1
|
Zhang R, Wang W, Li A, Wang H, Liu X, Fan F, Wang Y, Zhang H, Chang J, Zhang Y, Wang H, Miao L, Huang B, Yang L, Zhang Y. β-receptor blocker enhances anti-tumor immunity via inhibiting lactate-induced norepinephrine metabolism of macrophages during malignant pleural effusion. Front Immunol 2025; 15:1497468. [PMID: 39830505 PMCID: PMC11739086 DOI: 10.3389/fimmu.2024.1497468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Malignant pleural effusion (MPE) is associated with poor quality of life and mortality in patients with tumors. In clinical practice, we observed that patients with malignant pleural effusion (MPE) and concurrent heart disease exhibited a decrease in MPE volumes following treatment with β-receptor blockers for heart disease. Immunosuppressive tumor microenvironment was found to play a substantial role in the progression of MPE, and mainly attributed to tumor-associated macrophages (TAMs). However, whether β-receptor blockers improve MPE through affecting the immune microenvironment especially TAMs and the potential mechanism behind remains unclear. Methods In this study, we collected the MPE samples from MPE and heart disease patients treated with propranolol, and performed flow cytometry experiment to evaluate the effect of propranolol on MPE immune microenvironment. Then, the mechanism that how propranolol effectively reprogrammed the immunosuppressive microenvironment of MPE was conducted by the experiments of mass spectrometry, RNA-seq, flow cytometry, immunofluorescence, western blotting, etc. Lastly, to further evaluate the effect of propranolol on MPE therapy in vivo, we developed a mouse model of MPE. We administrated propranolol into MPE-bearing mice to investigate the therapy efficacy and the changes of MPE microenvironment by the experiments of computed tomography (CT) scanning, flow cytometry, etc. Results We observed that propranolol treatment in MPE patients with heart disease decreased TAM frequency and immunosuppression and enhanced anti-tumor immunity. Macrophages in MPE exhibited an immunosuppressive phenotype via the activation of norepinephrine metabolism. Subsequently, we found that lactate was increased in MPE and may contribute to an increase in TAM frequency and inhibition of anti-tumor immunity by macrophages. Additionally, lactate triggered phenylalanine/norepinephrine signaling and further induced macrophage immunosuppression in an ERK-depended way. Lastly, in the MPE mouse model, propranolol inhibited MPE development and reversed the immune microenvironment of MPE. Discussion Here, we reveal the mechanism by which lactate induces macrophage immunosuppression via activating phenylalanine/norepinephrine signaling. Our findings highlight that blocking norepinephrine signaling by β-receptor blockers is an attractive therapeutic strategy to enhance anti-tumor immunity in the context of MPE.
Collapse
Affiliation(s)
- Ru Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Weijia Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Aitian Li
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huishang Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyan Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feifei Fan
- Respiratory Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huanyu Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingxia Chang
- Respiratory Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yinyin Zhang
- Hematology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongmin Wang
- Respiratory Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijun Miao
- Respiratory Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Huang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Ghorbanalipoor S, Matsumoto K, Gross N, Heimberg L, Krause M, Veldkamp W, Magens M, Zanken J, Neuschutz KJ, De Luca DA, Kridin K, Vidarsson G, Chakievska L, Visser R, Kunzel S, Recke A, Gupta Y, Boch K, Vorobyev A, Kalies K, Manz RA, Bieber K, Ludwig RJ. High throughput screening identifies repurposable drugs for modulation of innate and acquired immune responses. J Autoimmun 2024; 148:103302. [PMID: 39163739 DOI: 10.1016/j.jaut.2024.103302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
A balanced immune system is essential to maintain adequate host defense and effective self-tolerance. While an immune system that fails to generate appropriate response will permit infections to develop, uncontrolled activation may lead to autoinflammatory or autoimmune diseases. To identify drug candidates capable of modulating immune cell functions, we screened 1200 small molecules from the Prestwick Chemical Library for their property to inhibit innate or adaptive immune responses. Our studies focused specifically on drug interactions with T cells, B cells, and polymorphonuclear leukocytes (PMNs). Candidate drugs that were validated in vitro were examined in preclinical models to determine their immunomodulatory impact in chronic inflammatory diseases, here investigated in chronic inflammatory skin diseases. Using this approach, we identified several candidate drugs that were highly effective in preclinical models of chronic inflammatory disease. For example, we found that administration of pyrvinium pamoate, an FDA-approved over-the-counter anthelmintic drug, suppressed B cell activation in vitro and halted the progression of B cell-dependent experimental pemphigoid by reducing numbers of autoantigen-specific B cell responses. In addition, in studies performed in gene-deleted mouse strains provided additional insight into the mechanisms underlying these effects, for example, the receptor-dependent actions of tamoxifen that inhibit immune-complex-mediated activation of PMNs. Collectively, our methods and findings provide a vast resource that can be used to identify drugs that may be repurposed and used to promote or inhibit cellular immune responses.
Collapse
Affiliation(s)
| | - Kazuko Matsumoto
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Natalie Gross
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Linda Heimberg
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Malin Krause
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Wendelien Veldkamp
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Moritz Magens
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Johannes Zanken
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Kerstin J Neuschutz
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - David A De Luca
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Khalaf Kridin
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Lenche Chakievska
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Remco Visser
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Sven Kunzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Andreas Recke
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Yask Gupta
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Katharina Boch
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Artem Vorobyev
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Kathrin Kalies
- Institute for Anatomy, University of Lübeck, Lübeck, Germany
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Ahmed YM, Orfali R, Hamad DS, Rateb ME, Farouk HO. Sustainable Release of Propranolol Hydrochloride Laden with Biconjugated-Ufasomes Chitosan Hydrogel Attenuates Cisplatin-Induced Sciatic Nerve Damage in In Vitro/In Vivo Evaluation. Pharmaceutics 2022; 14:1536. [PMID: 35893792 PMCID: PMC9394333 DOI: 10.3390/pharmaceutics14081536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerve injuries significantly impact patients' quality of life and poor functional recovery. Chitosan-ufasomes (CTS-UFAs) exhibit biomimetic features, making them a viable choice for developing novel transdermal delivery for neural repair. This study aimed to investigate the role of CTS-UFAs loaded with the propranolol HCl (PRO) as a model drug in enhancing sciatica in cisplatin-induced sciatic nerve damage in rats. Hence, PRO-UFAs were primed, embedding either span 20 or 60 together with oleic acid and cholesterol using a thin-film hydration process based on full factorial design (24). The influence of formulation factors on UFAs' physicochemical characteristics and the optimum formulation selection were investigated using Design-Expert® software. Based on the optimal UFA formulation, PRO-CTS-UFAs were constructed and characterized using transmission electron microscopy, stability studies, and ex vivo permeation. In vivo trials on rats with a sciatic nerve injury tested the efficacy of PRO-CTS-UFA and PRO-UFA transdermal hydrogels, PRO solution, compared to normal rats. Additionally, oxidative stress and specific apoptotic biomarkers were assessed, supported by a sciatic nerve histopathological study. PRO-UFAs and PRO-CTS-UFAs disclosed entrapment efficiency of 82.72 ± 2.33% and 85.32 ± 2.65%, a particle size of 317.22 ± 6.43 and 336.12 ± 4.9 nm, ζ potential of -62.06 ± 0.07 and 65.24 ± 0.10 mV, and accumulatively released 70.95 ± 8.14% and 64.03 ± 1.9% PRO within 6 h, respectively. Moreover, PRO-CTS-UFAs significantly restored sciatic nerve structure, inhibited the cisplatin-dependent increase in peripheral myelin 22 gene expression and MDA levels, and further re-established sciatic nerve GSH and CAT content. Furthermore, they elicited MBP re-expression, BCL-2 mild expression, and inhibited TNF-α expression. Briefly, our findings proposed that CTS-UFAs are promising to enhance PRO transdermal delivery to manage sciatic nerve damage.
Collapse
Affiliation(s)
- Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Doaa S. Hamad
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| | - Mostafa E. Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Hanan O. Farouk
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| |
Collapse
|
4
|
Ujiie H, Rosmarin D, Schön MP, Ständer S, Boch K, Metz M, Maurer M, Thaci D, Schmidt E, Cole C, Amber KT, Didona D, Hertl M, Recke A, Graßhoff H, Hackel A, Schumann A, Riemekasten G, Bieber K, Sprow G, Dan J, Zillikens D, Sezin T, Christiano AM, Wolk K, Sabat R, Kridin K, Werth VP, Ludwig RJ. Unmet Medical Needs in Chronic, Non-communicable Inflammatory Skin Diseases. Front Med (Lausanne) 2022; 9:875492. [PMID: 35755063 PMCID: PMC9218547 DOI: 10.3389/fmed.2022.875492] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
An estimated 20-25% of the population is affected by chronic, non-communicable inflammatory skin diseases. Chronic skin inflammation has many causes. Among the most frequent chronic inflammatory skin diseases are atopic dermatitis, psoriasis, urticaria, lichen planus, and hidradenitis suppurativa, driven by a complex interplay of genetics and environmental factors. Autoimmunity is another important cause of chronic skin inflammation. The autoimmune response may be mainly T cell driven, such as in alopecia areata or vitiligo, or B cell driven in chronic spontaneous urticaria, pemphigus and pemphigoid diseases. Rare causes of chronic skin inflammation are autoinflammatory diseases, or rheumatic diseases, such as cutaneous lupus erythematosus or dermatomyositis. Whilst we have seen a significant improvement in diagnosis and treatment, several challenges remain. Especially for rarer causes of chronic skin inflammation, early diagnosis is often missed because of low awareness and lack of diagnostics. Systemic immunosuppression is the treatment of choice for almost all of these diseases. Adverse events due to immunosuppression, insufficient therapeutic responses and relapses remain a challenge. For atopic dermatitis and psoriasis, a broad spectrum of innovative treatments has been developed. However, treatment responses cannot be predicted so far. Hence, development of (bio)markers allowing selection of specific medications for individual patients is needed. Given the encouraging developments during the past years, we envision that many of these challenges in the diagnosis and treatment of chronic inflammatory skin diseases will be thoroughly addressed in the future.
Collapse
Affiliation(s)
- Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - David Rosmarin
- Department of Dermatology, Tufts Medical Center, Boston, MA, United States
| | - Michael P. Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
- Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, Göttingen, Germany
| | - Sonja Ständer
- Center for Chronic Pruritus, Department of Dermatology, University Hospital Muenster, Muenster, Germany
| | - Katharina Boch
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Martin Metz
- Institute for Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, Berlin, Germany
| | - Marcus Maurer
- Institute for Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, Berlin, Germany
| | - Diamant Thaci
- Institute and Comprehensive Center for Inflammation Medicine, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Connor Cole
- Division of Dermatology, Rush University Medical Center, Chicago, IL, United States
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Kyle T. Amber
- Division of Dermatology, Rush University Medical Center, Chicago, IL, United States
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Dario Didona
- Department of Dermatology and Allergology, Philipps-Universität, Marburg, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-Universität, Marburg, Germany
| | - Andreas Recke
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Hanna Graßhoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Alexander Hackel
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Anja Schumann
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Gant Sprow
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Joshua Dan
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Tanya Sezin
- Department of Dermatology, Columbia University Medical Center, New York, NY, United States
| | - Angela M. Christiano
- Department of Dermatology, Columbia University Medical Center, New York, NY, United States
| | - Kerstin Wolk
- Psoriasis Research and Treatment Centre, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Sabat
- Psoriasis Research and Treatment Centre, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Khalaf Kridin
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Victoria P. Werth
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Ralf J. Ludwig
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Multiple modes of action mediate the therapeutic effect of IVIg in experimental epidermolysis bullosa acquisita. J Invest Dermatol 2021; 142:1552-1564.e8. [PMID: 34793820 DOI: 10.1016/j.jid.2021.08.448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/30/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022]
Abstract
Substitution of IgG in antibody deficiency or application of high-dose intravenous IgG (IVIg) in patients with autoimmunity are well-established treatments. Data on the mode of action of IVIg are, however, controversial and may differ for distinct diseases. In this study, we investigated the impact and molecular mechanism of high-dose IgG treatment in murine autoantibody-induced skin inflammation, namely, epidermolysis bullosa acquisita (EBA). EBA is caused by antibodies directed against type VII collagen (COL7) and is mediated by complement activation, release of reactive oxygen species, and proteases by myeloid cells. In murine experimental EBA the disease can be induced by injection of anti-COL7 IgG. Here, we substantiate that treatment with high-dose IgG improves clinical disease manifestation. Mechanistically, high-dose IgG reduced the amount of anti-COL7 in skin and sera, which is indicative for an FcRn-dependent mode-of-action. Furthermore, in a non-receptor-mediated fashion, high-dose IgG showed antioxidative properties by scavenging extracellular reactive oxygen species. High-dose IgG also impaired complement activation and served as substrate for proteases, both key events during EBA pathogenesis. Collectively, the non-receptor-mediated anti-inflammatory properties of high-dose IgG may explain the therapeutic benefit of IVIg treatment in skin autoimmunity.
Collapse
|
6
|
Zillikens H, Kasprick A, Osterloh C, Gross N, Radziewitz M, Hass C, Hartmann V, Behnen-Härer M, Ernst N, Boch K, Vidarsson G, Visser R, Laskay T, Yu X, Petersen F, Ludwig RJ, Bieber K. Topical Application of the PI3Kβ-Selective Small Molecule Inhibitor TGX-221 Is an Effective Treatment Option for Experimental Epidermolysis Bullosa Acquisita. Front Med (Lausanne) 2021; 8:713312. [PMID: 34557502 PMCID: PMC8452940 DOI: 10.3389/fmed.2021.713312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
Class I phosphoinositide 3-kinases (PI3K) have been implemented in pathogenesis of experimental epidermolysis bullosa acquisita (EBA), an autoimmune skin disease caused by type VII collagen (COL7) autoantibodies. Mechanistically, inhibition of specific PI3K isoforms, namely PI3Kβ or PI3Kδ, impaired immune complex (IC)-induced neutrophil activation, a key prerequisite for EBA pathogenesis. Data unrelated to EBA showed that neutrophil activation is also modulated by PI3Kα and γ, but their impact on the EBA has, so far, remained elusive. To address this and to identify potential therapeutic targets, we evaluated the impact of a panel of PI3K isoform-selective inhibitors (PI3Ki) on neutrophil function in vitro, and in pre-clinical EBA mouse models. We document that distinctive, and EBA pathogenesis-related activation-induced neutrophil in vitro functions depend on distinctive PI3K isoforms. When mice were treated with the different PI3Ki, selective blockade of PI3Kα (alpelisib), PI3Kγ (AS-604850), or PI3Kβ (TGX-221) impaired clinical disease manifestation. When applied topically, only TGX-221 impaired induction of experimental EBA. Ultimately, multiplex kinase activity profiling in the presence of disease-modifying PI3Ki identified unique signatures of different PI3K isoform-selective inhibitors on the kinome of IC-activated human neutrophils. Collectively, we here identify topical PI3Kβ inhibition as a potential therapeutic target for the treatment of EBA.
Collapse
Affiliation(s)
- Hannah Zillikens
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Colin Osterloh
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Natalie Gross
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Michael Radziewitz
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Cindy Hass
- Priority Area Asthma and Allergy, Research Center Borstel, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Veronika Hartmann
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Martina Behnen-Härer
- Department for Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Nancy Ernst
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katharina Boch
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Remco Visser
- Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Tamás Laskay
- Department for Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Xinhua Yu
- Priority Area Asthma and Allergy, Research Center Borstel, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Frank Petersen
- Priority Area Asthma and Allergy, Research Center Borstel, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
van Beek N, Zillikens D, Schmidt E. Bullous Autoimmune Dermatoses–Clinical Features, Diagnostic Evaluation, and Treatment Options. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:413-420. [PMID: 34369370 PMCID: PMC8380840 DOI: 10.3238/arztebl.m2021.0136] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/03/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bullous autoimmune dermatoses are a clinically and immunopatho - logically heterogeneous group of diseases, characterized clinically by blisters or erosions of the skin and/or mucous membranes. In Germany, their prevalence is approximately 40 000 cases nationwide, and their incidence approximately 20 new cases per million people per year. METHODS This review is based on publications that were retrieved by a selective search of the literature focusing on the current German and European guidelines. RESULTS Recent years have seen the publication of guidelines, controlled prospective clinical trials, and multicenter diagnostic studies improving both diagnosis and therapy. Specific monovalent and multivariate serological test systems and pattern analysis of tissue-bound autoantibodies allow identification of the target antigens in 80-90% of patients. This enables the precise classification of disease entities, with implications for treatment selection and disease outcome. In 2019, the anti-CD20 antibody rituximab was approved by the European Medicines Agency for the treatment of moderate and severe pemphigus vulgaris, with an ensuing marked improvement in the care of the affected patients. To treat mild and moderate bullous pemphigoid, topical clobetasol proprionate is recommended, in severe disease, combined with systemic treatment, i.e. usually (a) prednisolone p.o. at an initial dose of 0.5mg/kg/d , (b) an immunomodulant, e.g. dapsone or doxycycline, or (c) prednisolone plus an immunomodulant. CONCLUSION The early recognition and precise diagnostic evaluation of bullous autoimmune dermatoses now enables improved, often interdisciplinary treatment, in accordance with the available guidelines. Current research projects are focused on new treatment approaches, an improved understanding of the underlying pathophysiology, and further refinements of diagnostic techniques.
Collapse
Affiliation(s)
- Nina van Beek
- Department of Dermatology, Venereology, and Allergology, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, Venereology, and Allergology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, Venereology, and Allergology, University of Lübeck, Lübeck, Germany
- Lu¨beck Institute of Experimental Dermatology (LIED), University of Lu¨beck, Lu¨beck, Germany
| |
Collapse
|
8
|
Maglie R, Solimani F, Quintarelli L, Hertl M. Propranolol Off-Target: A New Therapeutic Option in Neutrophil-Dependent Dermatoses? J Invest Dermatol 2021; 140:2326-2329. [PMID: 33222759 DOI: 10.1016/j.jid.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 11/30/2022]
Abstract
Epidermolysis bullosa acquisita (EBA) is a rare subepidermal blistering dermatosis characterized by autoantibodies targeting collagen VII (COL7), an essential component of the anchoring fibrils, located in the sublamina densa of the dermal‒epidermal junction. In EBA, tissue-bound autoantibodies cause the recruitment and subsequent activation of neutrophils, which eventually lead to subepidermal blistering through the release of proteases and ROS. Thus, targeting either pathogenic IgG autoantibodies or neutrophil recruitment or activation has shown efficacy in experimental murine EBA models and patients with EBA. In this issue, Stüssel et al. demonstrate that propranolol, a nonselective β-adrenoreceptor blocker, markedly inhibits the neutrophil release of ROS induced by complexes of COL7 and/or anti-COL7 IgG in vitro and ameliorates the formation of blisters and erosions in an antibody passive-transfer model of murine EBA. These findings warrant further investigations aimed at characterizing the therapeutic efficacy of propranolol in EBA and possibly beyond.
Collapse
Affiliation(s)
- Roberto Maglie
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany; Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Farzan Solimani
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lavinia Quintarelli
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|