1
|
Tommasi C, Yogev O, Yee MB, Drousioti A, Jones M, Ring A, Singh M, Dry I, Atkins O, Naeem AS, Kriplani N, Akbar AN, Haas JG, O'Toole EA, Kinchington PR, Breuer J. Upregulation of keratin 15 is required for varicella-zoster virus replication in keratinocytes and is attenuated in the live attenuated vOka vaccine strain. Virol J 2024; 21:253. [PMID: 39385182 PMCID: PMC11465976 DOI: 10.1186/s12985-024-02514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 09/22/2024] [Indexed: 10/11/2024] Open
Abstract
Varicella-zoster virus (VZV) is the etiological agent of chickenpox and shingles, diseases characterised by epidermal virus replication in skin and mucosa and the formation of blisters. We have previously shown that VZV infection has a profound effect on keratinocyte differentiation, altering the normal pattern of epidermal gene expression. In particular, VZV infection reduces expression of suprabasal keratins 1 and 10 and desmosomal proteins, disrupting epidermal structure to promote expression of a blistering phenotype. Here, we extend these findings to show that VZV infection upregulates the expression of keratin 15 (KRT15), a marker expressed by basal epidermal keratinocytes and hair follicles stem cells. We demonstrate that KRT15 is essential for VZV replication in the skin, since downregulation of KRT15 inhibits VZV replication in keratinocytes, while KRT15 exogenous overexpression supports viral replication. Importantly, our data show that VZV upregulation of KRT15 depends on the expression of the VZV immediate early gene ORF62. ORF62 is the only regulatory gene that is mutated in the live attenuated VZV vaccine and contains four of the five fixed mutations present in the VZV Oka vaccine. Our data indicate that the mutated vaccine ORF62 is not capable of upregulating KRT15, suggesting that this may contribute to the vaccine attenuation in skin. Taken together our data present a novel association between VZV and KRT15, which may open a new therapeutic window for a topical targeting of VZV replication in the skin via modulation of KRT15.
Collapse
Affiliation(s)
- Cristina Tommasi
- Infection, Immunity and Inflammation Department, University College London GOS Institute of Child Health, London, UK
| | - Ohad Yogev
- Infection and Immunity Department, University College London, London, UK
- Eleven Therapeutics, Cambridge, UK
| | - Michael B Yee
- Department of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh School of Medicine, Pittsburgh, US
- Krystalbio Inc, Pittsburgh, US
| | - Andriani Drousioti
- Infection, Immunity and Inflammation Department, University College London GOS Institute of Child Health, London, UK
| | - Meleri Jones
- Infection and Immunity Department, University College London, London, UK
- UKHSA, Porton Down, UK
| | - Alice Ring
- Infection and Immunity Department, University College London, London, UK
| | | | - Inga Dry
- Infection and Immunity Department, University College London, London, UK
- The Roslin Institute, Edinburgh, UK
| | - Oscar Atkins
- Infection and Immunity Department, University College London, London, UK
- Francis Crick Institute, London, UK
| | - Aishath S Naeem
- Infection and Immunity Department, University College London, London, UK
- Dana-Farber Cancer Institute, Boston, US
| | - Nisha Kriplani
- Infection Medicine, University of Edinburgh, Edinburgh, UK
| | - Arne N Akbar
- Experimental & Translational Medicine, Division of Medicine, University College London, London, UK
| | - Jürgen G Haas
- Infection Medicine, University of Edinburgh, Edinburgh, UK
| | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| | - Paul R Kinchington
- Department of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh School of Medicine, Pittsburgh, US
| | - Judith Breuer
- Infection, Immunity and Inflammation Department, University College London GOS Institute of Child Health, London, UK.
| |
Collapse
|
2
|
Heinz JL, Swagemakers SMA, von Hofsten J, Helleberg M, Thomsen MM, De Keukeleere K, de Boer JH, Ilginis T, Verjans GMGM, van Hagen PM, van der Spek PJ, Mogensen TH. Whole exome sequencing of patients with varicella-zoster virus and herpes simplex virus induced acute retinal necrosis reveals rare disease-associated genetic variants. Front Mol Neurosci 2023; 16:1253040. [PMID: 38025266 PMCID: PMC10630912 DOI: 10.3389/fnmol.2023.1253040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Herpes simplex virus (HSV) and varicella-zoster virus (VZV) are neurotropic human alphaherpesviruses endemic worldwide. Upon primary infection, both viruses establish lifelong latency in neurons and reactivate intermittently to cause a variety of mild to severe diseases. Acute retinal necrosis (ARN) is a rare, sight-threatening eye disease induced by ocular VZV or HSV infection. The virus and host factors involved in ARN pathogenesis remain incompletely described. We hypothesize an underlying genetic defect in at least part of ARN cases. Methods We collected blood from 17 patients with HSV-or VZV-induced ARN, isolated DNA and performed Whole Exome Sequencing by Illumina followed by analysis in Varseq with criteria of CADD score > 15 and frequency in GnomAD < 0.1% combined with biological filters. Gene modifications relative to healthy control genomes were filtered according to high quality and read-depth, low frequency, high deleteriousness predictions and biological relevance. Results We identified a total of 50 potentially disease-causing genetic variants, including missense, frameshift and splice site variants and on in-frame deletion in 16 of the 17 patients. The vast majority of these genes are involved in innate immunity, followed by adaptive immunity, autophagy, and apoptosis; in several instances variants within a given gene or pathway was identified in several patients. Discussion We propose that the identified variants may contribute to insufficient viral control and increased necrosis ocular disease presentation in the patients and serve as a knowledge base and starting point for the development of improved diagnostic, prophylactic, and therapeutic applications.
Collapse
Affiliation(s)
- Johanna L. Heinz
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Sigrid M. A. Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Joanna von Hofsten
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Ophthalmology, Halland Hospital Halmstad, Halmstad, Sweden
| | - Marie Helleberg
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michelle M. Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Kerstin De Keukeleere
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Joke H. de Boer
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tomas Ilginis
- Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Georges M. G. M. Verjans
- HerpeslabNL, Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter M. van Hagen
- Department of Internal Medicine and Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter J. van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Trine H. Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Arvin AM. Creating the "Dew Drop on a Rose Petal": the Molecular Pathogenesis of Varicella-Zoster Virus Skin Lesions. Microbiol Mol Biol Rev 2023; 87:e0011622. [PMID: 37354037 PMCID: PMC10521358 DOI: 10.1128/mmbr.00116-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023] Open
Abstract
Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chicken pox) as the primary infection in a susceptible host. Varicella is very contagious through its transmission by direct contact with vesicular skin lesions that contain high titers of infectious virus and respiratory droplets. While the clinical manifestations of primary VZV infection are well recognized, defining the molecular mechanisms that drive VZV pathogenesis in the naive host before adaptive antiviral immunity is induced has been a challenge due to species specificity. This review focuses on advances made in identifying the differentiated human host cells targeted by VZV to cause varicella, the processes involved in viral takeover of these heterogenous cell types, and the host cell countermeasures that typically culminate in a benign illness. This work has revealed many unexpected and multifaceted mechanisms used by VZV to achieve its high prevalence and persistence in the human population.
Collapse
Affiliation(s)
- Ann M. Arvin
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
4
|
Wang Y, Ren L, Bai H, Jin Q, Zhang L. Exosome-Autophagy Crosstalk in Enveloped Virus Infection. Int J Mol Sci 2023; 24:10618. [PMID: 37445802 DOI: 10.3390/ijms241310618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Exosomes, which are extracellular vesicles (EVs) predominantly present in bodily fluids, participate in various physiological processes. Autophagy, an intracellular degradation mechanism, eliminates proteins and damaged organelles by forming double-membrane autophagosomes. These autophagosomes subsequently merge with lysosomes for target degradation. The interaction between autophagy and endosomal/exosomal pathways can occur at different stages, exerting significant influences on normal physiology and human diseases. The interplay between exosomes and the autophagy pathway is intricate. Exosomes exhibit a cytoprotective role by inducing intracellular autophagy, while autophagy modulates the biogenesis and degradation of exosomes. Research indicates that exosomes and autophagy contribute to the infection process of numerous enveloped viruses. Enveloped viruses, comprising viral nucleic acid, proteins, or virions, can be encapsulated within exosomes and transferred between cells via exosomal transport. Consequently, exosomes play a crucial role in the infection of certain viral diseases. This review presents recent findings on the interplay between exosomes and autophagy, as well as their implications in the infection of enveloped viruses, thereby offering valuable insights into the pathogenesis and vaccine research of enveloped virus infection.
Collapse
Affiliation(s)
- Yuqi Wang
- Key Lab for Zoonoses Research, College of Animal Sciences, Ministry of Education, Jilin University, Changchun 130062, China
| | - Linzhu Ren
- Key Lab for Zoonoses Research, College of Animal Sciences, Ministry of Education, Jilin University, Changchun 130062, China
| | - Haocheng Bai
- Key Lab for Zoonoses Research, College of Animal Sciences, Ministry of Education, Jilin University, Changchun 130062, China
| | - Qing Jin
- Key Lab for Zoonoses Research, College of Animal Sciences, Ministry of Education, Jilin University, Changchun 130062, China
| | - Liying Zhang
- Key Lab for Zoonoses Research, College of Animal Sciences, Ministry of Education, Jilin University, Changchun 130062, China
| |
Collapse
|
5
|
Ayilam Ramachandran R, Sanches JM, Robertson DM. The roles of autophagy and mitophagy in corneal pathology: current knowledge and future perspectives. Front Med (Lausanne) 2023; 10:1064938. [PMID: 37153108 PMCID: PMC10160402 DOI: 10.3389/fmed.2023.1064938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/16/2023] [Indexed: 05/09/2023] Open
Abstract
The cornea is the clear dome that covers the front portion of the globe. The primary functions of the cornea are to promote the refraction of light and to protect the eye from invading pathogens, both of which are essential for the preservation of vision. Homeostasis of each cellular layer of the cornea requires the orchestration of multiple processes, including the ability to respond to stress. One mechanism whereby cells respond to stress is autophagy, or the process of "self-eating." Autophagy functions to clear damaged proteins and organelles. During nutrient deprivation, amino acids released from protein breakdown via autophagy are used as a fuel source. Mitophagy, a selective form of autophagy, functions to clear damaged mitochondria. Thus, autophagy and mitophagy are important intracellular degradative processes that sustain tissue homeostasis. Importantly, the inhibition or excessive activation of these processes result in deleterious effects on the cell. In the eye, impairment or inhibition of these mechanisms have been associated with corneal disease, degenerations, and dystrophies. This review summarizes the current body of knowledge on autophagy and mitophagy at all layers in the cornea in both non-infectious and infectious corneal disease, dystrophies, and degenerations. It further highlights the critical gaps in our understanding of mitochondrial dysfunction, with implications for novel therapeutics in clinical practice.
Collapse
Affiliation(s)
| | - Jose Marcos Sanches
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Danielle M Robertson
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
6
|
Zhou R, Li J, Zhang Y, Xiao H, Zuo Y, Ye L. Characterization of plasma metabolites and proteins in patients with herpetic neuralgia and development of machine learning predictive models based on metabolomic profiling. Front Mol Neurosci 2022; 15:1009677. [PMID: 36277496 PMCID: PMC9583257 DOI: 10.3389/fnmol.2022.1009677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes zoster (HZ) is a localized, painful cutaneous eruption that occurs upon reactivation of the herpes virus. Postherpetic neuralgia (PHN) is the most common chronic complication of HZ. In this study, we examined the metabolomic and proteomic signatures of disease progression in patients with HZ and PHN. We identified differentially expressed metabolites (DEMs), differentially expressed proteins (DEPs), and key signaling pathways that transition from healthy volunteers to the acute or/and chronic phases of herpetic neuralgia. Moreover, some specific metabolites correlated with pain scores, disease duration, age, and pain in sex dimorphism. In addition, we developed and validated three optimal predictive models (AUC > 0.9) for classifying HZ and PHN from healthy individuals based on metabolic patterns and machine learning. These findings may reveal the overall metabolomics and proteomics landscapes and proposed the optimal machine learning predictive models, which provide insights into the mechanisms of HZ and PHN.
Collapse
Affiliation(s)
- Ruihao Zhou
- Department of Pain Management and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Li
- Department of Pain Management and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yujun Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Xiao
- Department of Pain Management and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Yunxia Zuo,
| | - Ling Ye
- Department of Pain Management and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ling Ye,
| |
Collapse
|
7
|
Sadaoka T, Depledge DP, Rajbhandari L, Breuer J, Venkatesan A, Cohen JI. A Variant Allele in Varicella-Zoster Virus Glycoprotein B Selected during Production of the Varicella Vaccine Contributes to Its Attenuation. mBio 2022; 13:e0186422. [PMID: 35916400 PMCID: PMC9426484 DOI: 10.1128/mbio.01864-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022] Open
Abstract
Attenuation of the live varicella Oka vaccine (vOka) has been attributed to mutations in the genome acquired during cell culture passage of pOka (parent strain); however, the precise mechanisms of attenuation remain unknown. Comparative sequence analyses of several vaccine batches showed that over 100 single-nucleotide polymorphisms (SNPs) are conserved across all vaccine batches; 6 SNPs are nearly fixed, suggesting that these SNPs are responsible for attenuation. By contrast, prior analysis of chimeric vOka and pOka recombinants indicates that loci other than these six SNPs contribute to attenuation. Here, we report that pOka consists of a heterogenous population of virus sequences with two nearly equally represented bases, guanine (G) or adenine (A), at nucleotide 2096 of the ORF31 coding sequence, which encodes glycoprotein B (gB) resulting in arginine (R) or glutamine (Q), respectively, at amino acid 699 of gB. By contrast, 2096A/699Q is dominant in vOka (>99.98%). gB699Q/gH/gL showed significantly less fusion activity than gB699R/gH/gL in a cell-based fusion assay. Recombinant pOka with gB669Q (rpOka_gB699Q) had a similar growth phenotype as vOka during lytic infection in cell culture including human primary skin cells; however, rpOka_gB699R showed a growth phenotype similar to pOka. rpOka_gB699R entered neurons from axonal terminals more efficiently than rpOka_gB699Q in the presence of cell membrane-derived vesicles containing gB. Strikingly, when a mixture of pOka with both alleles equally represented was used to infect human neurons from axon terminals, pOka with gB699R was dominant for virus entry. These results identify a variant allele in gB that contributes to attenuation of vOka. IMPORTANCE The live-attenuated varicella vaccine has reduced the burden of chickenpox. Despite its development in 1974, the molecular basis for its attenuation is still not well understood. Since the live-attenuated varicella vaccine is the only licensed human herpesvirus vaccine that prevents primary disease, it is important to understand the mechanism for its attenuation. Here we identify that a variant allele in glycoprotein B (gB) selected during generation of the varicella vaccine contributes to its attenuation. This variant is impaired for fusion, virus entry into neurons from nerve terminals, and replication in human skin cells. Identification of a variant allele in gB, one of the essential herpesvirus core genes, that contributes to its attenuation may provide insights that assist in the development of other herpesvirus vaccines.
Collapse
Affiliation(s)
- Tomohiko Sadaoka
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel P. Depledge
- Department of Microbiology, New York University School of Medicine, New York, USA
- Institute for Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Labchan Rajbhandari
- Division of Neuroimmunology and Neuroinfectious Diseases, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Judith Breuer
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Arun Venkatesan
- Division of Neuroimmunology and Neuroinfectious Diseases, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey I. Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Matus CE, Ehrenfeld P, Figueroa CD. The family of kallikrein-related peptidases and kinin peptides as modulators of epidermal homeostasis. Am J Physiol Cell Physiol 2022; 323:C1070-C1087. [PMID: 35993513 DOI: 10.1152/ajpcell.00012.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The epidermis is the outermost skin layer and is part of one of the largest organs in the body; it is supported by the dermis, a network of fibrils, blood vessels, pilosebaceous units, sweat glands, nerves, and cells. The skin as a whole is a protective shield against numerous noxious agents, including microorganisms and chemical and physical factors. These functions rely on the activity of multiple growth factors, peptide hormones, proteases, and specific signaling pathways that are triggered by the activation of distinct types of receptors sited in the cell membranes of the various cell types present in the skin. The human kallikrein family comprises a large group of 15 serine proteases synthesized and secreted by different types of epithelial cells throughout the body, including the skin. At this site, they initiate a proteolytic cascade that generates the active forms of the proteases, some of which regulate skin desquamation, activation of cytokines, and antimicrobial peptides. Kinin peptides are formed by the action of plasma and tissue kallikreins on kininogens, two plasma proteins produced in the liver and other organs. Although kinins are well known for their proinflammatory abilities, in the skin they are also considered important modulators of keratinocyte differentiation. In this review, we summarize the contributions of the kallikreins and kallikrein-related peptidases family and those of kinins and their receptors in skin homeostasis, with special emphasis on their pathophysiological role.
Collapse
Affiliation(s)
- Carola E Matus
- Departament of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Molecular Biology and Pharmacogenetics, Universidad de La Frontera, Temuco, Chile.,Center of Biomedical and Morphofunctional Sciences, Universidad de La Frontera, Temuco, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
9
|
Tommasi C, Breuer J. The Biology of Varicella-Zoster Virus Replication in the Skin. Viruses 2022; 14:982. [PMID: 35632723 PMCID: PMC9147561 DOI: 10.3390/v14050982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
The replication of varicella-zoster virus (VZV) in skin is critical to its pathogenesis and spread. Primary infection causes chickenpox, which is characterised by centrally distributed skin blistering lesions that are rich in infectious virus. Cell-free virus in the cutaneous blistering lesions not only spreads to cause further cases, but infects sensory nerve endings, leading to the establishment of lifelong latency in sensory and autonomic ganglia. The reactivation of virus to cause herpes zoster is again characterised by localised painful skin blistering rash containing infectious virus. The development of in vitro and in vivo models of VZV skin replication has revealed aspects of VZV replication and pathogenesis in this important target organ and improved our understanding of the vaccine strain vOKa attenuation. In this review, we outline the current knowledge on VZV interaction with host signalling pathways, the viral association with proteins associated with epidermal terminal differentiation, and how these interconnect with the VZV life cycle to facilitate viral replication and shedding.
Collapse
Affiliation(s)
- Cristina Tommasi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Judith Breuer
- Department of Infection, Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
10
|
Baumann A, Isak D, Lohbeck J, Jagtap PKA, Hennig J, Miller AK. Scalable synthesis and structural characterization of reversible KLK6 inhibitors. RSC Adv 2022; 12:26989-26993. [PMID: 36320846 PMCID: PMC9490775 DOI: 10.1039/d2ra04670a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Scalable asymmetric syntheses of two kallikrein-related protease 6 (KLK6) inhibitors are reported. The inhibitors are assembled by linking enantiomerically enriched fragments via amide bond formation, followed by conversion of a cyano group to an amidine. One fragment, an amine, was prepared using the Ellman auxiliary, and a lack of clarity in the literature regarding the stereochemical outcome of this reaction was solved via X-ray crystallographic analysis of two derivatives. Complexes of the inhibitors bound to human KLK6 were solved by X-ray crystallography, revealing the binding poses. We report scalable syntheses of two potent and selective kallikrein related peptidase 6 (KLK6) inhibitors, as well as X-ray crystal structures of both inhibitors as protein-ligand complexes.![]()
Collapse
Affiliation(s)
- Andreas Baumann
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Daniel Isak
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jasmin Lohbeck
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Pravin Kumar Ankush Jagtap
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Aubry K. Miller
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
11
|
Pampalakis G, Zingkou E, Panagiotidis C, Sotiropoulou G. Kallikreins emerge as new regulators of viral infections. Cell Mol Life Sci 2021; 78:6735-6744. [PMID: 34459952 PMCID: PMC8404027 DOI: 10.1007/s00018-021-03922-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 08/12/2021] [Indexed: 01/13/2023]
Abstract
Kallikrein-related peptidases (KLKs) or kallikreins have been linked to diverse (patho) physiological processes, such as the epidermal desquamation and inflammation, seminal clot liquefaction, neurodegeneration, and cancer. Recent mounting evidence suggests that KLKs also represent important regulators of viral infections. It is well-established that certain enveloped viruses, including influenza and coronaviruses, require proteolytic processing of their hemagglutinin or spike proteins, respectively, to infect host cells. Similarly, the capsid protein of the non-enveloped papillomavirus L1 should be proteolytically cleaved for viral uncoating. Consequently, extracellular or membrane-bound proteases of the host cells are instrumental for viral infections and represent potential targets for drug development. Here, we summarize how extracellular proteolysis mediated by the kallikreins is implicated in the process of influenza (and potentially coronavirus and papillomavirus) entry into host cells. Besides direct proteolytic activation of viruses, KLK5 and 12 promote viral entry indirectly through proteolytic cascade events, like the activation of thrombolytic enzymes that also can process hemagglutinin, while additional functions of KLKs in infection cannot be excluded. In the light of recent evidence, KLKs represent potential host targets for the development of new antivirals. Humanized animal models to validate their key functions in viral infections will be valuable.
Collapse
Affiliation(s)
- Georgios Pampalakis
- Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, 265 04, Rion-Patras, Greece
| | - Christos Panagiotidis
- Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, 265 04, Rion-Patras, Greece
| |
Collapse
|
12
|
Heinz J, Kennedy PGE, Mogensen TH. The Role of Autophagy in Varicella Zoster Virus Infection. Viruses 2021; 13:v13061053. [PMID: 34199543 PMCID: PMC8227580 DOI: 10.3390/v13061053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an evolutionary conserved cellular process serving to degrade cytosolic organelles or foreign material to maintain cellular homeostasis. Autophagy has also emerged as an important process involved in complex interactions with viral pathogens during infection. It has become apparent that autophagy may have either proviral or antiviral roles, depending on the cellular context and the specific virus. While evidence supports an antiviral role of autophagy during certain herpesvirus infections, numerous examples illustrate how herpesviruses may also evade autophagy pathways or even utilize this process to their own advantage. Here, we review the literature on varicella zoster virus (VZV) and autophagy and describe the mechanisms by which VZV may stimulate autophagy pathways and utilize these to promote cell survival or to support viral egress from cells. We also discuss recent evidence supporting an overall antiviral role of autophagy, particularly in relation to viral infection in neurons. Collectively, these studies suggest complex and sometimes opposing effects of autophagy in the context of VZV infection. Much remains to be understood concerning these virus–host interactions and the impact of autophagy on infections caused by VZV.
Collapse
Affiliation(s)
- Johanna Heinz
- Department of Infectious Diseases, Aarhus University Hospital, 8000 Aarhus, Denmark; (J.H.); (T.H.M.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Peter G. E. Kennedy
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G61 1QH, UK
- Correspondence:
| | - Trine H. Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, 8000 Aarhus, Denmark; (J.H.); (T.H.M.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
13
|
Caucheteux SM, Piguet V. Kallikrein-6-Regulated Pathways Shed Light on New Potential Targets in Varicella Zoster Virus Infection. J Invest Dermatol 2020; 140:741-742. [PMID: 32200876 DOI: 10.1016/j.jid.2019.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/25/2022]
Abstract
Varicella zoster virus, the worldwide infectious human virus responsible for acute varicella and chickenpox, commonly spreads from exposure through contact with a skin lesion or airborne respiratory droplets. Keratinocytes, major targets and source of transmission of the virus present in the skin, represent an ideal choice of cell to stop early virus progression. In their recent study, Tommasi et al. show regulatory mechanisms of cytokeratin 10 through the protease kallikrein-6 as a suitable and druggable pathway to reduce varicella zoster virus dissemination.
Collapse
Affiliation(s)
- Stephan M Caucheteux
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Piguet
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Dermatology, Women's College Hospital, Toronto, Ontario, Canada.
| |
Collapse
|