatty acid
Collapse
Affiliation(s)
- Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Géraldine Leman
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- KMT Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Deborah Minzaghi
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Franz P.W. Radner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Barbara Del Frari
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Madrid RR, Mathews PD, Patta AC, Gonzales-Flores AP, Ramirez CA, Rigoni VL, Tavares-Dias M, Mertins O. Safety of oral administration of high doses of ivermectin by means of biocompatible polyelectrolytes formulation. Heliyon 2020; 7:e05820. [PMID: 33426351 PMCID: PMC7775035 DOI: 10.1016/j.heliyon.2020.e05820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/02/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022] Open
Abstract
The FDA-approved drug ivermectin is applied for treatments of onchocerciasis and lymphatic filariasis. The anti-cancer and anti-viral activities have been demonstrated stressing possibilities for the drug repurposing and therefore new information on high dosage safety is on demand. We analyzed in vivo tissue responses for high doses of ivermectin using Corydoras fish as animal model. We made intestinal histology and hematologic assays after oral administration of ivermectin transported with polyelectrolytes formulation. Histology showed any apparent damage of intestinal tissues at 0.22–170 mg of ivermectin/kg body weight. Immunofluorescence evidenced delocalization of Myosin-Vb at enterocytes only for the higher dose. Hematology parameters showed random variations after 7 days from administration, but a later apparent recover after 14 and 21 days. The study evaluated the potential of high doses of oral administration of ivermectin formulation, which could be an alternative with benefits in high compliance therapies.
Collapse
Affiliation(s)
- Rafael R.M. Madrid
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, SP, Brazil
| | - Patrick D. Mathews
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, SP, Brazil
- Corresponding author.
| | - Ana C.M.F. Patta
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, SP, Brazil
| | - Anai P. Gonzales-Flores
- Post-Graduate Program in Tropical Biodiversity, Federal University of Amapá, 68903-419 Macapá, AP, Brazil
- Institute of Research of the Peruvian Amazon (IIAP, AQUAREC), 17000 Puerto Maldonado, Peru
| | - Carlos A.B. Ramirez
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, SP, Brazil
| | - Vera L.S. Rigoni
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, SP, Brazil
| | | | - Omar Mertins
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, SP, Brazil
- Corresponding author.
| |
Collapse
|
6
|
3D-Organotypic Cultures to Unravel Molecular and Cellular Abnormalities in Atopic Dermatitis and Ichthyosis Vulgaris. Cells 2019; 8:cells8050489. [PMID: 31121896 PMCID: PMC6562513 DOI: 10.3390/cells8050489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
Atopic dermatitis (AD) is characterized by dry and itchy skin evolving into disseminated skin lesions. AD is believed to result from a primary acquired or a genetically-induced epidermal barrier defect leading to immune hyper-responsiveness. Filaggrin (FLG) is a protein found in the cornified envelope of fully differentiated keratinocytes, referred to as corneocytes. Although FLG null mutations are strongly associated with AD, they are not sufficient to induce the disease. Moreover, most patients with ichthyosis vulgaris (IV), a monogenetic skin disease characterized by FLG homozygous, heterozygous, or compound heterozygous null mutations, display non-inflamed dry and scaly skin. Thus, all causes of epidermal barrier impairment in AD have not yet been identified, including those leading to the Th2-predominant inflammation observed in AD. Three dimensional organotypic cultures have emerged as valuable tools in skin research, replacing animal experimentation in many cases and precluding the need for repeated patient biopsies. Here, we review the results on IV and AD obtained with epidermal or skin equivalents and consider these findings in the context of human in vivo data. Further research utilizing complex models including immune cells and cutaneous innervation will enable finer dissection of the pathogenesis of AD and deepen our knowledge of epidermal biology.
Collapse
|