1
|
Hörtenhuber M, Hytönen MK, Mukarram AK, Arumilli M, Araujo CL, Quintero I, Syrjä P, Airas N, Kaukonen M, Kyöstilä K, Niskanen J, Jokinen TS, Mottaghitalab F, Takan I, Salokorpi N, Raman A, Stevens I, Iivanainen A, Yoshihara M, Gusev O, Bannasch D, Sukura A, Schoenebeck JJ, Ezer S, Katayama S, Daub CO, Kere J, Lohi H. The DoGA consortium expression atlas of promoters and genes in 100 canine tissues. Nat Commun 2024; 15:9082. [PMID: 39433728 PMCID: PMC11494170 DOI: 10.1038/s41467-024-52798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
The dog, Canis lupus familiaris, is an important model for studying human diseases. Unlike many model organisms, the dog genome has a comparatively poor functional annotation, which hampers gene discovery for development, morphology, disease, and behavior. To fill this gap, we established a comprehensive tissue biobank for both the dog and wolf samples. The biobank consists of 5485 samples representing 132 tissues from 13 dogs, 12 dog embryos, and 24 wolves. In a subset of 100 tissues from nine dogs and 12 embryos, we characterized gene expression activity for each promoter, including alternative and novel, i.e., previously not annotated, promoter regions, using the 5' targeting RNA sequencing technology STRT2-seq. We identified over 100,000 promoter region candidates in the recent canine genome assembly, CanFam4, including over 45,000 highly reproducible sites with gene expression and respective tissue enrichment levels. We provide a promoter and gene expression atlas with interactive, open data resources, including a data coordination center and genome browser track hubs. We demonstrated the applicability of Dog Genome Annotation (DoGA) data and resources using multiple examples spanning canine embryonic development, morphology and behavior, and diseases across species.
Collapse
Affiliation(s)
| | - Marjo K Hytönen
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | | | - Meharji Arumilli
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - César L Araujo
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - Ileana Quintero
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - Pernilla Syrjä
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Niina Airas
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Maria Kaukonen
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - Kaisa Kyöstilä
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - Julia Niskanen
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - Tarja S Jokinen
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | | | - Işıl Takan
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Noora Salokorpi
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - Amitha Raman
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Irene Stevens
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Antti Iivanainen
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Masahito Yoshihara
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Oleg Gusev
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 113-8421, Tokyo, Japan
| | - Danika Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, US
| | - Antti Sukura
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Jeffrey J Schoenebeck
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland
| | - Sini Ezer
- Folkhälsan Research Center, 00290, Helsinki, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Shintaro Katayama
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Carsten O Daub
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden.
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.
| | - Juha Kere
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden.
- Folkhälsan Research Center, 00290, Helsinki, Finland.
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland.
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland.
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland.
- Folkhälsan Research Center, 00290, Helsinki, Finland.
| |
Collapse
|
2
|
McCormick ET, Draganski A, Chalmers S, Zahn J, Garcia S, Nussbaum D, Friedman A, Putterman C, Friedman J. Nano-encapsulated anandamide reduces inflammatory cytokines in vitro and lesion severity in a murine model of cutaneous lupus erythematosus. Exp Dermatol 2023; 32:2072-2083. [PMID: 37726950 DOI: 10.1111/exd.14935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
Cutaneous lupus erythematosus (CLE) is a heterogeneous autoimmune skin disease which occurs independently and in conjunction with systemic lupus erythematosus. Drug development for CLE is severely lacking. Anandamide (AEA) is a primary endocannabinoid which exhibits immunomodulatory effects through mixed cannabinoid receptor agonism. We evaluated AEA as topical treatment for CLE and assessed benefits of nanoparticle encapsulation (AEA-NP) on cutaneous drug penetration, delivery and biological activity. Compared to untreated controls, AEA-NP decreased IL-6 and MCP-1 in UVB-stimulated keratinocytes (p < 0.05) in vitro. In BALB/c mice, AEA-NP displayed improved cutaneous penetration, extended release and persistence of AEA in the follicular unit extending to the base after 24 h. Utilizing the MRL-lpr lupus murine model, twice weekly treatment of lesions with topical AEA-NP for 10 weeks led to decreased clinical and histologic lesion scores compared to unencapsulated AEA and untreated controls (p < 0.05). Prophylactic application of AEA-NP to commonly involved areas on MRL-lpr mice similarly resulted in decreased clinical and histologic scores when compared to controls (p < 0.05), and reduced C3 and IBA-1 in lesional tissue (p < 0.05). The demonstrated clinical and immunomodulatory effects of treatment with AEA support its potential as therapy for CLE. This work also suggests that encapsulation of AEA improves penetration and treatment efficacy. Future studies will be conducted to assess full therapeutic potential.
Collapse
Affiliation(s)
- Erika T McCormick
- George Washington University Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Samantha Chalmers
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, Bronx, USA
| | - Joseph Zahn
- George Washington University Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Sayra Garcia
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, Bronx, USA
| | - Dillon Nussbaum
- George Washington University Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Adam Friedman
- George Washington University Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chaim Putterman
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, Bronx, USA
- Azrieli Faculty of Medicine of Bar-Ilan University, Zefat, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
| | - Joel Friedman
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, Bronx, USA
| |
Collapse
|
3
|
Solé C, Domingo S, Penzo E, Moliné T, Porres L, Aparicio G, Ferrer B, Cortés-Hernández J. Downregulation of miR-885-5p Promotes NF-κB Pathway Activation and Immune Recruitment in Cutaneous Lupus Erythematosus. J Invest Dermatol 2023; 143:209-219.e13. [PMID: 36049539 DOI: 10.1016/j.jid.2022.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023]
Abstract
Cutaneous lupus erythematosus (CLE) has a specific microRNA expression profile. MiR-885-5p has been found to be downregulated in the epidermis of CLE lesions; however, its biological role in the disease has not been studied. In this study, we show that miR-885-5p is markedly reduced in CLE keratinocytes (KCs) with IFN-α and UVB being strong miR-885-5p regulators in vitro. Microarray expression profiling of anti‒miR-885-5p‒transfected KCs identified PSMB5 as a direct target. Specific inhibition of miR-885-5p increased epidermal proliferation by modulating keratin 16 gene K16, BIRC5, TP63, and CDK4 proliferative genes and promoted NF-κB signaling pathway in human primary KCs by increasing IκBα degradation. Silencing PSMB5 rescued the effect of miR-885-5p inhibition, indicating that miR-885-5p regulates proliferation and NF-κB activation by targeting PSMB5 in KCs. In addition, inhibition of miR-885-5p increased the ability of KCs to attract leukocytes in a PSMB5-independent manner. We identified TRAF1 as another direct target, and its silencing reduced leukocyte migration. Collectively, our findings suggest that UVB and IFN-ɑ downregulate miR-885-5p in CLE KCs, leading to epidermal inflammation by NF-κB activity enhancement and proliferation through PSMB5 and immune recruitment through TRAF1. Our data indicate that miR-885-5p is a potential therapeutic target in CLE.
Collapse
Affiliation(s)
- Cristina Solé
- Rheumatology Research Group - Lupus Unit, Vall d'Hebrón University Hospital, Vall d'Hebrón Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
| | - Sandra Domingo
- Rheumatology Research Group - Lupus Unit, Vall d'Hebrón University Hospital, Vall d'Hebrón Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Eleonora Penzo
- Rheumatology Research Group - Lupus Unit, Vall d'Hebrón University Hospital, Vall d'Hebrón Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Teresa Moliné
- Department of Pathology, Vall d'Hebrón University Hospital, Barcelona, Spain
| | - Laura Porres
- Rheumatology Research Group - Lupus Unit, Vall d'Hebrón University Hospital, Vall d'Hebrón Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Gloria Aparicio
- Department of Dermatology, Vall d'Hebrón University Hospital, Barcelona, Spain
| | - Berta Ferrer
- Department of Pathology, Vall d'Hebrón University Hospital, Barcelona, Spain
| | - Josefina Cortés-Hernández
- Rheumatology Research Group - Lupus Unit, Vall d'Hebrón University Hospital, Vall d'Hebrón Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
4
|
Erazo-Martínez V, Tobón GJ, Cañas CA. Circulating and skin biopsy-present cytokines related to the pathogenesis of cutaneous lupus erythematosus. Autoimmun Rev 2023; 22:103262. [PMID: 36563771 DOI: 10.1016/j.autrev.2022.103262] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is a common disease that may appear as a separate entity from systemic lupus erythematosus (SLE), precede SLE development, or occur as a manifestation of this systemic disease. It has a complex pathophysiology that involves genetic, environmental, and immune-mediated factors creating a self-amplification pro-inflammatory cycle. CLE is characterized by prominent type I interferons (IFNs) inflammation which are considered as the first precursors of the inflammatory cascade generated within the pathophysiology of CLE. TNF-α enhances the production of antibodies through the activation of B cells, and favors the expression of surface nuclear antigens on keratinocytes. UV light exposure favors keratinocyte apoptosis or necroptosis, which results in the release of multiple proinflammatory cytokines, including IL-6, IL-1α, IL-1β, TNF-α, IFNs, and CXCL10. Serum levels of IL-17 are elevated in patients with ACLE, SCLE, and DLE. Evidence suggests IL-22 plays a role primarily in tissue repair rather than in inflammation. High expression of BAFF and its receptors have been found in lesioned keratinocytes of patients with CLE, and patients with CLE have lower serum levels of the regulatory cytokines TGF-β and IL-10. The chemokines CXCL9 and CXCL10 (CXCR3 ligands) have an increased expression among these patients, and their expression is correlated with IFNs levels. CXCR3 ligands recruit cytotoxic type I cells through this receptor, further supporting the death of keratinocytes via necroptosis with the subsequent release of eNAs perpetuating the inflammatory cycle. Interface dermatitis is characterized by the presence of CXCR3-positive lymphocytes. This review describes the leading cytokines and chemokines present in the circulation and skin that play a fundamental role in the pathogenesis of CLE.
Collapse
Affiliation(s)
- Valeria Erazo-Martínez
- Fundación Valle del Lili, Centro de Investigaciones Clínicas, Cra 98 No. 18-49, Cali 760032, Colombia
| | - Gabriel J Tobón
- Southern Illinois University School of Medicine, Department of Medical Microbiology, Immunology and Cell Biology, Springfield, IL, USA
| | - Carlos A Cañas
- Universidad Icesi, CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Calle 18 No. 122-135, Cali, Colombia; Fundación Valle del Lili, Unidad de Reumatología, Cra 98 No. 18-49, Cali 760032, Colombia.
| |
Collapse
|
5
|
Miyagawa F. Current Knowledge of the Molecular Pathogenesis of Cutaneous Lupus Erythematosus. J Clin Med 2023; 12:987. [PMID: 36769633 PMCID: PMC9918007 DOI: 10.3390/jcm12030987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Cutaneous lupus erythematosus (CLE) is an autoimmune disease, which can be limited to the skin or associated with systemic lupus erythematosus (SLE). Gene expression analysis has revealed that both the innate and adaptive immune pathways are activated in CLE. Ultraviolet (UV) light, the predominant environmental factor associated with CLE, induces apoptosis in keratinocytes, and the endogenous nucleic acids released from the apoptotic cells are recognized via pattern recognition receptors, including Toll-like receptors. This leads to the production of type I interferon, a major contributor to the pathogenesis of CLE, by plasmacytoid dendritic cells. UV irradiation can also induce the externalization of autoantigens, such as SS-A/Ro, exposing them to circulating autoantibodies. T-helper 1 cells have been reported to play important roles in the adaptive immune response to CLE. Other environmental factors associated with CLE include drugs and cigarette smoke. Genetic factors also confer a predisposition to the development of CLE, and many susceptibility genes have been identified. Monogenetic forms of CLE also exist. This article aims to review current knowledge about the pathogenesis of CLE. A better understanding of the environmental, genetic, and immunoregulatory factors that drive CLE may provide important insights for the treatment of CLE.
Collapse
Affiliation(s)
- Fumi Miyagawa
- Department of Dermatology, Nara Medical University School of Medicine, 840 Shijo, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
6
|
Maz MP, Martens JWS, Hannoudi A, Reddy AL, Hile GA, Kahlenberg JM. Recent advances in cutaneous lupus. J Autoimmun 2022; 132:102865. [PMID: 35858957 PMCID: PMC10082587 DOI: 10.1016/j.jaut.2022.102865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is an inflammatory and autoimmune skin condition that affects patients with systemic lupus erythematosus (SLE) and exists as an isolated entity without associated SLE. Flares of CLE, often triggered by exposure to ultraviolet (UV) light result in lost productivity and poor quality of life for patients and can be associated with trigger of systemic inflammation. In the past 10 years, the knowledge of CLE etiopathogenesis has grown, leading to promising targets for better therapies. Development of lesions likely begins in a pro-inflammatory epidermis, conditioned by excess type I interferon (IFN) production to undergo increased cell death and inflammatory cytokine production after UV light exposure. The reasons for this inflammatory predisposition are not well-understood, but may be an early event, as ANA + patients without criteria for autoimmune disease exhibit similar (although less robust) findings. Non-lesional skin of SLE patients also exhibits increased innate immune cell infiltration, conditioned by excess IFNs to release pro-inflammatory cytokines, and potentially increase activation of the adaptive immune system. Plasmacytoid dendritic cells are also found in non-lesional skin and may contribute to type I IFN production, although this finding is now being questioned by new data. Once the inflammatory cycle begins, lesional infiltration by numerous other cell populations ensues, including IFN-educated T cells. The heterogeneity amongst lesional CLE subtypes isn't fully understood, but B cells appear to discriminate discoid lupus erythematosus from other subtypes. Continued discovery will provide novel targets for additional therapeutic pursuits. This review will comprehensively discuss the contributions of tissue-specific and immune cell populations to the initiation and propagation of disease.
Collapse
Affiliation(s)
- Mitra P Maz
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob W S Martens
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew Hannoudi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alayka L Reddy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Grace A Hile
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Klein B, Kunz M. Current concepts of photosensitivity in cutaneous lupus erythematosus. Front Med (Lausanne) 2022; 9:939594. [PMID: 36091671 PMCID: PMC9452788 DOI: 10.3389/fmed.2022.939594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Cutaneous lupus erythematosus (CLE) represents a complex autoimmune disease with a broad phenotypic spectrum ranging from acute to chronic destructive cutaneous lesions. Patients with CLE exhibit high photosensitivity and ultraviolet (UV) irradiation can lead to systemic flares in systemic lupus erythematosus. However, the exact mechanisms how UV irradiation enhances cutaneous inflammation in lupus are not fully understood. Recently, new molecular mechanisms of UV-driven immune responses in CLE were identified, offering potential therapeutic approaches. Especially the induction of type I interferons, central cytokines in lupus pathogenesis which are released by various skin cells, have become the focus of current research. In this review, we describe current pathogenic concepts of photosensitivity in lupus erythematosus, including UV-driven activation of intracellular nucleic acid sensors, cellular cytokine production and immune cell activation. Furthermore, we discuss activated pathways contributing to enhanced apoptosis as well as intracellular translocation of autoantigens thereby promoting CLE upon UV light exposure.
Collapse
Affiliation(s)
- Benjamin Klein
- Department of Dermatology, Venereology, and Allergology, University Hospital Leipzig, Leipzig, Germany
| | | |
Collapse
|
8
|
Chen HW, Barber G, Chong BF. The Genetic Landscape of Cutaneous Lupus Erythematosus. Front Med (Lausanne) 2022; 9:916011. [PMID: 35721085 PMCID: PMC9201079 DOI: 10.3389/fmed.2022.916011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cutaneous lupus erythematosus (CLE) is an autoimmune connective tissue disease that can exist as a disease entity or within the context of systemic lupus erythematosus (SLE). Over the years, efforts to elucidate the genetic underpinnings of CLE and SLE have yielded a wealth of information. This review examines prior studies investigating the genetics of CLE at the DNA and RNA level and identifies future research areas. In this literature review, we examined the English language literature captured within the MEDLINE and Embase databases using pre-defined search terms. First, we surveyed studies investigating various DNA studies of CLE. We identified three predominant areas of focus in HLA profiling, complement deficiencies, and genetic polymorphisms. An increased frequency of HLA-B8 has been strongly linked to CLE. In addition, multiple genes responsible for mediating innate immune response, cell growth, apoptosis, and interferon response confer a higher risk of developing CLE, specifically TREX1 and SAMHD1. There was a strong association between C2 complement deficiency and CLE. Second, we reviewed literature studying aberrations in the transcriptomes of patients with CLE. We reviewed genetic aberrations initiated by environmental insults, and we examined the interplay of dysregulated inflammatory, apoptotic, and fibrotic pathways in the context of the pathomechanism of CLE. These current learnings will serve as the foundation for further advances in integrating personalized medicine into the care of patients with CLE.
Collapse
|
9
|
Mähönen K, Hau A, Bondet V, Duffy D, Eklund KK, Panelius J, Ranki A. Activation of NLRP3 Inflammasome in the Skin of Patients with Systemic and Cutaneous Lupus Erythematosus. Acta Derm Venereol 2022; 102:adv00708. [PMID: 35356994 DOI: 10.2340/actadv.v102.2293] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
NLRP3 inflammasome is suggested to contribute to the complex pathogenesis of systemic lupus erythematosus, but its role in cutaneous lupus erythematosus has not been addressed. This study investigated the expression of NLRP3 inflammasome components and levels of type I interferons in the skin of 20 patients with cutaneous lupus erythematosus. Expression of NLRP1/3, adaptor protein ASC (apoptosis-associated speck-like protein), caspase-1, interferon-α (IFN-α), myxovirus resistance protein (MxA), and interferon-induced proteins 1 and 2 (IFIT 1/2) in the skin was assessed using reverse transcription quantitative real-time PCR (RT-qPCR), western blotting and immunohistochemistry. Serum interferon-α protein levels from 12 patients were measured using digital enzyme-linked immunoassay (ELISA). Interleukin-1β expression was significantly upregulated in the lesional skin of patients with cutaneous lupus erythematosus compared with their uninvolved skin. However, NLRP1/3, ASC and caspase-1 were not significantly upregulated compared with the skin of control persons. IFN-α and IFN-induced proteins MxA and IFIT1/2 were strongly expressed in cutaneous lupus erythematosus skin. Variability in the expression of NLRP3 inflammasome components among patients suggests heterogeneity of pathological pathways in cutaneous lupus erythematosus.
Collapse
Affiliation(s)
- Katariina Mähönen
- Department of Dermatology and Allergology, Skin and Allergy Hospital, P.O. Box 160, FIN-00029 Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
10
|
Estadt SN, Maz MP, Musai J, Kahlenberg JM. Mechanisms of Photosensitivity in Autoimmunity. J Invest Dermatol 2021; 142:849-856. [PMID: 34167786 DOI: 10.1016/j.jid.2021.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Aberrant responses to UV light frequently lead to the formation of skin lesions and the activation of systemic inflammation in some autoimmune diseases, especially systemic lupus erythematosus. Whereas the effects of UV light on the skin have been studied for decades, only recently have some of the mechanisms that contribute to abnormal responses to UV light in patients with autoimmune diseases been uncovered. This review will discuss the biology of UV in the epidermis and discuss the abnormal epidermal and inflammatory mechanisms that contribute to photosensitivity. Further research is required to fully understand how to normalize UV-mediated inflammation in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Shannon N Estadt
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Graduate Program in Immunology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Mitra P Maz
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Graduate Program in Immunology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Jon Musai
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Skin injury is the most common clinical manifestation of SLE and is disfiguring, difficult to treat, and incompletely understood. We provide an overview of recently published articles covering the immunopathogenesis of skin injury in SLE. RECENT FINDINGS Skin of SLE has an inherent susceptibility to apoptosis, the cause of which may be multifactorial. Chronic IFN overexpression leads to barrier disruption, infiltration of inflammatory cells, cytokine production, and release of autoantigens and autoantibody production that result in skin injury. Ultraviolet light is the most important CLE trigger and amplifies this process leading to skin inflammation and potentially systemic disease flares. SUMMARY The pathogenesis of skin injury in CLE is complex but recent studies highlight the importance of mechanisms driving dysregulated epidermal cell death likely influenced by genetic risk factors, environmental triggers (UV light), and cytotoxic cells and cellular signaling.
Collapse
Affiliation(s)
- Grace A. Hile
- Department of Dermatology, University of Michigan, Ann Arbor, 48109, MI, USA
| | - J. Michelle Kahlenberg
- Department of Dermatology, University of Michigan, Ann Arbor, 48109, MI, USA
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
12
|
Patra V, Gallais Sérézal I, Wolf P. Potential of Skin Microbiome, Pro- and/or Pre-Biotics to Affect Local Cutaneous Responses to UV Exposure. Nutrients 2020; 12:E1795. [PMID: 32560310 PMCID: PMC7353315 DOI: 10.3390/nu12061795] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
The human skin hosts innumerable microorganisms and maintains homeostasis with the local immune system despite the challenges offered by environmental factors such as ultraviolet radiation (UVR). UVR causes cutaneous alterations such as acute (i.e., sunburn) and chronic inflammation, tanning, photoaging, skin cancer, and immune modulation. Phototherapy on the other hand is widely used to treat inflammatory skin diseases such as psoriasis, atopic dermatitis, polymorphic light eruption and graft-versus-host disease (GvHD), as well as neoplastic skin diseases such as cutaneous T cell lymphoma, among others. Previous work has addressed the use of pro- and pre-biotics to protect against UVR through anti-oxidative, anti-inflammatory, anti-aging, anti-carcinogenic and/or pro-and contra-melanogenic properties. Herein, we discuss and share perspectives of the potential benefits of novel treatment strategies using microbes and pro- and pre-biotics as modulators of the skin response to UVR, and how they could act both for protection against UVR-induced skin damage and as enhancers of the UVR-driven therapeutic effects on the skin.
Collapse
Affiliation(s)
- VijayKumar Patra
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria;
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, 8010 Graz, Austria
| | - Irène Gallais Sérézal
- Department of Medicine, Unit of Rheumatology, Karolinska Institutet, 171 77 Solna, Sweden;
- Department of Dermatology, Besançon University Hospital, 25000 Besancon, France
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
13
|
Fetter T, Smith P, Guel T, Braegelmann C, Bieber T, Wenzel J. Selective Janus Kinase 1 Inhibition Is a Promising Therapeutic Approach for Lupus Erythematosus Skin Lesions. Front Immunol 2020; 11:344. [PMID: 32194562 PMCID: PMC7064060 DOI: 10.3389/fimmu.2020.00344] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/12/2020] [Indexed: 01/20/2023] Open
Abstract
Background Cutaneous lupus erythematosus (CLE) is an interferon (IFN) -driven autoimmune skin disease characterized by an extensive cytotoxic lesional inflammation with activation of different innate immune pathways. Aim of our study was to investigate the specific role of Janus kinase 1 (JAK1) activation in this disease and the potential benefit of selective JAK1 inhibitors as targeted therapy in a preclinical CLE model. Methods Lesional skin of patients with different CLE subtypes and healthy controls (N = 31) were investigated on JAK1 activation and expression of IFN-associated mediators via immunohistochemistry and gene expression analyses. The functional role of JAK1 and efficacy of inhibition was evaluated in vitro using cultured keratinocytes stimulated with endogenous nucleic acids. Results were confirmed in vivo using an established lupus-prone mouse model. Results Proinflammatory immune pathways, including JAK/STAT signaling, are significantly upregulated within inflamed CLE skin. Here, lesional keratinocytes and dermal immune cells strongly express activated phospho-JAK1. Selective pharmacological JAK1 inhibition significantly reduces the expression of typical proinflammatory mediators such as CXCL chemokines, BLyS, TRAIL, and AIM2 in CLE in vitro models and also improves skin lesions in lupus-prone TREX1–/– -mice markedly. Conclusion IFN-associated JAK/STAT activation plays a crucial role in the pathophysiology of CLE. Selective inhibition of JAK1 leads to a decrease of cytokine expression, reduced immune activation, and decline of keratinocyte cell death. Topical treatment with a JAK1-specific inhibitor significantly improves CLE-like skin lesions in a lupus-prone TREX1–/– -mouse model and appears to be a promising therapeutic approach for CLE patients.
Collapse
Affiliation(s)
- Tanja Fetter
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Paul Smith
- Incyte Corporation, Wilmington, DE, United States
| | - Tugce Guel
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | | | - Thomas Bieber
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Joerg Wenzel
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
14
|
Cutaneous lupus erythematosus: new insights into pathogenesis and therapeutic strategies. Nat Rev Rheumatol 2019; 15:519-532. [PMID: 31399711 DOI: 10.1038/s41584-019-0272-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2019] [Indexed: 01/07/2023]
Abstract
Cutaneous lupus erythematosus (CLE) is an autoimmune disease that can present as an isolated skin disease or as a manifestation within the spectrum of systemic lupus erythematosus. The clinical spectrum of CLE is broad, ranging from isolated discoid plaques to widespread skin lesions. Histologically, skin lesions present as interface dermatitis (inflammation of the skin mediated by anti-epidermal responses), which is orchestrated by type I and type III interferon-regulated cytokines and chemokines. Both innate and adaptive immune pathways are strongly activated in the formation of skin lesions owing to continuous re-activation of innate pathways via pattern recognition receptors (PRRs). These insights into the molecular pathogenesis of skin lesions in CLE have improved our understanding of the mechanisms underlying established therapies and have triggered the development of targeted treatment strategies that focus on immune cells (for example, B cells, T cells or plasmacytoid dendritic cells), as well as immune response pathways (for example, PRR signalling, Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signalling and nuclear factor-κB signalling) and their cytokines and chemokines (for example, type I interferons, CXC-chemokine ligand 10 (CXCL10), IL-6 and IL-12).
Collapse
|