1
|
Maeser D, Gruener RF, Galvin R, Lee A, Koga T, Grigore FN, Suzuki Y, Furnari FB, Chen C, Huang RS. Integration of Computational Pipeline to Streamline Efficacious Drug Nomination and Biomarker Discovery in Glioblastoma. Cancers (Basel) 2024; 16:1723. [PMID: 38730673 PMCID: PMC11083606 DOI: 10.3390/cancers16091723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the deadliest, most heterogeneous, and most common brain cancer in adults. Not only is there an urgent need to identify efficacious therapeutics, but there is also a great need to pair these therapeutics with biomarkers that can help tailor treatment to the right patient populations. We built patient drug response models by integrating patient tumor transcriptome data with high-throughput cell line drug screening data as well as Bayesian networks to infer relationships between patient gene expression and drug response. Through these discovery pipelines, we identified agents of interest for GBM to be effective across five independent patient cohorts and in a mouse avatar model: among them are a number of MEK inhibitors (MEKis). We also predicted phosphoglycerate dehydrogenase enzyme (PHGDH) gene expression levels to be causally associated with MEKi efficacy, where knockdown of this gene increased tumor sensitivity to MEKi and overexpression led to MEKi resistance. Overall, our work demonstrated the power of integrating computational approaches. In doing so, we quickly nominated several drugs with varying known mechanisms of action that can efficaciously target GBM. By simultaneously identifying biomarkers with these drugs, we also provide tools to select the right patient populations for subsequent evaluation.
Collapse
Affiliation(s)
- Danielle Maeser
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert F. Gruener
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA (A.L.)
| | - Robert Galvin
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Adam Lee
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA (A.L.)
| | - Tomoyuki Koga
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA (Y.S.)
| | | | - Yuta Suzuki
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA (Y.S.)
| | - Frank B. Furnari
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
| | - Clark Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA (Y.S.)
| | - R. Stephanie Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA (A.L.)
| |
Collapse
|
2
|
Zhang L, Zhang L, Zhang C, Shi S, Cao Z, Shao C, Li J, Yang Y, Zhang X, Wang J, Li X. circTADA2A inhibited SLC38A1 expression and suppresses melanoma progression through the prevention of CNBP trans-activation. PLoS One 2024; 19:e0301356. [PMID: 38635778 PMCID: PMC11025954 DOI: 10.1371/journal.pone.0301356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND CircTADA2A has been demonstrated to play critical roles in the occurrence and development of human cancer. However, the expression pattern and biological mechanisms of circTADA2A in melanoma remains largely unknown. METHODS CircTADA2A were detected by quantitative real-time RT-PCR (qRT-PCR) and validated by Sanger sequencing. Function of circTADA2A and its protein partner in melanoma cells was investigated using RNA interference and overexpression assays. Interaction of circTADA2A, CCHC-type zinc finger nucleic acid binding protein (CNBP) and solute carrier family 38 member 1 (SLC38A1) was confirmed by RNA immunoprecipitation, RNA pull-down, and dual-luciferase reporter assay. The expression of genes and proteins were detected by qRT-PCR and western blot assays. RESULTS Data from the investigation showed that a novel circRNA (circTADA2A, hsa_circ_0043278) was markedly downregulated in melanoma cells. Functionally, circTADA2A repressed cell proliferation, migration, invasion in melanoma cells. Mechanistically, circTADA2A interacted with CNBP, acting to suppress the binding of CNBP to the SLC38A1 promoter and subsequently restrained SLC38A1 transcription, which resulting in repression of melanoma progression. CONCLUSIONS CircTADA2A suppresses melanoma progression by regulating CNBP/SLC38A1 axis, indicating a potential therapeutic target in melanoma.
Collapse
Affiliation(s)
- Longjun Zhang
- Department of Plastic Surgery, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Le Zhang
- Department of Oral Surgery, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Chi Zhang
- Department of Cataract, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Sunan Shi
- Department of Otolaryngology, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Zhilei Cao
- Department of Operation and Anaesthesia, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Changliang Shao
- Department of Optometry, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Jie Li
- Department of Operation and Anaesthesia, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Yingshun Yang
- Department of Oral Surgery, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Xi Zhang
- Department of Oral Surgery, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Jian Wang
- Department of Oral Surgery, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Xiangyun Li
- Department of Plastic Surgery, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| |
Collapse
|
3
|
Li Y, Jiang B, Chen B, Zou Y, Wang Y, Liu Q, Song B, Yu B. Integrative analysis of bulk and single-cell RNA-seq reveals the molecular characterization of the immune microenvironment and oxidative stress signature in melanoma. Heliyon 2024; 10:e28244. [PMID: 38560689 PMCID: PMC10979206 DOI: 10.1016/j.heliyon.2024.e28244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Background The immune microenvironment and oxidative stress of melanoma show significant heterogeneity, which affects tumor growth, invasion and treatment response. Single-cell and bulk RNA-seq data were used to explore the heterogeneity of the immune microenvironment and oxidative stress of melanoma. Methods The R package Seurat facilitated the analysis of the single-cell dataset, while Harmony, another R package, was employed for batch effect correction. Cell types were classified using Uniform Manifold Approximation and Projection (UMAP). The Secreted Signaling algorithm from CellChatDB.human was applied to elucidate cell-to-cell communication patterns within the single-cell data. Consensus clustering analysis for the skin cutaneous melanoma (SKCM) samples was executed with the R package ConsensusClusterPlus. To quantify immune infiltrating cells, we utilized CIBERSORT, ESTIMATE, and TIMERxCell algorithms provided by the R package Immuno-Oncology Biological Research (IOBR). Single nucleotide variant (SNV) analysis was conducted using Maftools, an R package specifically designed for this purpose. Subsequently, the expression levels of PXDN and PAPSS2 genes were assessed in melanoma tissues compared to adjacent normal tissues. Furthermore, in vitro experiments were conducted to evaluate the proliferation and reactive oxygen species expression in melanoma cells following transfection with siRNA targeting PXDN and PAPSS2. Results Malignant tumor cell populations were reclassified based on a comprehensive single-cell dataset analysis, which yielded six distinct tumor subsets. The specific marker genes identified for these subgroups were then used to interrogate the Cancer Genome Atlas Skin Cutaneous Melanoma (TCGA-SKCM) cohort, derived from bulk RNA sequencing data, resulting in the delineation of two immune molecular subtypes. Notably, patients within the cluster2 (C2) subtype exhibited a significantly more favorable prognosis compared to those in the cluster1 (C1) subtype. An alignment of immune characteristics was observed between the C2 subtype and unique immune functional tumor cell subsets. Genes differentially expressed across these subtypes were subsequently leveraged to construct a predictive risk model. In vitro investigations further revealed elevated expression levels of PXDN and PAPSS2 in melanoma tissue samples. Functional assays indicated that modulation of PXDN and PAPSS2 expression could influence the production of reactive oxygen species (ROS) and the proliferative capacity of melanoma cells. Conclusion The constructed six-gene signature can be used as an immune response and an oxidative stress marker to guide the clinical diagnosis and treatment of melanoma.
Collapse
Affiliation(s)
- Yaling Li
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Institute of Biomedical and Health Engineering, Shen Zhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, Guangdong, China
- Department of Dermatology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Bin Jiang
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Bancheng Chen
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yanfen Zou
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yan Wang
- Institute of Biomedical and Health Engineering, Shen Zhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, Guangdong, China
| | - Qian Liu
- Institute of Biomedical and Health Engineering, Shen Zhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, Guangdong, China
| | - Bing Song
- Institute of Biomedical and Health Engineering, Shen Zhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, Guangdong, China
- Department of Dermatology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Bo Yu
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| |
Collapse
|
4
|
Cai G, Zou R, yang H, Xie J, Chen X, Zheng C, Luo S, Wei N, Liu S, Chen R. Circ_0084043-miR-134-5p axis regulates PCDH9 to suppress melanoma. Front Oncol 2022; 12:891476. [PMID: 36387162 PMCID: PMC9641620 DOI: 10.3389/fonc.2022.891476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
The low survival rates, poor responses, and drug resistance of patients with melanoma make it urgent to find new therapeutic targets. This study investigated whether the circ_0084043-miR-134-5p axis regulates the antitumor effect of protocadherin 9 (PCDH9) in melanoma. Ectopic expression or knock down (KD) of PCDH9 with a lentivirus vector, we explored its effects on the proliferation, invasion, and apoptosis of melanoma and verified its regulatory effect on ras-related C3 botulinum toxin substrate 1 (RAC1), proline-rich tyrosine kinase 2 (Pyk2), Cyclin D1, matrix metalloproteinase 2 (MMP2), and MMP9. We further observed the effect of KD circ_0084043 on the malignant behavior of melanoma and studied whether circ_0084043 sponged miR-134-5p and regulated PCDH9. We found that circ_0084043 was overexpressed in melanoma and associated with the malignant phenotype. PCDH9 was poorly expressed in human melanoma tissues, and overexpression of PCDH9 inhibited melanoma progression. Quantitative real-time PCR and Western blotting results showed that overexpression of PCDH9 could downregulate RAC1, MMP2, and MMP9 and upregulate Pyk2 and Cyclin D1. Circ_0084043 KD inhibited invasion and promoted apoptosis in melanoma cells. Circ_0084043 could sponge miR-134-5p and thus indirectly regulate PCDH9. Furthermore, we discovered that inhibiting circ_0084043 had an anti–PD-Ll effect. In vivo, PCDH9 overexpression inhibited melanoma tumor growth, but PCDH9 KD promoted it. In conclusion, PCDH9, which is regulated by the circ 0084043-miR-134-5p axis, can suppress malignant biological behavior in melanoma and influence the expression levels of Pyk2, RAC1, Cyclin D1, MMP2, and MMP9.
Collapse
Affiliation(s)
- Guiyue Cai
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
- Clinical School, Guangdong Medical University, Zhanjiang, China
| | - Ruitao Zou
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
- Clinical School, Guangdong Medical University, Zhanjiang, China
| | - Huizhi yang
- Dermatology Department, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiahao Xie
- Dermatology Department, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoxuan Chen
- Clinical School, Guangdong Medical University, Zhanjiang, China
| | - Chunchan Zheng
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Sujun Luo
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Na Wei
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Shuang Liu
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Shuang Liu, ; Rongyi Chen,
| | - Rongyi Chen
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
- Clinical School, Guangdong Medical University, Zhanjiang, China
- *Correspondence: Shuang Liu, ; Rongyi Chen,
| |
Collapse
|
5
|
Abstract
Melanoma is the most lethal skin cancer that originates from the malignant transformation of melanocytes. Although melanoma has long been regarded as a cancerous malignancy with few therapeutic options, increased biological understanding and unprecedented innovations in therapies targeting mutated driver genes and immune checkpoints have substantially improved the prognosis of patients. However, the low response rate and inevitable occurrence of resistance to currently available targeted therapies have posed the obstacle in the path of melanoma management to obtain further amelioration. Therefore, it is necessary to understand the mechanisms underlying melanoma pathogenesis more comprehensively, which might lead to more substantial progress in therapeutic approaches and expand clinical options for melanoma therapy. In this review, we firstly make a brief introduction to melanoma epidemiology, clinical subtypes, risk factors, and current therapies. Then, the signal pathways orchestrating melanoma pathogenesis, including genetic mutations, key transcriptional regulators, epigenetic dysregulations, metabolic reprogramming, crucial metastasis-related signals, tumor-promoting inflammatory pathways, and pro-angiogenic factors, have been systemically reviewed and discussed. Subsequently, we outline current progresses in therapies targeting mutated driver genes and immune checkpoints, as well as the mechanisms underlying the treatment resistance. Finally, the prospects and challenges in the development of melanoma therapy, especially immunotherapy and related ongoing clinical trials, are summarized and discussed.
Collapse
Affiliation(s)
- Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|