1
|
Yang H, Zhang X, Wang W, Ge Y, Yang Y, Lin T. miR-25-5p in exosomes derived from UVB-induced fibroblasts regulates melanogenesis via TSC2-dominated cellular organelle dysfunction. J Dermatol Sci 2024; 115:75-84. [PMID: 38969533 DOI: 10.1016/j.jdermsci.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Few reports have confirmed whether exosomes derived from fibroblasts can regulate the process of melanogenesis. We wondered whether exosomes derived from fibroblasts could have a potent regulatory effect on melanogenesis and explored the underlying mechanisms. OBJECTIVE This study aimed to find the role of fibroblasts in melanocytes and revealed the related mechanisms. METHODS RT-qPCR, Western blot analysis were conducted to measure the RNA and protein expression level of various related genes. miRNA sequencing, mass spectrum analysis and subsequent bioinformatics analysis were employed to find the underlying targets. Zebrafish were employed to measure the melanin synthesis related process in vivo. Furthermore, electron microscopy, ROS measurement and dual-luciferase reporter assay were adopted to investigate the relationship between these processes. RESULTS We found that exosomes derived from human primary dermal fibroblasts were internalized by human primary melanocytes and MNT1 cells and that the melanin content and the expression of melanin synthesis-related proteins TYR and MITF was inhibited by exosomes derived from UVB-induced human primary dermal fibroblasts. The miRNA expression profile in secreted exosomes changed significantly, with miR-25-5p identified as capable of regulating TSC2 expression via the CDS region. The miR-25-5p-TSC2 axis could affect the melanin content through subsequent cellular organelle dysfunction, such as mitochondrial dysfunction, endoplasmic reticulum stress and dysregulation of lysosomal cysteine proteases. CONCLUSION We unveiled a novel regulatory role of fibroblasts in melanocytes, facilitated by the secretion of exosomes. miR-25-5p within exosomes plays a pivotal role in regulating melanogenesis via TSC2-induced cellular organelle dysfunction.
Collapse
Affiliation(s)
- Hedan Yang
- Department of Cosmetic Laser Surgery, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiaoli Zhang
- Department of Cosmetic Laser Surgery, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wenzhu Wang
- Department of Cosmetic Laser Surgery, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yiping Ge
- Department of Cosmetic Laser Surgery, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yin Yang
- Department of Cosmetic Laser Surgery, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| | - Tong Lin
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
2
|
Gadwal A, Purohit P, Khokhar M, Vishnoi JR, Pareek P, Choudhary R, Elhence P, Banerjee M, Sharma P. GALNT14 in association with GDF-15 promotes stemness and drug resistance through β-catenin signalling pathway in breast cancer. Mol Biol Rep 2024; 51:691. [PMID: 38796671 DOI: 10.1007/s11033-024-09645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Altered glycosylation plays a role in carcinogenesis. GALNT14 promotes cancer stem-like properties and drug resistance. GDF-15 is known to induces drug resistance and stemness markers for maintenance of breast cancer (BC) stem-like cell state. Currently there is lack of data on association of GDF-15 and GALNTs. In this study, the expression and interaction of GALNT14 and GDF-15 with stemness (OCT4 and SOX2) and drug resistance (ABCC5) markers were evaluated in BC. METHODS We investigated tumour tissue from 30 BC patients and adjacent non-tumour tissues. Expression of serum GALNT14 from BC patients and matched healthy controls was evaluated. Expression of GALNT14, GDF-15, OCT4, SOX2, ABCC5, and β-catenin in BC tissue was determined by RT-PCR. Knockdown of GALNT14 and GDF-15 in the MCF-7 cell line was done through siRNA, gene expression and protein expression of β-catenin by western blot were determined. RESULTS A significant increase in the expression of GALNT14, GDF-15, OCT4, SOX2, ABCC5, and β-catenin was observed in BC tumour tissues compared to adjacent non-tumour tissues. The serum level of GALNT14 was significantly high in BC patients (80.7 ± 65.3 pg/ml) compared to healthy controls (12.2 ± 9.12 pg/ml) (p < 0.000). To further analyse the signalling pathway involved in BC stemness and drug resistance, GALNT14 and GDF-15 were knocked down in the MCF-7 cell line, and it was observed that after knockdown, the expression level of OCT4, SOX2, ABCC5, and β-catenin was decreased, and co-knockdown with GALNT14 and GDF-15 further decreased the expression of genes. CONCLUSION It can be concluded that GALNT14, in association with GDF-15, promotes stemness and intrinsic drug resistance in BC, possibly through the β-catenin signalling pathway.
Collapse
Affiliation(s)
- Ashita Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Jeewan Ram Vishnoi
- Department of Oncosurgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Puneet Pareek
- Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, India
| | - Ramkaran Choudhary
- Department of General Surgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Poonam Elhence
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| |
Collapse
|
3
|
Li T, Xiong Y, Xian L, Xiong L, Li L. YAP prevents senescence of dermal fibroblast and inhibits melanogenesis via paracrine effect of DKK1. Exp Dermatol 2024; 33:e15093. [PMID: 38742821 DOI: 10.1111/exd.15093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Senile skin hyperpigmentation displays remarkable histopathological features of dermal aging. The crosstalk between melanocytes and dermal fibroblasts plays crucial roles in aging-related pigmentation. While senescent fibroblasts can upregulate pro-melanogenic factors, the role of anti-melanogenic factors, such as dickkopf1 (DKK1), and the upstream regulatory mechanism during aging remain obscure. This study investigated the roles of yes-associated protein (YAP) and DKK1 in the regulation of dermal fibroblast senescence and melanogenesis. Our findings demonstrated decreased YAP activity and DKK1 levels in intrinsic and extrinsic senescent fibroblasts. YAP depletion induced fibroblast senescence and downregulated the expression and secretion of DKK1, whereas YAP overexpression partially reversed the effect. The transcriptional regulation of DKK1 by YAP was supported by dual-luciferase reporter and chromatin immunoprecipitation assays. Moreover, YAP depletion in fibroblasts upregulated Wnt/β-catenin in melanocytes and stimulated melanogenesis, which was partially rescued by the re-supplementation of DKK1. Conversely, overexpression of YAP in senescent fibroblasts decreased Wnt/β-catenin levels in melanocytes and inhibited melanogenesis. Additionally, reduced levels of YAP and DKK1 were verified in the dermis of solar lentigines. These findings suggest that, during skin aging, epidermal pigmentation may be influenced by YAP in the dermal microenvironment via the paracrine effect of DKK1.
Collapse
Affiliation(s)
- Tong Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, P.R. China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yimei Xiong
- Department of Biochemistry and Molecular Biology, School of Preclinical and Forensic Medicine, West China Medical Center, Sichuan University, Chengdu, P.R. China
| | - Longjun Xian
- Department of Biochemistry and Molecular Biology, School of Preclinical and Forensic Medicine, West China Medical Center, Sichuan University, Chengdu, P.R. China
| | - Lidan Xiong
- Cosmetic Safety and Efficacy Evaluation Center of West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Li Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, P.R. China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
- Cosmetic Safety and Efficacy Evaluation Center of West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
4
|
Jeong J, Lee W, Kim YA, Lee YJ, Kim S, Shin J, Choi Y, Kim J, Lee Y, Kim MS, Kwon SH. Multi-System-Level Analysis Reveals Differential Expression of Stress Response-Associated Genes in Inflammatory Solar Lentigo. Int J Mol Sci 2024; 25:3973. [PMID: 38612783 PMCID: PMC11012242 DOI: 10.3390/ijms25073973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Although the pathogenesis of solar lentigo (SL) involves chronic ultraviolet (UV) exposure, cellular senescence, and upregulated melanogenesis, underlying molecular-level mechanisms associated with SL remain unclear. The aim of this study was to investigate the gene regulatory mechanisms intimately linked to inflammation in SL. Skin samples from patients with SL with or without histological inflammatory features were obtained. RNA-seq data from the samples were analyzed via multiple analysis approaches, including exploration of core inflammatory gene alterations, identifying functional pathways at both transcription and protein levels, comparison of inflammatory module (gene clusters) activation levels, and analyzing correlations between modules. These analyses disclosed specific core genes implicated in oxidative stress, especially the upregulation of nuclear factor kappa B in the inflammatory SLs, while genes associated with protective mechanisms, such as SLC6A9, were highly expressed in the non-inflammatory SLs. For inflammatory modules, Extracellular Immunity and Mitochondrial Innate Immunity were exclusively upregulated in the inflammatory SL. Analysis of protein-protein interactions revealed the significance of CXCR3 upregulation in the pathogenesis of inflammatory SL. In conclusion, the upregulation of stress response-associated genes and inflammatory pathways in response to UV-induced oxidative stress implies their involvement in the pathogenesis of inflammatory SL.
Collapse
Affiliation(s)
- Jisu Jeong
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Wonmin Lee
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Medicine, Kyung Hee University College of Medicine, Seoul 02453, Republic of Korea
| | - Ye-Ah Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Yun-Ji Lee
- Department of Dermatology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea;
| | - Sohyun Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Medicine, Kyung Hee University College of Medicine, Seoul 02453, Republic of Korea
| | - Jaeyeon Shin
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Mathematics, Kyung Hee University College of Science, Seoul 02453, Republic of Korea
| | - Yueun Choi
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Jihan Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Medicine, Kyung Hee University College of Medicine, Seoul 02453, Republic of Korea
| | - Yoonsung Lee
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
| | - Man S. Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
| | - Soon-Hyo Kwon
- Department of Dermatology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea;
| |
Collapse
|
5
|
Cavinato M. Mitochondrial dysfunction and cisplatin sensitivity in gastric cancer: GDF15 as a master player. FEBS J 2024; 291:1111-1114. [PMID: 38348639 DOI: 10.1111/febs.17087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
Gastric cancer, a major global health concern, poses challenges in effective treatment, notably due to chemoresistance. This study investigates the role of growth/differentiation factor-15 (GDF-15) in mitochondrial dysfunction and its impact on cisplatin sensitivity in gastric cancer cells. In this issue of The FEBS Journal, Wang et al. demonstrate that GDF15 upregulation is associated with cisplatin insensitivity, mediated by the ATF4-CHOP pathway and reactive oxygen species-activated general control nonderepressible 2 [Wang S-F et al. (2023) FEBS J, https://doi.org/10.1111/febs.16992]. Connecting these insights, we explore the broader implications of GDF15 expression in the aging-cancer axis, particularly its involvement in cellular senescence and the senescence-associated secretory phenotype (SASP). This study suggests that GDF15 released by senescent cells could contribute to tumor progression, indicating potential avenues for therapeutic intervention by targeting senescent cells and their SASP. While the study provides valuable insights into mitigating cisplatin resistance, further research is crucial to fully understand the role of GDF15 in the tumor microenvironment and its potential feedback loops promoting tumorigenesis.
Collapse
Affiliation(s)
- Maria Cavinato
- Institute for Biochemical Aging Research, University of Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), Austria
| |
Collapse
|
6
|
Hara Y, Shibata T. Characteristics of dermal vascularity in melasma and solar lentigo. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12953. [PMID: 38353352 DOI: 10.1111/phpp.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND /PURPOSE Melasma and solar lentigo (SL) are major benign hyperpigmented lesions, and both have been shown to involve the dermal vasculature. This review discusses current knowledge regarding the clinical characteristics of dermal vascularity in melasma and SL, as well as the results of relevant molecular biological investigations. METHODS PubMed and Google Scholar were searched in December 2023 to identify articles related to melasma, SL, and the dermal vasculature in these lesions. RESULTS Vascular morphologies in melasma and SL have been detected by histological and non-invasive methods, including modalities such as optical coherence tomography. Biological studies have indicated that factors secreted from vascular endothelial cells, such as stem cell factor and endothelin-1, can promote melanogenesis. With respect to phototherapy, blood vessel-targeting laser treatments are expected to provide long-term suppression of pigmentation, but this regimen is only effective when dilated capillaries are visible. CONCLUSION In both melasma and SL, clinical and experimental investigations are revealing the contributions of dermal vascularity to hyperpigmentation. More effective treatment may require identification of hyperpigmentation subtypes. In the future, knowledge of treatment (including phototherapy) is expected to accumulate through reliable and validated non-invasive measurements.
Collapse
Affiliation(s)
- Yusuke Hara
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| | - Takako Shibata
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| |
Collapse
|
7
|
Han HJ, Kim JC, Park YJ, Kang HY. Targeting the dermis for melasma maintenance treatment. Sci Rep 2024; 14:949. [PMID: 38200171 PMCID: PMC10781782 DOI: 10.1038/s41598-023-51133-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Melasma relapse is almost common after discontinuation of conventional treatment. Recent studies suggesting that photoaging dermis is the main pathomechanism of melasma, emphasize the dermal targeting therapy. We investigated maintenance effect of microneedling radiofrequency (RF) for melasma treatment. Subjects with melasma were administered oral tranexamic acid and triple combination cream for 2 months and a randomly assigned half face was treated with RF. After discontinuation of conventional therapy, the half face RF continued monthly over 6 months. Modified melasma area severity index (mMASI) score and L* value by a chromameter were collected monthly. Fifteen subjects were enrolled and eleven completed the 8-month study. At 2nd month of conventional therapy, all subjects showed improvement with a 64% reduction in mMASI score. With continuous RF treatment, the improvement was well maintained; whereas in untreated side, the Δ L* gradually decreased, returning to the baseline after the conventional therapy ended. The continuous microneedling RF therapy is beneficial in maintaining the conventional therapy of melasma suggesting the protective effect of dermal targeting therapy in melasma development.(Clinical Trial registration number: NCT05710068, date of first registration: 02/02/2023).
Collapse
Affiliation(s)
- Hee Jeong Han
- Department of Dermatology, Ajou University Hospital, 164, World Cup-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Jin Cheol Kim
- Department of Dermatology, Ajou University Hospital, 164, World Cup-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Young Joon Park
- Department of Dermatology, Ajou University Hospital, 164, World Cup-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Hee Young Kang
- Department of Dermatology, Ajou University Hospital, 164, World Cup-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16499, South Korea.
| |
Collapse
|
8
|
Qiang M, Dai Z. Biomarkers of UVB radiation-related senescent fibroblasts. Sci Rep 2024; 14:933. [PMID: 38195709 PMCID: PMC10776766 DOI: 10.1038/s41598-023-51058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
Excessive exposure to ultraviolet (UV) light is known to induce photoaging in the skin, necessitating the development of effective anti-photoaging strategies to mitigate the adverse effects of UV radiation. Understanding the biofunctional characteristics of diverse skin cell types and unraveling the molecular modifications implicated in the aging process are pivotal in comprehending the intricacies of photoaging in human skin. Such insights are essential for paving the way for innovative interventions to counteract the deleterious impact of UV radiation on the skin. The single-cell RNA sequencing data of UVB-irradiated and normal control mouse skin in GSE173385 were downloaded from the Gene Expression Omniniub (GEO) database. First, cell types were identified using Seurat for normalization, dimensionality reduction and clustering. Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis were executed on these cell subpopulations. Using FindAllMarkers in the Seurat package to identify differential gene expression and Monocle2 cell trajectory analysis, we screened out hub genes related to the development trajectory of senescent fibroblasts during photoaging, and then combined it with 307 aging-related genes collected in the HAGR library, we finally identified two biomarkers. The efficiency of biomarkers in diagnosing UV radiation photoaging was also evaluated in the dataset. Concurrently, the immune infiltration of identified biomarkers under UV radiation has also been further explored. Moreover, we employed the Enrichr platform to conduct a comprehensive screening of drug molecules associated with the identified biomarkers. Our comprehensive analysis, employing Seurat for normalization, dimensionality reduction, and clustering, successfully identified ten distinct cell types within the samples. Then GO functional enrichment analysis showed that senescent fibroblasts are mainly involved in the regulation of immune effector processes such as cytokine-mediated signaling pathways, regulation of epithelial cell proliferation and intercellular adhesion. Afterwards, KEGG analysis determined the main biological pathways are: IL-17 signaling pathway, Cytokine-cytokine receptor interaction, Metabolism of xenobiotics by cytochrome P450. After differential gene expression and Monocle2 cell trajectory analysis, we matched the obtained hub genes with the aging-related genes collected in the HAGR library, and finally screened out two relevant biomarkers: Apoe and Gdf15 which are related to the development trajectory of senescent fibroblasts during photoaging. Meanwhile, the immune infiltration further implied that the expression of these two biomarkers was significantly correlated with immune cells. In addition, the Enrichr platform was used to screen the drug molecules related to these biomarkers. This strategic approach aimed to pinpoint effective molecular targets for the prevention and treatment of photoaging. Our investigation has effectively characterized biomarkers associated with fibroblast senescence during photoaging at the single-cell level, We have validated their correlation with cellular immune inflammation and identified potential drug targets through the utilization of the Enrichr platform. This foundational research establishes a robust basis for the development of therapeutic interventions targeting skin diseases resulting from photoaging.
Collapse
Affiliation(s)
- Mingyue Qiang
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China.
| | - Zijia Dai
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| |
Collapse
|
9
|
Galache TR, Sena MM, Tassinary JAF, Pavani C. Photobiomodulation for melasma treatment: Integrative review and state of the art. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12935. [PMID: 38018017 DOI: 10.1111/phpp.12935] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
PURPOSE Photobiomodulation therapy (PBM) is a versatile technique for treating skin diseases. Melasma, a chronic hyperpigmentation condition, has recently been associated with vascular features and dermal photoaging and poses significant management challenges. We review the recent literature on melasma etiology and the evidence supporting PBM as a therapeutic modality for melasma treatment. METHODS We conducted a comprehensive literature search in three different databases from May to August 2023, focusing on studies published in the past 10 years. The inclusion criteria comprised full-text studies investigating low-power lasers and/or light-emitting diodes (LEDs) in in vitro or in vivo models, as well as clinical trials. We excluded studies discussing alternative melasma therapies or lacking experimental data. We identified additional studies by searching the reference lists of the selected articles. RESULTS We identified nine relevant studies. Clinical studies, in agreement with in vitro experiments and animal models, suggest that PBM effectively reduces melasma-associated hyperpigmentation. Specific wavelengths (red: 630 nm; amber: 585 and 590 nm; infrared: 830 and 850 nm) at radiant exposures between 1 and 20 J/cm2 exert modulatory effects on tyrosinase activity, gene expression, and protein synthesis of melanocytic pathway components, and thus significantly reduce the melanin content. Additionally, PBM is effective in improving the dermal structure and reducing erythema and neovascularization, features recently identified as pathological components of melasma. CONCLUSION PBM emerges as a promising, contemporary, and non-invasive procedure for treating melasma. Beyond its role in inhibiting melanogenesis, PBM shows potential in reducing erythema and vascularization and improving dermal conditions. However, robust and well-designed clinical trials are needed to determine optimal light parameters and to evaluate the effects of PBM on melasma thoroughly.
Collapse
Affiliation(s)
- Thais Rodrigues Galache
- Postgraduate Program in Biophotonics Medicine, Universidade Nove de Julho, UNINOVE, São Paulo, SP, Brazil
| | - Michelle Mota Sena
- Postgraduate Program in Biophotonics Medicine, Universidade Nove de Julho, UNINOVE, São Paulo, SP, Brazil
| | | | - Christiane Pavani
- Postgraduate Program in Biophotonics Medicine, Universidade Nove de Julho, UNINOVE, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Lyu C, Ni T, Guo Y, Zhou T, Chen Z, Yan J, Li Y. Insufficient GDF15 expression predisposes women to unexplained recurrent pregnancy loss by impairing extravillous trophoblast invasion. Cell Prolif 2023; 56:e13514. [PMID: 37272232 PMCID: PMC10693185 DOI: 10.1111/cpr.13514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Insufficient extravillous trophoblast (EVT) invasion during early placentation has been shown to contribute to recurrent pregnancy loss (RPL). However, the regulatory factors involved and their involvement in RPL pathogenesis remain unknown. Here, we found aberrantly decreased growth differentiation factor 15 (GDF15) levels in both first-trimester villous and serum samples of unexplained recurrent pregnancy loss (URPL) patients as compared with normal pregnancies. Moreover, GDF15 knockdown significantly reduced the invasiveness of both HTR-8/SVneo cells and primary human EVT cells and suppressed the Jagged-1 (JAG1)/NOTCH3/HES1 pathway activity, and JAG1 overexpression rescued the invasion phenotype of the GDF15 knockdown cells. Induction of a lipopolysaccharide-induced abortion model in mice resulted in significantly reduced GDF15 level in the placenta and serum, as well as increased rates of embryonic resorption, and these effects were reversed by administration of recombinant GDF15. Our study thus demonstrates that insufficient GDF15 level at the first-trimester maternal-foetal interface contribute to the pathogenesis of URPL by impairing EVT invasion and suppressing JAG1/NOTCH3/HES1 pathway activity, and suggests that supplementation with GDF15 could benefit early pregnancy maintenance and reduce the risk of early pregnancy.
Collapse
Affiliation(s)
- Chunzi Lyu
- Center for Reproductive MedicineShandong UniversityJinanShandongChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
| | - Tianxiang Ni
- Center for Reproductive MedicineShandong UniversityJinanShandongChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
| | - Yaqiu Guo
- Department of AnesthesiologyJinan Maternal and Child Health HospitalJinanShandongChina
| | - Tingting Zhou
- Center for Reproductive MedicineShandong UniversityJinanShandongChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
| | - Zi‐Jiang Chen
- Center for Reproductive MedicineShandong UniversityJinanShandongChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
| | - Junhao Yan
- Center for Reproductive MedicineShandong UniversityJinanShandongChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
| | - Yan Li
- Center for Reproductive MedicineShandong UniversityJinanShandongChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
- Medical Integration and Practice CenterShandong UniversityJinanShandongChina
- Lead Contact
| |
Collapse
|
11
|
Martic I, Papaccio F, Bellei B, Cavinato M. Mitochondrial dynamics and metabolism across skin cells: implications for skin homeostasis and aging. Front Physiol 2023; 14:1284410. [PMID: 38046945 PMCID: PMC10693346 DOI: 10.3389/fphys.2023.1284410] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Aging of human skin is a complex process leading to a decline in homeostasis and regenerative potential of this tissue. Mitochondria are important cell organelles that have a crucial role in several cellular mechanisms such as energy production and free radical maintenance. However, mitochondrial metabolism as well as processes of mitochondrial dynamics, biogenesis, and degradation varies considerably among the different types of cells that populate the skin. Disturbed mitochondrial function is known to promote aging and inflammation of the skin, leading to impairment of physiological skin function and the onset of skin pathologies. In this review, we discuss the essential role of mitochondria in different skin cell types and how impairment of mitochondrial morphology, physiology, and metabolism in each of these cellular compartments of the skin contributes to the process of skin aging.
Collapse
Affiliation(s)
- Ines Martic
- Institute for Biochemical Aging Research, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Federica Papaccio
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Maria Cavinato
- Institute for Biochemical Aging Research, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| |
Collapse
|
12
|
Wang M, Huang X, Ouyang M, Lan J, Huang J, Li H, Lai W, Gao Y, Xu Q. A20 ameliorates advanced glycation end products-induced melanogenesis by inhibiting NLRP3 inflammasome activation in human dermal fibroblasts. J Dermatol Sci 2023; 112:71-82. [PMID: 37741724 DOI: 10.1016/j.jdermsci.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/03/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Advanced glycation end products (AGEs) promote melanogenesis through activating NLRP3 inflammasome in fibroblasts. Although A20 has been highlighted to inhibit NLRP3 inflammasome activation, its roles and mechanisms remain elusive in photoaging-associated pigmentation. OBJECTIVES To determine the significance of fibroblast A20 in AGEs-induced NLRP3 inflammasome activation and pigmentation. METHODS The correlation between A20 and AGEs or melanin was studied in sun-exposed skin and lesions of melasma and solar lentigo. We then investigated A20 level in AGEs-treated fibroblast and the effect of fibroblast A20 overexpression or knockdown on AGEs-BSA-induced NLRP3 inflammasome activation and pigmentation, respectively. Finally, the severity of NLRP3 inflammasome activation and pigmentation was evaluated after mice were injected intradermally with A20-overexpression adeno-associated virus and AGEs-BSA. RESULTS Dermal A20 expression was decreased and exhibited negative correlation with either dermal AGEs deposition or epidermal melanin level in sun-exposed skin and pigmentary lesions. Moreover, both AGEs-BSA and AGEs-collagen robustly decreased A20 expression via binding to RAGE in fibroblasts. Further, A20 overexpression or depletion significantly decreased or augmented AGEs-BSA-induced activation of NF-κB pathway and NLRP3 inflammasome and IL-18 production and secretion in fibroblasts, respectively. Importantly, fibroblast A20 potently repressed AGEs-BSA-stimulated melanin content,tyrosinase activity,and expression of microphthalmia-associated transcription factor and tyrosinase in melanocytes. Particularly, fibroblast A20 significantly abrogated AGEs-BSA-promoted melanogenesis in ex vivo skin and mouse models. Additionally, fibroblast A20 inhibited AGEs-BSA-activated MAPKs in melanocytes and the epidermis of ex vivo skin. CONCLUSIONS Fibroblast A20 suppresses AGEs-stimulate melanogenesis in photoaging-associated hyperpigmentation disorders by inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Mengyao Wang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Xianyin Huang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Mengting Ouyang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Jingjing Lan
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Jingqian Huang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Hongpeng Li
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Wei Lai
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| | - Yifeng Gao
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| | - Qingfang Xu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
13
|
In KR, Kang MA, Kim SD, Shin J, Kang SU, Park TJ, Kim SJ, Lee JS. Anhydrous Alum Inhibits α-MSH-Induced Melanogenesis by Down-Regulating MITF via Dual Modulation of CREB and ERK. Int J Mol Sci 2023; 24:14662. [PMID: 37834109 PMCID: PMC10572554 DOI: 10.3390/ijms241914662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Melanogenesis, the intricate process of melanin synthesis, is central to skin pigmentation and photoprotection and is regulated by various signaling pathways and transcription factors. To develop potential skin-whitening agents, we used B16F1 melanoma cells to investigate the inhibitory effects of anhydrous alum on melanogenesis and its underlying molecular mechanisms. Anhydrous alum (KAl(SO4)2) with high purity (>99%), which is generated through the heat-treatment of hydrated alum (KAl(SO4)2·12H2O) at 400 °C, potentiates a significant reduction in melanin content without cytotoxicity. Anhydrous alum downregulates the master regulator of melanogenesis, microphthalmia-associated transcription factor (MITF), which targets key genes involved in melanogenesis, thereby inhibiting α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis. Phosphorylation of the cAMP response element-binding protein, which acts as a co-activator of MITF gene expression, is attenuated by anhydrous alum, resulting in compromised MITF transcription. Notably, anhydrous alum promoted extracellular signal-regulated kinase phosphorylation, leading to the impaired nuclear localization of MITF. Overall, these results demonstrated the generation and mode of action of anhydrous alum in B16F1 cells, which constitutes a promising option for cosmetic or therapeutic use.
Collapse
Affiliation(s)
- Kyu-Ree In
- Department of Life Sciences, College of Natural Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Mi Ae Kang
- Department of Life Sciences, College of Natural Sciences, Ajou University, Suwon 16499, Republic of Korea
- Research Institute of Basic Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Su Dong Kim
- Graduate School of Clinical Pharmacy and Pharmaceutics, Ajou University, Suwon 16499, Republic of Korea
| | - Jinho Shin
- Department of Chemistry, College of Natural Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea
| | - Tae Jun Park
- Department of Biomedical Science, The Graduate School, Ajou University, Suwon 16499, Republic of Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seung-Joo Kim
- Research Institute of Basic Sciences, Ajou University, Suwon 16499, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Jong-Soo Lee
- Department of Life Sciences, College of Natural Sciences, Ajou University, Suwon 16499, Republic of Korea
- Research Institute of Basic Sciences, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
14
|
D’Arino A, Caputo S, Eibenschutz L, Piemonte P, Buccini P, Frascione P, Bellei B. Skin Cancer Microenvironment: What We Can Learn from Skin Aging? Int J Mol Sci 2023; 24:14043. [PMID: 37762344 PMCID: PMC10531546 DOI: 10.3390/ijms241814043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is a natural intrinsic process associated with the loss of fibrous tissue, a slower cell turnover, and a reduction in immune system competence. In the skin, the continuous exposition of environmental factors superimposes extrinsic damage, mainly due to ultraviolet radiation causing photoaging. Although not usually considered a pathogenic event, photoaging affects cutaneous biology, increasing the risk of skin carcinogenesis. At the cellular level, aging is typified by the rise of senescence cells a condition characterized by reduced or absent capacity to proliferate and aberrant hyper-secretory activity. Senescence has a double-edged sword in cancer biology given that senescence prevents the uncontrolled proliferation of damaged cells and favors their clearance by paracrine secretion. Nevertheless, the cumulative insults and the poor clearance of injured cells in the elderly increase cancer incidence. However, there are not conclusive data proving that aged skin represents a permissive milieu for tumor onset. On the other hand, tumor cells are capable of activating resident fibroblasts onto a pro-tumorigenic phenotype resembling those of senescent fibroblasts suggesting that aged fibroblasts might facilitate cancer progression. This review discusses changes that occur during aging that can prime neoplasm or increase the aggressiveness of melanoma and non-melanoma skin cancer.
Collapse
Affiliation(s)
- Andrea D’Arino
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Silvia Caputo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Laura Eibenschutz
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Paolo Piemonte
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Pierluigi Buccini
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Pasquale Frascione
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| |
Collapse
|
15
|
Shin SH, Lee YH, Rho NK, Park KY. Skin aging from mechanisms to interventions: focusing on dermal aging. Front Physiol 2023; 14:1195272. [PMID: 37234413 PMCID: PMC10206231 DOI: 10.3389/fphys.2023.1195272] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Skin aging is a multifaceted process that involves intrinsic and extrinsic mechanisms that lead to various structural and physiological changes in the skin. Intrinsic aging is associated with programmed aging and cellular senescence, which are caused by endogenous oxidative stress and cellular damage. Extrinsic aging is the result of environmental factors, such as ultraviolet (UV) radiation and pollution, and leads to the production of reactive oxygen species, ultimately causing DNA damage and cellular dysfunction. In aged skin, senescent cells accumulate and contribute to the degradation of the extracellular matrix, which further contributes to the aging process. To combat the symptoms of aging, various topical agents and clinical procedures such as chemical peels, injectables, and energy-based devices have been developed. These procedures address different symptoms of aging, but to devise an effective anti-aging treatment protocol, it is essential to thoroughly understand the mechanisms of skin aging. This review provides an overview of the mechanisms of skin aging and their significance in the development of anti-aging treatments.
Collapse
Affiliation(s)
- Sun Hye Shin
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Yoon Hwan Lee
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Nark-Kyoung Rho
- Leaders Aesthetic Laser & Cosmetic Surgery Center, Seoul, Republic of Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Wedel S, Martic I, Guerrero Navarro L, Ploner C, Pierer G, Jansen‐Dürr P, Cavinato M. Depletion of growth differentiation factor 15 (GDF15) leads to mitochondrial dysfunction and premature senescence in human dermal fibroblasts. Aging Cell 2022; 22:e13752. [PMID: 36547021 PMCID: PMC9835581 DOI: 10.1111/acel.13752] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 12/24/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is a stress-responsive cytokine also known as a mitokine; however, its role in mitochondrial homeostasis and cellular senescence remained elusive. We show here that knocking down GDF15 expression in human dermal fibroblasts induced mitochondrial dysfunction and premature senescence, associated with a distinct senescence-associated secretory phenotype. Fibroblast-specific loss of GDF15 expression in a model of 3D reconstructed human skin induced epidermal thinning, a hallmark of skin aging. Our results suggest GDF15 to play a so far undisclosed role in mitochondrial homeostasis to delay both the onset of cellular senescence and the appearance of age-related changes in a 3D human skin model.
Collapse
Affiliation(s)
- Sophia Wedel
- Institute for Biochemical Aging ResearchUniversity of InnsbruckInnsbruckAustria,Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Ines Martic
- Institute for Biochemical Aging ResearchUniversity of InnsbruckInnsbruckAustria,Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Lena Guerrero Navarro
- Institute for Biochemical Aging ResearchUniversity of InnsbruckInnsbruckAustria,Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Pidder Jansen‐Dürr
- Institute for Biochemical Aging ResearchUniversity of InnsbruckInnsbruckAustria,Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Maria Cavinato
- Institute for Biochemical Aging ResearchUniversity of InnsbruckInnsbruckAustria,Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| |
Collapse
|
17
|
Current Understanding of the Role of Senescent Melanocytes in Skin Ageing. Biomedicines 2022; 10:biomedicines10123111. [PMID: 36551868 PMCID: PMC9775966 DOI: 10.3390/biomedicines10123111] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Melanocytes reside within the basal epidermis of human skin, and function to protect the skin from ultraviolet light through the production of melanin. Prolonged exposure of the skin to UV light can induce irreparable DNA damage and drive cells into senescence, a sustained cell cycle arrest that prevents the propagation of this damage. Senescent cells can also be detrimental and contribute to skin ageing phenotypes through their senescence-associated secretory phenotype. Senescent cells can act in both an autocrine and paracrine manner to produce widespread tissue inflammation and skin ageing. Recently, melanocytes have been identified as the main senescent cell population within the epidermis and have been linked to a variety of skin ageing phenotypes, such as epidermal thinning and the presence of wrinkles. However, the literature surrounding melanocyte senescence is limited and tends to focus on the role of senescence in the prevention of melanoma. Therefore, this review aims to explore the current understanding of the contribution of senescent melanocytes to human skin ageing.
Collapse
|
18
|
Skin-Aging Pigmentation: Who Is the Real Enemy? Cells 2022; 11:cells11162541. [PMID: 36010618 PMCID: PMC9406699 DOI: 10.3390/cells11162541] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/21/2022] Open
Abstract
Skin aging is induced and sustained by chronological aging and photoaging. Aging skin pigmentation such as mottled pigmentation (senile lentigo) and melasma are typical signs of photoaging. The skin, like other human organs, undergoes cellular senescence, and senescent cells in the skin increase with age. The crosstalk between melanocytes as pigmentary cells and other adjacent types of aged skin cells such as senescent fibroblasts play a role in skin-aging pigmentation. In this review, we provide an overview of cellular senescence during the skin-aging process. The discussion also includes cellular senescence related to skin-aging pigmentation and the therapeutic potential of regulating the senescence process.
Collapse
|
19
|
Cho K, Yang KE, Nam SB, Lee SI, Yeo EJ, Choi JS. Shotgun proteomics of extracellular matrix in late senescent human dermal fibroblasts reveals a down-regulated fibronectin-centered network. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractExtracellular matrix (ECM) proteins play a pivotal role in cell growth and differentiation. To characterize aged ECM proteins, we compared the proteomes by shotgun method of young (passage #15) and late senescent (passage #40) human dermal fibroblasts (HDFs) using SDS-PAGE coupled with LC–MS/MS. The relative abundance of identified proteins was determined using mol% of individual proteins as a semi-quantitative index. Fifteen ECM proteins including apolipoprotein B (APOB) and high-temperature requirement factor 1 (HTRA1) were up-regulated, whereas 50 proteins including fibronectin 1 (FN1) and vitronectin (VTN) were down-regulated in late senescent HDFs. The identified ECM proteins combined with plasma membrane were queried to construct the protein–protein interaction network using Ingenuity Pathways Analysis, resulting in a distinct FN1-centered network. Of differentially abundant ECM proteins in shotgun proteomics, the protein levels of FN1, VTN, APOB, and HTRA1 were verified by immunoblot analysis. The results suggest that the aging process in HDFs might be finally involved in the impaired FN1 regulatory ECM network combined with altered interaction of neighboring proteins. Shotgun proteomics of highly aged HDFs provides insight for further studies of late senescence-related alterations in ECM proteins.
Collapse
|
20
|
Fang J, Ouyang M, Qu Y, Wang M, Huang X, Lan J, Lai W, Xu Q. Advanced glycation end products promote melanogenesis via activating NLRP3 inflammasome in human dermal fibroblasts. J Invest Dermatol 2022; 142:2591-2602.e8. [PMID: 35421403 DOI: 10.1016/j.jid.2022.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Advanced glycation end products (AGEs) accumulation is significantly increased in the dermis of photoaged skin and plays crucial roles in photoaging. Although AGEs have been found to contribute to the yellowish discoloration of photoaged skin, their roles in photoaging-associated hyperpigmentation disorders have not been extensively studied. In this study, we observed that AGEs, NLRP3 and IL-18 were increased in the dermis of sun-exposed skin and lesions of melasma and solar lentigo and that dermal deposition of AGEs was positively correlated with epidermal melanin levels. Additionally, we found AGEs-BSA potently activated NLRP3 inflammasome and promoted IL-18 production and secretion in cultured fibroblasts, which was mediated by RAGE/NF-κB pathway. Moreover, AGEs-BSA significantly promoted melanogenesis through increasing tyrosinase activity and expression of microphthalmia-associated transcription factor and tyrosinase, which was dependent on NLRP3 inflammasome activation and IL-18 secretion in fibroblasts. Notably, AGEs-collagen could activate NLRP3 inflammasome in fibroblasts and enhance melanogenesis. Further, we found IL-18 enhanced melanogenesis through binding to its receptor and activating p38 MAPK and ERK1/2 signaling pathways in melanocytes. Importantly, the pro-melanogenesis of AGEs-BSA was verified in ex vivo cultured skin and mice models. These findings suggest that dermal AGEs stimulate melanogenesis and contribute to the development of photoaging-associated hyperpigmentation disorders.
Collapse
Affiliation(s)
- Jiaqi Fang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China
| | - Mengting Ouyang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China
| | - Yingying Qu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China
| | - Mengyao Wang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China
| | - Xianyin Huang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China
| | - Jingjing Lan
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China
| | - Wei Lai
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China
| | - Qingfang Xu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China.
| |
Collapse
|
21
|
Flori E, Mastrofrancesco A, Mosca S, Ottaviani M, Briganti S, Cardinali G, Filoni A, Cameli N, Zaccarini M, Zouboulis CC, Picardo M. Sebocytes contribute to melasma onset. iScience 2022; 25:103871. [PMID: 35252805 PMCID: PMC8891974 DOI: 10.1016/j.isci.2022.103871] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022] Open
Abstract
Melasma is a hyperpigmentary disorder with photoaging features, whose manifestations appear on specific face areas, rich in sebaceous glands (SGs). To explore the SGs possible contribution to the onset, the expression of pro-melanogenic and inflammatory factors from the SZ95 SG cell line exposed to single or repetitive ultraviolet (UVA) radiation was evaluated. UVA up-modulated the long-lasting production of α-MSH, EDN1, b-FGF, SCF, inflammatory cytokines and mediators. Irradiated SZ95 sebocyte conditioned media increased pigmentation in melanocytes and the expression of senescence markers, pro-inflammatory cytokines, and growth factors regulating melanogenesis in fibroblasts cultures. Cocultures experiments with skin explants confirmed the role of sebocytes on melanogenesis promotion. The analysis on sebum collected from melasma patients demonstrated that in vivo sebocytes from lesional areas express the UVA-activated pathways markers observed in vitro. Our results indicate sebocytes as one of the actors in melasma pathogenesis, inducing prolonged skin cell stimulation, contributing to localized dermal aging and hyperpigmentation.
Collapse
Affiliation(s)
- Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Arianna Mastrofrancesco
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Stefania Briganti
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Angela Filoni
- Dermatology Department, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Norma Cameli
- Dermatology Department, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodore Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
22
|
Marionnet C, de Dormael R, Marat X, Roudot A, Gizard J, Planel E, Tornier C, Golebiewski C, Bastien P, Candau D, Bernerd F. Sunscreens with the New MCE Filter Cover the Whole UV Spectrum: Improved UVA1 Photoprotection In Vitro and in a Randomized Controlled Trial. JID INNOVATIONS 2022; 2:100070. [PMID: 35072138 PMCID: PMC8762479 DOI: 10.1016/j.xjidi.2021.100070] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/09/2023] Open
Abstract
Background UVA1 rays (340–400 nm) contribute to carcinogenesis, immunosuppression, hyperpigmentation, and aging. Current sunscreen formulas lack sufficient absorption in the 370–400 nm wavelengths range. Recently, a new UVA1 filter, Methoxypropylamino Cyclohexenylidene Ethoxyethylcyanoacetate (MCE) exhibiting a peak of absorption at 385 nm, was approved by the Scientific Committee on Consumer Safety for use in sunscreen products. These studies evaluated, in a three-dimensional skin model and in vivo, the protection afforded by state-of-the-art sunscreen formulations enriched with MCE. Trial design This study is a monocentric, double-blinded, randomized, and comparative trial. This study is registered at ClinicalTrials.gov with the identification number NCT04865094. Methods The efficacy of sunscreens with MCE was compared with that of reference formulas. In a three-dimensional skin model, histology, protein, and gene expression were analyzed. In the clinical trial, pigmentation was analyzed in 19 volunteers using colorimetric measurements and visual scoring. Results MCE addition in reference formulas enlarged the profile of absorption up to 400 nm; reduced UVA1-induced dermal and epidermal alterations at cellular, biochemical, and molecular levels; and decreased UVA1-induced pigmentation. Conclusions Addition of MCE absorber in sunscreen formulations leads to full coverage of UV spectrum and improved UVA1 photoprotection. The data support benefits in the long term on sun-induced consequences, especially those related to public health care issues.
Collapse
|
23
|
Tian L, Ke D, Hong Y, Zhang C, Tian D, Chen L, Zhan L, Zong S. Artesunate treatment ameliorates ultraviolet irradiation-driven skin photoaging via increasing β-catenin expression. Aging (Albany NY) 2021; 13:25325-25341. [PMID: 34887359 PMCID: PMC8714151 DOI: 10.18632/aging.203749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Artesunate, a semi-synthetic derivative of artemisinin, exerts various pharmacological activities. Nevertheless, the effects of Art on skin photoaging remain unclear. Herein, we investigated whether Art ameliorated ultraviolet-irradiated skin photoaging in HaCaT cells and mice. METHODS To construct skin photoaging cellular models, HaCaT cells were irradiated by UV (UVB, 20mJ/cm2) for 5 days. HaCaT cells were pretreated with three concentrations of Art (1, 5 and 20 μg/ml) for 2 h each day. After 5 days, cell senescence, ROS production, SOD levels, p16INK4a and β-catenin expression, proliferation and apoptosis were detected in HaCaT cells. Effects of Art on normal cells were investigated. After sh-β-catenin transfection or XAV-939 treatment, HaCaT cells were pretreated with 20 μg/ml Art and irradiated by UVB. After 5 days, skin photoaging was then observed. Furthermore, skin photoaging mouse models were established and the effects of Art and β-catenin silencing on skin photoaging were investigated. RESULTS Art treatment suppressed cell senescence, intracellular ROS production, p16INK4a expression and apoptosis and promoted proliferation and SOD and β-catenin expression in UVB irradiated HaCaT cells. But Art had no toxic effects on normal cells. Silencing β-catenin by sh-β-catenin or XAV-939 exacerbated UVB irradiation-mediated cell senescence, apoptosis, and ROS production in HaCaT cells, which was ameliorated by Art treatment. The therapeutic effects of Art on skin photoaging were also confirmed in mouse models. CONCLUSIONS These findings suggested that Art treatment alleviated UVB irradiation-driven skin photoaging through enhancing β-catenin expression, which offered novel clues for pharmacological activity of Art.
Collapse
Affiliation(s)
- Liming Tian
- Department of Dermatology, Wuhan No.1 Hospital, Hospital of Traditional Chinese and Western Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine Affiliated to Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Dan Ke
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400000, China
| | - Yi Hong
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, Hubei, China
| | - Chong Zhang
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan 430065, Hubei, China
| | - Daizhi Tian
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan 430065, Hubei, China
| | - Long Chen
- Department of Dermatology, Wuhan No.1 Hospital, Hospital of Traditional Chinese and Western Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine Affiliated to Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Lirui Zhan
- Department of Dermatology, Wuhan No.1 Hospital, Hospital of Traditional Chinese and Western Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine Affiliated to Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Shiqin Zong
- Department of Dermatology, Wuhan No.1 Hospital, Hospital of Traditional Chinese and Western Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine Affiliated to Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| |
Collapse
|
24
|
Park JH, Yoon JE, Kim YH, Kim Y, Park TJ, Kang HY. The potential skin lightening candidate, senolytic drug ABT263, for photoageing pigmentation. Br J Dermatol 2021; 186:740-742. [PMID: 34773647 DOI: 10.1111/bjd.20893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022]
Abstract
Senescent cells accumulate in several tissues during ageing, including the skin, and contribute to the functional decline of the skin via the senescence-associated secretory phenotypes (SASPs) 1 . Due to the potential negative effects of SASPs during the ageing process, drugs that selectively target senescent cells or SASPs represent an important therapeutic strategy to delay skin ageing. The selective induction of cell death specifically to kill senescent cells using drugs, referred to as senolytics, is a main approach to achieve this strategy 2 .
Collapse
Affiliation(s)
- J H Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea.,Institution of Inflamm-aging translational research center, Ajou University School of Medicine, Suwon, Korea
| | - J E Yoon
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea.,Institution of Inflamm-aging translational research center, Ajou University School of Medicine, Suwon, Korea
| | - Y H Kim
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Y Kim
- Institution of Inflamm-aging translational research center, Ajou University School of Medicine, Suwon, Korea.,Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - T J Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea.,Institution of Inflamm-aging translational research center, Ajou University School of Medicine, Suwon, Korea
| | - H Y Kang
- Institution of Inflamm-aging translational research center, Ajou University School of Medicine, Suwon, Korea.,Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
25
|
Kang HY, Lee JW, Papaccio F, Bellei B, Picardo M. Alterations of the pigmentation system in the aging process. Pigment Cell Melanoma Res 2021; 34:800-813. [PMID: 34048137 DOI: 10.1111/pcmr.12994] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/10/2023]
Abstract
Human skin aging is a natural phenomenon that results from continuous exposure to intrinsic (time, genetic factors, hormones) as well as extrinsic factors (UV exposure, pollution, tobacco). In areas that are frequently exposed to the sun, photoaging blends with the process of intrinsic aging, resulting in an increased senescent cells number and consequently accelerating the aging process. The severity of photodamage depends on constitutional factors, including skin phototype (skin color, tanning capacity), intensity, and duration of sunlight/UV exposure. Aging affects nearly every aspect of cutaneous biology, including pigmentation. Clinically, the phenotype of age pigmented skin has a mottled, uneven color, primarily due to age spots, with or without hypopigmentation. Uneven pigmentation might be attributed to the hyperactivation of melanocytes, altered distribution of pigment, and turnover. In addition to direct damage to pigment-producing cells, photodamage alters the physiological crosstalk between keratinocytes, fibroblasts, endothelial cells, and melanocytes responsible for natural pigmentation homeostasis. Interestingly, age-independent diffuse expression of senescence-associated markers in the dermal and epidermal compartment is also associated with vitiligo, suggesting that premature senescence plays an important role in the pathology.
Collapse
Affiliation(s)
- Hee Young Kang
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Jin Wook Lee
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Dermatology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Federica Papaccio
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Barbara Bellei
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
26
|
Upadhyay PR, Ho T, Abdel-Malek ZA. Participation of keratinocyte- and fibroblast-derived factors in melanocyte homeostasis, the response to UV, and pigmentary disorders. Pigment Cell Melanoma Res 2021; 34:762-776. [PMID: 33973367 DOI: 10.1111/pcmr.12985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Human epidermal melanocytes play a central role in sensing the environment and protecting the skin from the drastic effects of solar ultraviolet radiation and other environmental toxins or inflammatory agents. Melanocytes survive in the epidermis for decades, which subjects them to chronic environmental insults. Melanocytes have a poor self-renewal capacity; therefore, it is critical to ensure their survival with genomic stability. The function and survival of melanocytes is regulated by an elaborate network of paracrine factors synthesized mainly by epidermal keratinocytes and dermal fibroblasts. A symbiotic relationship exists between epidermal melanocytes and keratinocytes on the one hand, and between melanocytes and dermal fibroblasts on the other hand. Melanocytes protect epidermal keratinocytes and dermal fibroblasts from the damaging effects of solar radiation, and the latter cells synthesize biochemical mediators that maintain the homeostasis, and regulate the stress response of melanocytes. Disruption of the paracrine network results in pigmentary disorders, due to abnormal regulation of melanin synthesis, and compromise of melanocyte survival or genomic stability. This review provides an update of the current knowledge of keratinocyte- and fibroblast-derived paracrine factors and their contribution to melanocyte physiology, and how their abnormal production is involved in the pathogenesis of common pigmentary disorders.
Collapse
Affiliation(s)
- Parth R Upadhyay
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Tina Ho
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Zalfa A Abdel-Malek
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
27
|
Cellular Senescence and Inflammaging in the Skin Microenvironment. Int J Mol Sci 2021; 22:ijms22083849. [PMID: 33917737 PMCID: PMC8068194 DOI: 10.3390/ijms22083849] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 01/07/2023] Open
Abstract
Cellular senescence and aging result in a reduced ability to manage persistent types of inflammation. Thus, the chronic low-level inflammation associated with aging phenotype is called “inflammaging”. Inflammaging is not only related with age-associated chronic systemic diseases such as cardiovascular disease and diabetes, but also skin aging. As the largest organ of the body, skin is continuously exposed to external stressors such as UV radiation, air particulate matter, and human microbiome. In this review article, we present mechanisms for accumulation of senescence cells in different compartments of the skin based on cell types, and their association with skin resident immune cells to describe changes in cutaneous immunity during the aging process.
Collapse
|
28
|
Fitsiou E, Pulido T, Campisi J, Alimirah F, Demaria M. Cellular Senescence and the Senescence-Associated Secretory Phenotype as Drivers of Skin Photoaging. J Invest Dermatol 2020; 141:1119-1126. [PMID: 33349436 DOI: 10.1016/j.jid.2020.09.031] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 01/10/2023]
Abstract
Chronic exposure to UVR is known to disrupt tissue homeostasis, accelerate the onset of age-related phenotypes, and increase the risk for skin cancer-a phenomenon defined as photoaging. In this paper, we review the current knowledge on how UV exposure causes cells to prematurely enter cellular senescence. We describe the mechanisms contributing to the accumulation of senescent cells in the skin and how the persistence of cellular senescence can promote impaired regenerative capacity, chronic inflammation, and tumorigenesis associated with photoaging. We conclude by highlighting the potential of senolytic drugs in delaying the onset and progression of age-associated phenotypes in the skin.
Collapse
Affiliation(s)
- Eleni Fitsiou
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, The Netherlands
| | - Tanya Pulido
- Buck Institute for Research on Aging, Novato, California, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California, USA; Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Marco Demaria
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, The Netherlands.
| |
Collapse
|