1
|
Liu M, Lu F, Feng J. Aging and homeostasis of the hypodermis in the age-related deterioration of skin function. Cell Death Dis 2024; 15:443. [PMID: 38914551 PMCID: PMC11196735 DOI: 10.1038/s41419-024-06818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
Adipose tissues in the hypodermis, the crucial stem cell reservoir in the skin and the endocrine organ for the maintenance of skin homeostasis undergo significant changes during skin aging. Dermal white adipose tissue (dWAT) has recently been recognized as an important organ for both non-metabolic and metabolic health in skin regeneration and rejuvenation. Defective differentiation, adipogenesis, improper adipocytokine production, and immunological dissonance dysfunction in dWAT lead to age-associated clinical changes. Here, we review age-related alterations in dWAT across levels, emphasizing the mechanisms underlying the regulation of aging. We also discuss the pathogenic changes involved in age-related fat dysfunction and the unfavorable consequences of accelerated skin aging, such as chronic inflammaging, immunosenescence, delayed wound healing, and fibrosis. Research has shown that adipose aging is an early initiation event and a potential target for extending longevity. We believe that adipose tissues play an essential role in aging and form a potential therapeutic target for the treatment of age-related skin diseases. Further research is needed to improve our understanding of this phenomenon.
Collapse
Affiliation(s)
- Meiqi Liu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jingwei Feng
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
2
|
Zabransky DJ, Chhabra Y, Fane ME, Kartalia E, Leatherman JM, Hüser L, Zimmerman JW, Delitto D, Han S, Armstrong TD, Charmsaz S, Guinn S, Pramod S, Thompson ED, Hughes SJ, O'Connell J, Egan JM, Jaffee EM, Weeraratna AT. Fibroblasts in the Aged Pancreas Drive Pancreatic Cancer Progression. Cancer Res 2024; 84:1221-1236. [PMID: 38330147 DOI: 10.1158/0008-5472.can-24-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
Pancreatic cancer is more prevalent in older individuals and often carries a poorer prognosis for them. The relationship between the microenvironment and pancreatic cancer is multifactorial, and age-related changes in nonmalignant cells in the tumor microenvironment may play a key role in promoting cancer aggressiveness. Because fibroblasts have profound impacts on pancreatic cancer progression, we investigated whether age-related changes in pancreatic fibroblasts influence cancer growth and metastasis. Proteomics analysis revealed that aged fibroblasts secrete different factors than young fibroblasts, including increased growth/differentiation factor 15 (GDF-15). Treating young mice with GDF-15 enhanced tumor growth, whereas aged GDF-15 knockout mice showed reduced tumor growth. GDF-15 activated AKT, rendering tumors sensitive to AKT inhibition in an aged but not young microenvironment. These data provide evidence for how aging alters pancreatic fibroblasts and promotes tumor progression, providing potential therapeutic targets and avenues for studying pancreatic cancer while accounting for the effects of aging. SIGNIFICANCE Aged pancreatic fibroblasts secrete GDF-15 and activate AKT signaling to promote pancreatic cancer growth, highlighting the critical role of aging-mediated changes in the pancreatic cancer microenvironment in driving tumor progression. See related commentary by Isaacson et al., p. 1185.
Collapse
Affiliation(s)
- Daniel J Zabransky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yash Chhabra
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Mitchell E Fane
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Fox Chase Cancer Center, Cancer Signaling and Microenvironment Program, Philadelphia, Pennsylvania
| | - Emma Kartalia
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James M Leatherman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura Hüser
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jacquelyn W Zimmerman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel Delitto
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Song Han
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Todd D Armstrong
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Soren Charmsaz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Samantha Guinn
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sneha Pramod
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Elizabeth D Thompson
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven J Hughes
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Jennifer O'Connell
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Johns Hopkins Cancer Convergence Institute, Baltimore, Maryland
| | - Ashani T Weeraratna
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
3
|
Chauhan A, Gangopadhyay S, Koshta K, Singh S, Singh D, Srivastava V. Activated fibroblasts modify keratinocyte stem niche through TET1 and IL-6 to promote their rapid transformation in a mouse model of prenatal arsenic exposure. Sci Rep 2024; 14:6904. [PMID: 38519574 PMCID: PMC10959921 DOI: 10.1038/s41598-024-56547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Early life exposure to environmental pollutants such as arsenic (As) can increase the risk of cancers in the offspring. In an earlier study, we showed that only prenatal As exposure significantly increases epidermal stem cell proliferation and accelerates skin tumorigenesis in BALB/c mouse offspring. In the present work, we have examined the role of As-conditioned dermal fibroblasts (DFs) in creating pro-tumorigenic niches for Keratinocyte stem cells (KSCs) in the offspring. DFs isolated from prenatally exposed animals showed increased levels of activation markers (α-SMA, Fibronectin, Collagen IV), induction of ten-eleven translocation methylcytosine dioxygenase 1(TET1), and secreted high levels of niche modifying IL-6. This led to enhanced proliferation, migration, and survival of KSCs. Increased IL-6 production in As-conditioned fibroblast was driven through TET1 mediated 5-mC to 5-hmC conversion at -698/-526 and -856/-679 region on its promoter. IL-6 further acted through downstream activation of JAK2-STAT3 signaling, promoting epithelial-to-mesenchymal transition (EMT) in KSCs. Inhibition of pSTAT3 induced by IL-6 reduced the EMT process in KSCs resulting in a significant decrease in their proliferation, migration, and colony formation. Our results indicate that IL-6 produced by prenatally conditioned fibroblasts plays a major role in regulating the KSC niche and promoting skin tumor development in As-exposed offspring.
Collapse
Affiliation(s)
- Anchal Chauhan
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Siddhartha Gangopadhyay
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Kavita Koshta
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Sukhveer Singh
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Dhirendra Singh
- Animal Facility, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Vikas Srivastava
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
4
|
D’Arino A, Caputo S, Eibenschutz L, Piemonte P, Buccini P, Frascione P, Bellei B. Skin Cancer Microenvironment: What We Can Learn from Skin Aging? Int J Mol Sci 2023; 24:14043. [PMID: 37762344 PMCID: PMC10531546 DOI: 10.3390/ijms241814043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is a natural intrinsic process associated with the loss of fibrous tissue, a slower cell turnover, and a reduction in immune system competence. In the skin, the continuous exposition of environmental factors superimposes extrinsic damage, mainly due to ultraviolet radiation causing photoaging. Although not usually considered a pathogenic event, photoaging affects cutaneous biology, increasing the risk of skin carcinogenesis. At the cellular level, aging is typified by the rise of senescence cells a condition characterized by reduced or absent capacity to proliferate and aberrant hyper-secretory activity. Senescence has a double-edged sword in cancer biology given that senescence prevents the uncontrolled proliferation of damaged cells and favors their clearance by paracrine secretion. Nevertheless, the cumulative insults and the poor clearance of injured cells in the elderly increase cancer incidence. However, there are not conclusive data proving that aged skin represents a permissive milieu for tumor onset. On the other hand, tumor cells are capable of activating resident fibroblasts onto a pro-tumorigenic phenotype resembling those of senescent fibroblasts suggesting that aged fibroblasts might facilitate cancer progression. This review discusses changes that occur during aging that can prime neoplasm or increase the aggressiveness of melanoma and non-melanoma skin cancer.
Collapse
Affiliation(s)
- Andrea D’Arino
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Silvia Caputo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Laura Eibenschutz
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Paolo Piemonte
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Pierluigi Buccini
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Pasquale Frascione
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| |
Collapse
|
5
|
Giroud J, Bouriez I, Paulus H, Pourtier A, Debacq-Chainiaux F, Pluquet O. Exploring the Communication of the SASP: Dynamic, Interactive, and Adaptive Effects on the Microenvironment. Int J Mol Sci 2023; 24:10788. [PMID: 37445973 DOI: 10.3390/ijms241310788] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular senescence is a complex cell state that can occur during physiological ageing or after exposure to stress signals, regardless of age. It is a dynamic process that continuously evolves in a context-dependent manner. Senescent cells interact with their microenvironment by producing a heterogenous and plastic secretome referred to as the senescence-associated secretory phenotype (SASP). Hence, understanding the cross-talk between SASP and the microenvironment can be challenging due to the complexity of signal exchanges. In this review, we first aim to update the definition of senescence and its associated biomarkers from its discovery to the present day. We detail the regulatory mechanisms involved in the expression of SASP at multiple levels and develop how SASP can orchestrate microenvironment modifications, by focusing on extracellular matrix modifications, neighboring cells' fate, and intercellular communications. We present hypotheses on how these microenvironmental events may affect dynamic changes in SASP composition in return. Finally, we discuss the various existing approaches to targeting SASP and clarify what is currently known about the biological effects of these modified SASPs on the cellular environment.
Collapse
Affiliation(s)
- Joëlle Giroud
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Inès Bouriez
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Hugo Paulus
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Albin Pourtier
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Florence Debacq-Chainiaux
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Olivier Pluquet
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| |
Collapse
|
6
|
Anerillas C, Altés G, Gorospe M. MAPKs in the early steps of senescence implemEMTation. Front Cell Dev Biol 2023; 11:1083401. [PMID: 37009481 PMCID: PMC10060890 DOI: 10.3389/fcell.2023.1083401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Evidence is accumulating that the earliest stages of the DNA damage response can direct cells toward senescence instead of other cell fates. In particular, tightly regulated signaling through Mitogen-Activated Protein Kinases (MAPKs) in early senescence can lead to a sustained pro-survival program and suppress a pro-apoptotic program. Importantly, an epithelial-to-mesenchymal Transition (EMT)-like program appears essential for preventing apoptosis and favoring senescence following DNA damage. In this review, we discuss how MAPKs might influence EMT features to promote a senescent phenotype that increases cell survival at the detriment of tissue function.
Collapse
|
7
|
Abstract
Cellular senescence is characterized by cell cycle arrest, resistance to apoptosis, and a senescence-associated secretory phenotype (SASP) whereby cells secrete pro-inflammatory and tissue-remodeling factors. Given that the SASP exacerbates age-associated pathologies, some aging interventions aim at selectively eliminating senescent cells. In this study, a drug library screen uncovered TrkB (NTRK2) inhibitors capable of triggering apoptosis of several senescent, but not proliferating, human cells. Senescent cells expressed high levels of TrkB, which supported senescent cell viability, and secreted the TrkB ligand BDNF. The reduced viability of senescent cells after ablating BDNF signaling suggested an autocrine function for TrkB and BDNF, which activated ERK5 and elevated BCL2L2 levels, favoring senescent cell survival. Treatment with TrkB inhibitors reduced the accumulation of senescent cells in aged mouse organs. We propose that the activation of TrkB by SASP factor BDNF promotes cell survival and could be exploited therapeutically to reduce the senescent-cell burden.
Collapse
|
8
|
Dellambra E, Cordisco S, Delle Monache F, Bondanza S, Teson M, Nicodemi EM, Didona B, Condorelli AG, Camerino G, Castiglia D, Guerra L. RSPO1-mutated keratinocytes from palmoplantar keratoderma display impaired differentiation, alteration of cell-cell adhesion, EMT-like phenotype and invasiveness properties: implications for squamous cell carcinoma susceptibility in patients with 46XX disorder of sexual development. Orphanet J Rare Dis 2022; 17:275. [PMID: 35854363 PMCID: PMC9295301 DOI: 10.1186/s13023-022-02434-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Background Secreted R-spondin (RSPO) proteins play a key role in reproductive organ development, epithelial stem cell renewal and cancer induction by reinforcing canonical Wnt signaling. We have previously reported that palmoplantar keratoderma (PPK), predisposition to cutaneous squamous cell carcinoma (SCC) development and sex reversal segregate as autosomal recessive trait in patients carrying RSPO1-mutations. Although our previous findings suggested that RSPO1 secreted from fibroblasts regulates keratinocyte growth or differentiation, the role of this protein in the epidermis remains largely unexplored. Our study was aimed at expanding the phenotypic, molecular and functional characterization of RSPO1-mutated skin and keratinocytes. Results Cultured primary keratinocytes from PPK skin of a RSPO1-mutated XX-sex reversed patient displayed highly impaired differentiation and epithelial-mesenchymal transition (EMT)-like phenotype. Interestingly, RSPO1-mutated PPK skin expressed markers of increased proliferation, dedifferentiation and altered cell–cell adhesion. Furthermore, all these signs were more evident in SCC specimens of the patient. Cultured PPK patient’s keratinocytes exhibited increased expression of cell‒matrix adhesion proteins and extracellular matrix remodeling enzymes. Moreover, they showed invasiveness properties in an organotypic skin model in presence of PPK fibroblasts, which behave like cancer-associated fibroblasts. However, the co-culture with normal fibroblasts or treatment with the recombinant RSPO1 protein did not revert or reduce the EMT-like phenotype and invasion capability of PPK keratinocytes. Notably, RSPO1-mutated PPK fibroblasts induced a hyperproliferative and dedifferentiated phenotype of age-matched normal control plantar keratinocytes. Wnt signaling has a key role in both PPK promotion and SCC development. Accordingly, Wnt mediators were differentially expressed in both PPK keratinocytes and skin specimens of RSPO1-mutated patient compared to control. Conclusions Altogether our data indicate that the absence of RSPO1 in patients with 46XX disorder of sexual development affects the skin microenvironment and epidermal integrity, thus contributing to the risk of SCC tumorigenesis in palmoplantar regions exposed to major frictional stresses. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02434-2.
Collapse
Affiliation(s)
- Elena Dellambra
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy.
| | - Sonia Cordisco
- Advent SRL, Via Pontina KM 30.600, Pomezia, Italy.,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Delle Monache
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy
| | - Sergio Bondanza
- Center for Regenerative Medicine Stefano Ferrari, Holostem Terapie Avanzate S.R.L., 41125, Modena, Italy
| | - Massimo Teson
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy
| | - Ezio Maria Nicodemi
- Plastic Surgery Division, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Biagio Didona
- Rare Skin Disease Center, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Angelo Giuseppe Condorelli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Giovanna Camerino
- Dipartimento di Patologia Umana ed Ereditaria, Sezione di Biologia Generale e Genetica Medica, Università Di Pavia, Via Forlanini 14, 27100, Pavia, Italy
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy
| | - Liliana Guerra
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy
| |
Collapse
|
9
|
Concomitant attenuation of HMGCR expression and activity enhances the growth inhibitory effect of atorvastatin on TGF-β-treated epithelial cancer cells. Sci Rep 2021; 11:12763. [PMID: 34140545 PMCID: PMC8211663 DOI: 10.1038/s41598-021-91928-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) in primary tumor cells is a key prerequisite for metastasis initiation. Statins, cholesterol-lowering drugs, can delay metastasis formation in vivo and attenuate the growth and proliferation of tumor cells in vitro. The latter effect is stronger in tumor cells with a mesenchymal-like phenotype than in those with an epithelial one. However, the effect of statins on epithelial cancer cells treated with EMT-inducing growth factors such as transforming growth factor-β (TGF-β) remains unclear. Here, we examined the effect of atorvastatin on two epithelial cancer cell lines following TGF-β treatment. Atorvastatin-induced growth inhibition was stronger in TGF-β-treated cells than in cells not thusly treated. Moreover, treatment of cells with atorvastatin prior to TGF-β treatment enhanced this effect, which was further potentiated by the simultaneous reduction in the expression of the statin target enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). Dual pharmacological targeting of HMGCR can thus strongly inhibit the growth and proliferation of epithelial cancer cells treated with TGF-β and may also improve statin therapy-mediated attenuation of metastasis formation in vivo.
Collapse
|
10
|
Fania L, Didona D, Di Pietro FR, Verkhovskaia S, Morese R, Paolino G, Donati M, Ricci F, Coco V, Ricci F, Candi E, Abeni D, Dellambra E. Cutaneous Squamous Cell Carcinoma: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2021; 9:171. [PMID: 33572373 PMCID: PMC7916193 DOI: 10.3390/biomedicines9020171] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC), a non-melanoma skin cancer, is a keratinocyte carcinoma representing one of the most common cancers with an increasing incidence. cSCC could be in situ (e.g., Bowen's disease) or an invasive form. A significant cSCC risk factor is advanced age, together with cumulative sun exposure, fair skin, prolonged immunosuppression, and previous skin cancer diagnoses. Although most cSCCs can be treated by surgery, a fraction of them recur and metastasize, leading to death. cSCC could arise de novo or be the result of a progression of the actinic keratosis, an in situ carcinoma. The multistage process of cSCC development and progression is characterized by mutations in the genes involved in epidermal homeostasis and by several alterations, such as epigenetic modifications, viral infections, or microenvironmental changes. Thus, cSCC development is a gradual process with several histological- and pathological-defined stages. Dermoscopy and reflectance confocal microscopy enhanced the diagnostic accuracy of cSCC. Surgical excision is the first-line treatment for invasive cSCC. Moreover, radiotherapy may be considered as a primary treatment in patients not candidates for surgery. Extensive studies of cSCC pathogenic mechanisms identified several pharmaceutical targets and allowed the development of new systemic therapies, including immunotherapy with immune checkpoint inhibitors, such as Cemiplimab, and epidermal growth factor receptor inhibitors for metastatic and locally advanced cSCC. Furthermore, the implementation of prevention measures has been useful in patient management.
Collapse
Affiliation(s)
- Luca Fania
- IDI-IRCCS, Dermatological Research Hospital, via di Monti di Creta 104, 00167 Rome, Italy; (F.R.D.P.); (S.V.); (R.M.); (F.R.); (F.R.); (E.C.); (D.A.); (E.D.)
| | - Dario Didona
- Department of Dermatology and Allergology, Philipps University, 35043 Marburg, Germany;
| | - Francesca Romana Di Pietro
- IDI-IRCCS, Dermatological Research Hospital, via di Monti di Creta 104, 00167 Rome, Italy; (F.R.D.P.); (S.V.); (R.M.); (F.R.); (F.R.); (E.C.); (D.A.); (E.D.)
| | - Sofia Verkhovskaia
- IDI-IRCCS, Dermatological Research Hospital, via di Monti di Creta 104, 00167 Rome, Italy; (F.R.D.P.); (S.V.); (R.M.); (F.R.); (F.R.); (E.C.); (D.A.); (E.D.)
| | - Roberto Morese
- IDI-IRCCS, Dermatological Research Hospital, via di Monti di Creta 104, 00167 Rome, Italy; (F.R.D.P.); (S.V.); (R.M.); (F.R.); (F.R.); (E.C.); (D.A.); (E.D.)
| | - Giovanni Paolino
- Unit of Dermatology, IRCCS Ospedale San Raffaele, 20132 Milano, Italy;
| | - Michele Donati
- Department of Pathology, University Hospital Campus Bio-Medico, 00128 Rome, Italy;
- Sikl’s Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, 30166 Pilsen, Czech Republic
| | - Francesca Ricci
- IDI-IRCCS, Dermatological Research Hospital, via di Monti di Creta 104, 00167 Rome, Italy; (F.R.D.P.); (S.V.); (R.M.); (F.R.); (F.R.); (E.C.); (D.A.); (E.D.)
| | - Valeria Coco
- Institute of Dermatology, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, 00168 Rome, Italy;
| | - Francesco Ricci
- IDI-IRCCS, Dermatological Research Hospital, via di Monti di Creta 104, 00167 Rome, Italy; (F.R.D.P.); (S.V.); (R.M.); (F.R.); (F.R.); (E.C.); (D.A.); (E.D.)
| | - Eleonora Candi
- IDI-IRCCS, Dermatological Research Hospital, via di Monti di Creta 104, 00167 Rome, Italy; (F.R.D.P.); (S.V.); (R.M.); (F.R.); (F.R.); (E.C.); (D.A.); (E.D.)
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Damiano Abeni
- IDI-IRCCS, Dermatological Research Hospital, via di Monti di Creta 104, 00167 Rome, Italy; (F.R.D.P.); (S.V.); (R.M.); (F.R.); (F.R.); (E.C.); (D.A.); (E.D.)
| | - Elena Dellambra
- IDI-IRCCS, Dermatological Research Hospital, via di Monti di Creta 104, 00167 Rome, Italy; (F.R.D.P.); (S.V.); (R.M.); (F.R.); (F.R.); (E.C.); (D.A.); (E.D.)
| |
Collapse
|