1
|
Fujimura T, Yoshino K, Kato H, Fukushima S, Ishizuki S, Otsuka A, Matsushita S, Amagai R, Muto Y, Yamazaki E, Kambayashi Y, Yahata T, Miyata T, Fujisawa Y, Asano Y. A phase II multicentre study of plasminogen activator inhibitor-1 inhibitor (TM5614) plus nivolumab for treating anti-programmed cell death 1 antibody-refractory malignant melanoma: TM5614-MM trial. Br J Dermatol 2024; 191:691-697. [PMID: 38833158 DOI: 10.1093/bjd/ljae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Anti-programmed cell death 1 antibodies (PD-1 Abs) are widely used for advanced melanoma, but information on the efficacy of anti-PD-1 Abs is limited in the Asian population. There remains an unmet need to improve the therapeutic effects of anti-PD-1 Ab-treatment, particularly in patients with melanoma who are refractory to anti-PD-1 Abs. The aim of this study was to evaluate anti-PD-1 Ab-treatment in combination with TM5614 (a plasminogen activator inhibitor-1 inhibitor) in patients with unresectable melanoma. METHODS The TM5614-MM study was a multicentre, open-label, single-arm, phase II clinical trial to evaluate the efficacy and safety of nivolumab in combination with TM5614 in patients with advanced, unresectable malignant melanoma recruited at seven Japanese institutes between 13 September 2021 and 31 March 2023. Patients with metastatic or unresectable melanoma previously treated with anti-PD-1 Abs were enrolled. Nivolumab 480 mg was administered intravenously every 4 weeks for 8 weeks, while TM5614 was administered orally at a dose of 120 mg (0-4 weeks) and 180 mg once daily (5-8 weeks). The primary endpoint was the overall response rate after 8 weeks of concomitant use of TM5614. RESULTS Thirty-nine patients were enrolled, and 34 patients were included in the anti-PD-1 Ab-refractory cohort. The overall response rate at 8 weeks was 25.9% (95% confidence interval 12.9-44.9%, P = 0.027) in 27 patients who were anti-PD-1 Ab-refractory based on investigator assessment in the protocol per set cohort. Seven patients discontinued treatment owing to progressive disease or adverse events. Treatment-related grade 3 or higher adverse events occurred in 3 of 39 patients (7.7%) in the intention-to-treat cohort. CONCLUSIONS TM5614 in combination with nivolumab is well tolerated and effective in anti-PD-1 Ab-refractory unresectable melanoma.
Collapse
Affiliation(s)
- Taku Fujimura
- Department of Dermatology, Tohoku University School of Medicine, Sendai, Japan
| | - Koji Yoshino
- Department of Dermato-Oncology/Dermatology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo,Japan
- Department of Dermato-Oncology/Dermatology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroshi Kato
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shoichiro Ishizuki
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kindai University Hospital, Osaka, Japan
| | - Shigeto Matsushita
- Department of Dermato-Oncology/Dermatology, NHO Kagoshima Medical Center, Kagoshima, Japan
| | - Ryo Amagai
- Department of Dermatology, Tohoku University School of Medicine, Sendai, Japan
| | - Yusuke Muto
- Department of Dermatology, Tohoku University School of Medicine, Sendai, Japan
| | - Emi Yamazaki
- Department of Dermatology, Tohoku University School of Medicine, Sendai, Japan
| | - Yumi Kambayashi
- Department of Dermatology, Tohoku University School of Medicine, Sendai, Japan
| | - Takashi Yahata
- Translational Molecular Therapeutic Laboratory, Division of Host Defence Mechanism, Tokai University School of Medicine, Isehara,Japan
| | - Toshio Miyata
- Department of Molecular Medicine and Therapy, Tohoku University School of Medicine, Sendai, Japan
| | - Yasuhiro Fujisawa
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Dermatology, Ehime University, Matsuyama, Japan
| | - Yoshihide Asano
- Department of Dermatology, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Wofford W, Kim J, Kim D, Janneh AH, Lee HG, Atilgan FC, Oleinik N, Kassir MF, Saatci O, Chakraborty P, Tokat UM, Gencer S, Howley B, Howe P, Mehrotra S, Sahin O, Ogretmen B. Alterations of ceramide synthesis induce PD-L1 internalization and signaling to regulate tumor metastasis and immunotherapy response. Cell Rep 2024; 43:114532. [PMID: 39046874 PMCID: PMC11404065 DOI: 10.1016/j.celrep.2024.114532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Programmed death ligand 1, PD-L1 (CD274), facilitates immune evasion and exerts pro-survival functions in cancer cells. Here, we report a mechanism whereby internalization of PD-L1 in response to alterations of bioactive lipid/ceramide metabolism by ceramide synthase 4 (CerS4) induces sonic hedgehog (Shh) and transforming growth factor β receptor signaling to enhance tumor metastasis in triple-negative breast cancers (TNBCs), exhibiting immunotherapy resistance. Mechanistically, data showed that internalized PD-L1 interacts with an RNA-binding protein, caprin-1, to stabilize Shh/TGFBR1/Wnt mRNAs to induce β-catenin signaling and TNBC growth/metastasis, consistent with increased infiltration of FoxP3+ regulatory T cells and resistance to immunotherapy. While mammary tumors developed in MMTV-PyMT/CerS4-/- were highly metastatic, targeting the Shh/PD-L1 axis using sonidegib and anti-PD-L1 antibody vastly decreased tumor growth and metastasis, consistent with the inhibition of PD-L1 internalization and Shh/Wnt signaling, restoring anti-tumor immune response. These data, validated in clinical samples and databases, provide a mechanism-based therapeutic strategy to improve immunotherapy responses in metastatic TNBCs.
Collapse
Affiliation(s)
- Wyatt Wofford
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Jisun Kim
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Dosung Kim
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Alhaji H Janneh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Han Gyul Lee
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - F Cansu Atilgan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Mohamed Faisal Kassir
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Ozge Saatci
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Paramita Chakraborty
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Unal Metin Tokat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Salih Gencer
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Istanbul Medipol University, Health Science and Technologies Research Institute (SABİTA), Cancer Research Center, Istanbul, Turkey
| | - Breege Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Philip Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| |
Collapse
|
3
|
Cai Q, Yang J, Shen H, Xu W. Cancer-associated adipocytes in the ovarian cancer microenvironment. Am J Cancer Res 2024; 14:3259-3279. [PMID: 39113876 PMCID: PMC11301307 DOI: 10.62347/xzri9189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
The tumor microenvironment (TME) plays a critical role in high energy metabolism during tumorigenesis, progression and metastasis. Among them, adipocytes, as an important component of the TME, can transform into cancer-associated adipocytes (CAAs) through dedifferentiation via interactions with tumor cells. These CAAs provide nutrients, growth factors, cytokines and metabolites to the tumor and later transdifferentiate into other stromal cells at a later stage to alter tumor growth, metastasis and the drug response and ultimately influence the treatment and prognosis of ovarian cancer. This review outlines the physiological functions of CAAs and discusses the progress in the use of CAAs as therapeutic targets in ovarian cancer.
Collapse
Affiliation(s)
- Qiuling Cai
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Jing Yang
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Huiling Shen
- Department of Oncology, The First Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Wenlin Xu
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| |
Collapse
|
4
|
Ibrahim AA, Fujimura T, Uno T, Terada T, Hirano KI, Hosokawa H, Ohta A, Miyata T, Ando K, Yahata T. Plasminogen activator inhibitor-1 promotes immune evasion in tumors by facilitating the expression of programmed cell death-ligand 1. Front Immunol 2024; 15:1365894. [PMID: 38779680 PMCID: PMC11109370 DOI: 10.3389/fimmu.2024.1365894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Background Increased levels of plasminogen activator inhibitor-1 (PAI-1) in tumors have been found to correlate with poor clinical outcomes in patients with cancer. Although abundant data support the involvement of PAI-1 in cancer progression, whether PAI-1 contributes to tumor immune surveillance remains unclear. The purposes of this study are to determine whether PAI-1 regulates the expression of immune checkpoint molecules to suppresses the immune response to cancer and demonstrate the potential of PAI-1 inhibition for cancer therapy. Methods The effects of PAI-1 on the expression of the immune checkpoint molecule programmed cell death ligand 1 (PD-L1) were investigated in several human and murine tumor cell lines. In addition, we generated tumor-bearing mice and evaluated the effects of a PAI-1 inhibitor on tumor progression or on the tumor infiltration of cells involved in tumor immunity either alone or in combination with immune checkpoint inhibitors. Results PAI-1 induces PD-L1 expression through the JAK/STAT signaling pathway in several types of tumor cells and surrounding cells. Blockade of PAI-1 impedes PD-L1 induction in tumor cells, significantly reducing the abundance of immunosuppressive cells at the tumor site and increasing cytotoxic T-cell infiltration, ultimately leading to tumor regression. The anti-tumor effect elicited by the PAI-1 inhibitor is abolished in immunodeficient mice, suggesting that PAI-1 blockade induces tumor regression by stimulating the immune system. Moreover, combining a PAI-1 inhibitor with an immune checkpoint inhibitor significantly increases tumor regression. Conclusions PAI-1 protects tumors from immune surveillance by increasing PD-L1 expression; hence, therapeutic PAI-1 blockade may prove valuable in treating malignant tumors.
Collapse
Affiliation(s)
- Abd Aziz Ibrahim
- Translational Molecular Therapeutics Laboratory, Division of Host Defense Mechanism, Tokai University School of Medicine, Kanagawa, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoko Uno
- Department of Hematology and Oncology, Tokai University School of Medicine, Kanagawa, Japan
| | - Tomoya Terada
- Translational Molecular Therapeutics Laboratory, Division of Host Defense Mechanism, Tokai University School of Medicine, Kanagawa, Japan
| | - Ken-ichi Hirano
- Department of Immunology, Tokai University School of Medicine, Kanagawa, Japan
| | - Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Kanagawa, Japan
| | - Akio Ohta
- Department of Immunology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Toshio Miyata
- Department of Molecular Medicine and Therapy, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kiyoshi Ando
- Department of Hematology and Oncology, Tokai University School of Medicine, Kanagawa, Japan
| | - Takashi Yahata
- Translational Molecular Therapeutics Laboratory, Division of Host Defense Mechanism, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
5
|
Fujimura T, Ohuchi K, Ikawa T, Kambayashi Y, Amagai R, Furudate S, Asano Y. Possible effects of plasminogen activator inhibitor-1 on promoting angiogenesis through matrix metalloproteinase 9 in advanced mycosis fungoides. Hematol Oncol 2024; 42:e3244. [PMID: 38287534 DOI: 10.1002/hon.3244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 12/07/2023] [Indexed: 01/31/2024]
Abstract
Mycosis fungoides (MF) progresses slowly before advancing to skin tumors followed by lymph node and visceral involvement. Among MF progression, stage IIB is an initial time point of tumor formation in MF. Since MF in tumor stage possess abundant blood vessels, it is important to evaluate the pro-angiogenic factors before and after MF in stage IIB. In this report, we investigated pro-angiogenic soluble factors in MF patients, as well as its pro-angiogenetic effects on tumor cells and stroma cells. We first evaluated the serum levels of pro-angiogenic factors in 9 MF patients without tumor formation and 8 MF patients with tumor formation. Among them, the serum MMP-9 and plasminogen activator inhibitors 1 (PAI-1) was significantly increased in MF with tumor formation compared in MF without tumor formation, leading to favorable formation of human dermal microvascular endothelial cells tube networks. Moreover, PAI-1 stimulation significantly increased the mRNA expression and protein production MMP-9 on monocytes derived M2 macrophages and HUT-78. Furthermore, since MMP-9 production from tumor cells as well as stromal cells is suppressed by bexarotene, we evaluate the baseline serum pro-angiogenic factors including MMP-9 in 16 patients with advanced cutaneous T cell lymphoma treated with bexarotene. The serum levels of MMP-2 and MMP-9 was significantly increased in bexarotene non-responded patients compared to responded patients. Our present study suggested the significance of MMP-9 and PAI-1 for the progression of MF stage toward to the tumor stage, and could be a therapeutic target in future.
Collapse
Affiliation(s)
- Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kentaro Ohuchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Ikawa
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yumi Kambayashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Amagai
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sadanori Furudate
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihide Asano
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
6
|
Zhang X, Ma W, Xue W, Wang Y, Chen P, Li Q, Li YY, Hu X, Zhao Y, Zhou H. miR-181a plays the tumor-suppressor role in chronic myeloid leukemia CD34 + cells partially via SERPINE1. Cell Mol Life Sci 2023; 81:10. [PMID: 38103082 PMCID: PMC10725356 DOI: 10.1007/s00018-023-05036-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/07/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023]
Abstract
The formation of the BCR-ABL fusion gene drives human chronic myeloid leukemia (CML). The last 2 decades have witnessed that specific tyrosine kinase inhibitors (TKIs, e.g., imatinib mesylate, IM) against ABL1 improve disease treatment, although some patients still suffer from relapse and TKI resistance. Therefore, a better understanding of the molecular pathology of CML is still urgently needed. miR-181a-5p (miR-181a) acts as a tumor suppressor in CML; however, the molecular mechanism of miR-181a in CML stem/progenitor cells remains elusive. Herein, we showed that miR-181a inhibited the growth of CML CD34+ cells, including the quiescent subset, and sensitized them to IM treatment, while miR-181a inhibition by a sponge sequence collaborated with BCR-ABL to enhance the growth of normal CD34+ cells. Transcriptome data and biochemical analysis revealed that SERPINE1 was a bona fide and critical target of miR-181a, which deepened the understanding of the regulatory mechanism of SERPINE1. Genetic and pharmacological inhibition of SERPINE1 led to apoptosis mainly mediated by caspase-9 activation. The dual inhibition of SERPINE1 and BCR-ABL exhibited a significantly stronger inhibitory effect than a single agent. Taken together, this study demonstrates that a novel miR-181a/SERPINE1 axis modulates CML stem/progenitor cells, which likely provides an important approach to override TKI resistance.
Collapse
Affiliation(s)
- Xiuyan Zhang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China.
- The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, 215006, China.
| | - Wenjuan Ma
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Wen Xue
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
- The Affiliated Nanhua Hospital, Department of Clinical Research Institute, Hengyang Medical School, University of South China, Hengyang, 421002, China
| | - Yu Wang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
- Jianhu Country People's Hospital, Yancheng, 224700, China
| | - Pan Chen
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Quanxue Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yuan-Yuan Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Xiaohui Hu
- The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, 215006, China.
- National Clinical Research Center for Hematologic Diseases, Suzhou, 215006, China.
| | - Yun Zhao
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China.
- National Clinical Research Center for Hematologic Diseases, Suzhou, 215006, China.
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, 215123, China.
| | - Haixia Zhou
- The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, 215006, China.
- National Clinical Research Center for Hematologic Diseases, Suzhou, 215006, China.
| |
Collapse
|
7
|
Samarkina A, Youssef MK, Ostano P, Ghosh S, Ma M, Tassone B, Proust T, Chiorino G, Levesque MP, Goruppi S, Dotto GP. Androgen receptor is a determinant of melanoma targeted drug resistance. Nat Commun 2023; 14:6498. [PMID: 37838724 PMCID: PMC10576812 DOI: 10.1038/s41467-023-42239-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/02/2023] [Indexed: 10/16/2023] Open
Abstract
Melanoma provides a primary benchmark for targeted drug therapy. Most melanomas with BRAFV600 mutations regress in response to BRAF/MEK inhibitors (BRAFi/MEKi). However, nearly all relapse within the first two years, and there is a connection between BRAFi/MEKi-resistance and poor response to immune checkpoint therapy. We reported that androgen receptor (AR) activity is required for melanoma cell proliferation and tumorigenesis. We show here that AR expression is markedly increased in BRAFi-resistant melanoma cells, and in sensitive cells soon after BRAFi exposure. Increased AR expression is sufficient to render melanoma cells BRAFi-resistant, eliciting transcriptional changes of BRAFi-resistant subpopulations, including elevated EGFR and SERPINE1 expression, of likely clinical significance. Inhibition of AR expression or activity blunts changes in gene expression and suppresses proliferation and tumorigenesis of BRAFi-resistant melanoma cells, promoting clusters of CD8+ T cells infiltration and cancer cells killing. Our findings point to targeting AR as possible co-therapeutical approach in melanoma treatment.
Collapse
Affiliation(s)
| | | | - Paola Ostano
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, Italy
| | - Soumitra Ghosh
- ORL service and Personalized Cancer Prevention Program, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Min Ma
- Department of Immunobiology, University of Lausanne, Épalinges, Switzerland
| | - Beatrice Tassone
- Department of Immunobiology, University of Lausanne, Épalinges, Switzerland
| | - Tatiana Proust
- Department of Immunobiology, University of Lausanne, Épalinges, Switzerland
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, Italy
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Sandro Goruppi
- Cutaneous Biology Research Center, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Charlestown, MA, USA
| | - Gian Paolo Dotto
- Department of Immunobiology, University of Lausanne, Épalinges, Switzerland.
- ORL service and Personalized Cancer Prevention Program, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
- Cutaneous Biology Research Center, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Charlestown, MA, USA.
- International Cancer Prevention Institute, Épalinges, Switzerland.
| |
Collapse
|
8
|
Oikawa K, Kuroda M, Ehata S. Suppression of antitumor cytokine IL‑24 by PRG4 and PAI‑1 may promote myxoid liposarcoma cell survival. Biomed Rep 2023; 19:60. [PMID: 37614985 PMCID: PMC10442737 DOI: 10.3892/br.2023.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/27/2023] [Indexed: 08/25/2023] Open
Abstract
Suppression of the antitumor cytokine interleukin-24 (IL-24) is critical for the survival of myxoid liposarcoma (MLS) cells. It has been previously demonstrated by the authors that an MLS-specific chimeric oncoprotein, translocated in liposarcoma-CCAAT/enhancer-binding protein homologous protein (TLS-CHOP), supresses IL24 mRNA expression via induction of proteoglycan 4 (PRG4) to sustain MLS cell proliferation. However, IL-24 has also been revealed to be suppressed by the ubiquitin-proteasome system in human ovarian and lung cancer cells. Therefore, the aim of the present study was to elucidate the mechanism of IL-24 suppression in MLS cells. The results revealed that the proteasome inhibitor, MG-132, induced cell death in MLS cells in vitro; this effect was reduced following IL-24 knockdown. This indicated that proteasomal degradation of IL-24 may be an important process for MLS cell survival. In addition, it was also previously revealed by the authors that knockdown of plasminogen activator inhibitor-1 (PAI-1), a TLS-CHOP downstream molecule, suppressed the growth of MLS cells, thus instigating the investigation of the effect of PAI-1 on IL-24 expression in MLS cells. Double knockdown of PAI-1 and IL-24 negated the growth-suppressive effect of PAI-1 single knockdown in MLS cells. Interestingly, PAI-1 single knockdown did not increase the mRNA expression of IL24, but it did increase the protein abundance of IL-24, indicating that PAI-1 suppressed IL-24 expression by promoting its proteasomal degradation. Moreover, treatment of MLS cells with a PAI-1 inhibitor, TM5275, induced IL-24 protein expression and apoptosis. Collectively, the results of the present as well as previous studies indicated that IL-24 expression may be suppressed at the transcriptional level by PRG4 and at the protein level by PAI-1 in MLS cells. Accordingly, PAI-1 may represent an effective therapeutic target for MLS treatment.
Collapse
Affiliation(s)
- Kosuke Oikawa
- Department of Pathology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Shogo Ehata
- Department of Pathology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| |
Collapse
|
9
|
Chen JF, Lin M, Li X, Lin JB. PAI1 inhibits the pathogenesis of primary focal hyperhidrosis by targeting CHRNA1. Orphanet J Rare Dis 2023; 18:205. [PMID: 37542348 PMCID: PMC10403875 DOI: 10.1186/s13023-023-02808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Primary focal hyperhidrosis (PFH) may be attributed to the up-regulation of the cholinergic receptor nicotinic alpha 1 subunit (CHRNA1) in eccrine glands. Plasminogen activator inhibitor-1 (PAI1, encoded by SERPINE1) is reported to inhibit the expression of CHRNA1, while the role of PAI1 in hyperhidrosis is unknown. METHODS Serpine1 KO mice, Serpine1-Tg mice, and wild type BALB/c mice were intraperitoneally injected with pilocarpine hydrochloride to induce PFH. Cisatracurium (CIS, antagonist of CHRNA1) or PAI-039 (small-molecule inhibitor of PAI1) was pre-administrated before the induction of hyperhidrosis. On the other hand, Chrna1-expressing AAV was constructed and administered to Serpine1-Tg mice with hydrochloride stimulation. Hydrochloride-related biomarkers, such as acetylcholine (ACH) in the serum, calcium voltage-gated channel subunit alpha1 C (CACNA1C), and aquaporin 5 (AQP5) in sweat glands of mice were assayed with ELISA, RT-PCR, and Western blot. RESULTS The administration of PAI-039 or Pai1 knock-out increased Chrna1 expression, sweat secretion, and hydrochloride-related biomarkers (ACH, CACNA1C, and AQP5) expression. On the other hand, CIS administration diminished the strengthened hyperhidrosis phenotype induced by Pai1 knock-out with decreased sweat gland secretion. CONCLUSION PAI1 inhibits CHRNA1-mediated hydrochloride-induced hyperhidrosis, with decreased sweat gland secretion and diminished ACH, AQP5, and CACNA1C expression. These results indicate the potential to utilize PAI1 to alleviate PFH.
Collapse
Affiliation(s)
- Jian-Feng Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, Fujian, China
| | - Min Lin
- Department of Thoracic Surgery, the First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, Fujian, China
| | - Xu Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, Fujian, China
| | - Jian-Bo Lin
- Department of Thoracic Surgery, the First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
10
|
Marvin DL, Dijkstra J, Zulfiqar RM, Vermeulen M, Ten Dijke P, Ritsma L. TGF-β Type I Receptor Signaling in Melanoma Liver Metastases Increases Metastatic Outgrowth. Int J Mol Sci 2023; 24:ijms24108676. [PMID: 37240029 DOI: 10.3390/ijms24108676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
Despite advances in treatment for metastatic melanoma patients, patients with liver metastasis have an unfavorable prognosis. A better understanding of the development of liver metastasis is needed. The multifunctional cytokine Transforming Growth Factor β (TGF-β) plays various roles in melanoma tumors and metastasis, affecting both tumor cells and cells from the surrounding tumor microenvironment. To study the role of TGF-β in melanoma liver metastasis, we created a model to activate or repress the TGF-β receptor pathway in vitro and in vivo in an inducible manner. For this, we engineered B16F10 melanoma cells to have inducible ectopic expression of a constitutively active (ca) or kinase-inactive (ki) TGF-β receptor I, also termed activin receptor-like kinase (ALK5). In vitro, stimulation with TGF-β signaling and ectopic caALK5 expression reduced B16F10 cell proliferation and migration. Contrasting results were found in vivo; sustained caALK5 expression in B16F10 cells in vivo increased the metastatic outgrowth in liver. Blocking microenvironmental TGF-β did not affect metastatic liver outgrowth of both control and caALK5 expressing B16F10 cells. Upon characterizing the tumor microenvironment of control and caALk5 expressing B16F10 tumors, we observed reduced (cytotoxic) T cell presence and infiltration, as well as an increase in bone marrow-derived macrophages in caALK5 expressing B16F10 tumors. This suggests that caALK5 expression in B16F10 cells induces changes in the tumor microenvironment. A comparison of newly synthesized secreted proteins upon caALK5 expression by B16F10 cells revealed increased secretion of matrix remodeling proteins. Our results show that TGF-β receptor activation in B16F10 melanoma cells can increase metastatic outgrowth in liver in vivo, possibly through remodeling of the tumor microenvironment leading to altered infiltration of immune cells. These results provide insights in the role of TGF-β signaling in B16F10 liver metastasis and could have implications regarding the use of TGF-β inhibitors for the treatment of melanoma patients with liver metastasis.
Collapse
Affiliation(s)
- Dieuwke L Marvin
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Jelmer Dijkstra
- Oncode Institute and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Rabia M Zulfiqar
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Michiel Vermeulen
- Oncode Institute and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Laila Ritsma
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
11
|
Li Y, Shi Y, Zhang X, Li P, Ma L, Hu P, Xu L, Dai Y, Xia S, Qiu H. FGFR2 upregulates PAI-1 via JAK2/STAT3 signaling to induce M2 polarization of macrophages in colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166665. [PMID: 36781088 DOI: 10.1016/j.bbadis.2023.166665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023]
Abstract
Fibroblast growth factor receptor 2 (FGFR2) is frequently activated by overexpression or mutation, and an abnormal fibroblast growth factor (FGF)/FGFR signaling pathway is associated with the occurrence, development, and poor prognosis of colorectal cancer (CRC). Our preliminary analysis found that plasminogen activator inhibitor-1 (PAI-1) expression may be related to FGF/FGFR signaling, however, their role in the tumor immune microenvironment remains unclear. In this study, we observed markedly higher PAI-1 expression in CRC patients with poor survival rates. PAI-1 is regulated by FGF/FGFR2 in colon cancer cells and is involved in M2 macrophage polarization. Mechanistically, inhibiting the JAK2/STAT3 signaling pathway could cause PAI-1 downregulation. Furthermore, the activation of phosphorylated STAT3 upregulated PAI-1. In vivo, FGFR2 overexpression in tumor-bearing mouse models suggested that a PAI-1 inhibitor could rescue FGFR2/PAI-1 axis-induced M2 macrophage polarization, which leads to effective immune activity and tumor suppression. Moreover, the combination of a PAI-1 inhibitor and anti-PD-1 therapy exhibited superior antitumor activity in mice. These findings offer novel insights into the molecular mechanisms underlying tumor deterioration and provide potential therapeutic targets for CRC treatment.
Collapse
Affiliation(s)
- Yiming Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yongkang Shi
- Department of Biliary and Pancreatic Surgery/Cancer Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiuyuan Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Piao Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Li Ma
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Pengbo Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Liang Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yuhong Dai
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shu Xia
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
12
|
Zou Y, Yaguchi T. Programmed cell death-1 blockade therapy in melanoma: Resistance mechanisms and combination strategies. Exp Dermatol 2023; 32:264-275. [PMID: 36645031 DOI: 10.1111/exd.14750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023]
Abstract
Melanoma is a highly aggressive tumor derived from melanocytes. In recent years, the incidence and mortality of melanoma have gradually increased, seriously threatening human health. Classic treatments like surgery, chemotherapy, and radiotherapy show very limited efficacy. Due to the high immunogenicity of melanoma cells, immune checkpoint inhibitors have received considerable attention as melanoma treatments. One such therapy is blockade of programmed cell death-1 (PD-1), which is one of the most important negative immune regulators and is mainly expressed on activated T cells. Disruption of the interactions between PD-1 and its ligands, programmed death-ligand 1 (PD-L1) or programmed death-ligand 2 (PD-L2) rejuvenates exhausted T cells and enhances antitumor immunity. Although PD-1 blockade therapy is widely used in melanoma, a substantial proportion of patients still show no response or short durations of remission. Recent researches have focused on revealing the underlying mechanisms for resistance to this treatment and improving its efficacy through combination therapy. Here, we will introduce the resistance mechanisms associated with PD-1 blockade therapy in melanoma and review the combination therapies available.
Collapse
Affiliation(s)
- Yixin Zou
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonori Yaguchi
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Ohuchi K, Amagai R, Ikawa T, Muto Y, Roh Y, Endo J, Maekawa T, Kambayashi Y, Asano Y, Fujimura T. Plasminogen activating inhibitor-1 promotes angiogenesis in cutaneous angiosarcomas. Exp Dermatol 2023; 32:50-59. [PMID: 36168721 DOI: 10.1111/exd.14681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/12/2023]
Abstract
Plasminogen activating inhibitor-1 (PAI-1) is associated with poor clinical outcomes, and elevated levels of PAI-1 in both tissue and serum are correlated with poor response to therapy in various cancers, including skin cancer. Cutaneous angiosarcoma (CAS) is a vascular tumor histologically characterized by detachment of endothelial cell-derived tumor cells. Since CAS expresses multiple angiogenic growth factors and has increased expressions of angiogenic receptor tyrosine kinase transcripts including VEGFR1/2/3, angiogenesis-promoting factors are potential drug targets in CAS. In this study, the expression of PAI-1 was examined in 31 cases of CAS, and the immunomodulatory effects of PAI-1 on a human CAS cell line, ISO-HAS-B, were evaluated. We found that, of the angiogenesis-promoting factors, PAI-1 was expressed in almost all cases of CAS, and PAI-1 increased the mRNA expressions of IL-23p19, VEGF-C, CXCL5 and CCL20 on ISO-HAS-B. Moreover, PAI-1 stimulated ISO-HAS-B culture supernatant promoted favourable tube networks, suggesting that these tumor-derived factors promote the pro-angiogenic effect on tumor development. In addition, IL-23p19 was expressed in 61.3% of cases, whereas VEGF-C was expressed in 41% of cases. The results of the present study suggest that PAI-1 promotes angiogenesis that results in tumor progression in CAS.
Collapse
Affiliation(s)
- Kentaro Ohuchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Amagai
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Ikawa
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Muto
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuna Roh
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Endo
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Maekawa
- Department of Dermatology, Jichi Medical University, Shimotsuke, Japan
| | - Yumi Kambayashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihide Asano
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
14
|
Immunotherapy for Melanoma: The Significance of Immune Checkpoint Inhibitors for the Treatment of Advanced Melanoma. Int J Mol Sci 2022; 23:ijms232415720. [PMID: 36555362 PMCID: PMC9779655 DOI: 10.3390/ijms232415720] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Therapeutic options for treating advanced melanoma have progressed rapidly in recent decades. Until 6 years ago, the regimen for treating advanced melanoma consisted mainly of cytotoxic agents such as dacarbazine and type I interferons. Since 2014, anti-programmed cell death 1 (PD1) antibodies have been recognized as anchor drugs for treating advanced melanoma, with or without additional combination drugs such as ipilimumab, but the efficacies of these immunotherapies are not fully satisfactory. In this review, we describe the development of the currently available anti-PD1 Abs-based immunotherapies for advanced melanoma, focusing on their efficacy and immune-related adverse events (AEs), as well as clinical trials still ongoing for the future treatment of advanced melanoma.
Collapse
|
15
|
Thornton J, Chhabra G, Singh CK, Guzmán-Pérez G, Shirley CA, Ahmad N. Mechanisms of Immunotherapy Resistance in Cutaneous Melanoma: Recognizing a Shapeshifter. Front Oncol 2022; 12:880876. [PMID: 35515106 PMCID: PMC9066268 DOI: 10.3389/fonc.2022.880876] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/18/2022] [Indexed: 12/21/2022] Open
Abstract
Melanoma is one of the seven most common cancers in the United States, and its incidence is still increasing. Since 2011, developments in targeted therapies and immunotherapies have been essential for significantly improving overall survival rates. Prior to the advent of targeted and immunotherapies, metastatic melanoma was considered a death sentence, with less than 5% of patients surviving more than 5 years. With the implementation of immunotherapies, approximately half of patients with metastatic melanoma now survive more than 5 years. Unfortunately, this also means that half of the patients with melanoma do not respond to current therapies and live less than 5 years after diagnosis. One major factor that contributes to lower response in this population is acquired or primary resistance to immunotherapies via tumor immune evasion. To improve the overall survival of melanoma patients new treatment strategies must be designed to minimize the risk of acquired resistance and overcome existing primary resistance. In recent years, many advances have been made in identifying and understanding the pathways that contribute to tumor immune evasion throughout the course of immunotherapy treatment. In addition, results from clinical trials focusing on treating patients with immunotherapy-resistant melanoma have reported some initial findings. In this review, we summarize important mechanisms that drive resistance to immunotherapies in patients with cutaneous melanoma. We have focused on tumor intrinsic characteristics of resistance, altered immune function, and systemic factors that contribute to immunotherapy resistance in melanoma. Exploring these pathways will hopefully yield novel strategies to prevent acquired resistance and overcome existing resistance to immunotherapy treatment in patients with cutaneous melanoma.
Collapse
Affiliation(s)
- Jessica Thornton
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | | | - Carl A Shirley
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI, United States.,William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| |
Collapse
|
16
|
Fujimura T. Stromal Factors as a Target for Immunotherapy in Melanoma and Non-Melanoma Skin Cancers. Int J Mol Sci 2022; 23:ijms23074044. [PMID: 35409404 PMCID: PMC8999844 DOI: 10.3390/ijms23074044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as anti-programmed cell death 1 (PD1) antibodies (Abs) and anti-cytotoxic T-lymphocyte associated protein 4 (CTLA4) Abs, have been widely administered for not only advanced melanoma, but also various non-melanoma skin cancers. Since profiles of tumor-infiltrating leukocytes (TILs) play important roles in immunotherapy using ICIs, it is important to evaluate cancer stromal cells such as tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs), as well as stromal extracellular matrix protein, to predict the efficacy of ICIs. This review article focuses particularly on TAMs and related factors. Among TILs, TAMs and their related factors could be the optimal biomarkers for immunotherapy such as anti-PD1 Ab therapy. According to the studies presented, TAM-targeting therapies for advanced melanoma and non-melanoma skin cancer will develop in the future.
Collapse
Affiliation(s)
- Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
17
|
Cancer-Associated Fibroblasts: Mechanisms of Tumor Progression and Novel Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14051231. [PMID: 35267539 PMCID: PMC8909913 DOI: 10.3390/cancers14051231] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The tumor microenvironment plays an important role in determining the biological behavior of several of the more aggressive malignancies. Among the various cell types evident in the tumor “field”, cancer-associated fibroblasts (CAFs) are a heterogenous collection of activated fibroblasts secreting a wide repertoire of factors that regulate tumor development and progression, inflammation, drug resistance, metastasis and recurrence. Insensitivity to chemotherapeutics and metastatic spread are the major contributors to cancer patient mortality. This review discusses the complex interactions between CAFs and the various populations of normal and neoplastic cells that interact within the dynamic confines of the tumor microenvironment with a focus on the involved pathways and genes. Abstract Cancer-associated fibroblasts (CAFs) are a heterogenous population of stromal cells found in solid malignancies that coexist with the growing tumor mass and other immune/nonimmune cellular elements. In certain neoplasms (e.g., desmoplastic tumors), CAFs are the prominent mesenchymal cell type in the tumor microenvironment, where their presence and abundance signal a poor prognosis in multiple cancers. CAFs play a major role in the progression of various malignancies by remodeling the supporting stromal matrix into a dense, fibrotic structure while secreting factors that lead to the acquisition of cancer stem-like characteristics and promoting tumor cell survival, reduced sensitivity to chemotherapeutics, aggressive growth and metastasis. Tumors with high stromal fibrotic signatures are more likely to be associated with drug resistance and eventual relapse. Clarifying the molecular basis for such multidirectional crosstalk among the various normal and neoplastic cell types present in the tumor microenvironment may yield novel targets and new opportunities for therapeutic intervention. This review highlights the most recent concepts regarding the complexity of CAF biology including CAF heterogeneity, functionality in drug resistance, contribution to a progressively fibrotic tumor stroma, the involved signaling pathways and the participating genes.
Collapse
|
18
|
Schmidt MW, Battista MJ, Schmidt M, Garcia M, Siepmann T, Hasenburg A, Anic K. Efficacy and Safety of Immunotherapy for Cervical Cancer—A Systematic Review of Clinical Trials. Cancers (Basel) 2022; 14:cancers14020441. [PMID: 35053603 PMCID: PMC8773848 DOI: 10.3390/cancers14020441] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Purpose: To systematically review the current body of evidence on the efficacy and safety of immunotherapy for cervical cancer (CC). Material and Methods: Medline, the Cochrane Central Register of Controlled Trials and Web of Science were searched for prospective trials assessing immunotherapy in CC patients in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Full-text articles in English and German reporting outcomes of survival, response rates or safety were eligible. Results: Of 4655 screened studies, 51 were included (immune checkpoint inhibitors (ICI) n=20; therapeutic vaccines n = 25; adoptive cell transfer therapy n=9). Of these, one qualified as a phase III randomized controlled trial and demonstrated increased overall survival following treatment with pembrolizumab, chemotherapy and bevacizumab. A minority of studies included a control group (n = 7) or more than 50 patients (n = 15). Overall, response rates were low to moderate. No response to ICIs was seen in PD-L1 negative patients. However, few remarkable results were achieved in heavily pretreated patients. There were no safety concerns in any of the included studies. Conclusion: Strong evidence on the efficacy of strategies to treat recurrent or metastatic cervical cancer is currently limited to pembrolizumab in combination with chemotherapy and bevacizumab, which substantiates an urgent need for large confirmatory trials on alternative immunotherapies. Overall, there is sound evidence on the safety of immunotherapy in CC.
Collapse
Affiliation(s)
- Mona W. Schmidt
- Department of Gynecology and Obstetrics, University Medical Centre Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.J.B.); (M.S.); (A.H.); (K.A.)
- Division of Health Care Sciences Center for Clinical Research and Management Education Dresden, Dresden International University, 01067 Dresden, Germany; (M.G.); (T.S.)
- Correspondence: ; Tel.: +49-6131-17-0
| | - Marco J. Battista
- Department of Gynecology and Obstetrics, University Medical Centre Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.J.B.); (M.S.); (A.H.); (K.A.)
| | - Marcus Schmidt
- Department of Gynecology and Obstetrics, University Medical Centre Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.J.B.); (M.S.); (A.H.); (K.A.)
| | - Monique Garcia
- Division of Health Care Sciences Center for Clinical Research and Management Education Dresden, Dresden International University, 01067 Dresden, Germany; (M.G.); (T.S.)
- Department of Medicine, Pontifícia Universidade Católica de Minas Gerais (PUC MG), Betim 32604-115, Brazil
| | - Timo Siepmann
- Division of Health Care Sciences Center for Clinical Research and Management Education Dresden, Dresden International University, 01067 Dresden, Germany; (M.G.); (T.S.)
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Annette Hasenburg
- Department of Gynecology and Obstetrics, University Medical Centre Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.J.B.); (M.S.); (A.H.); (K.A.)
| | - Katharina Anic
- Department of Gynecology and Obstetrics, University Medical Centre Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.J.B.); (M.S.); (A.H.); (K.A.)
| |
Collapse
|
19
|
Ohuchi K, Kambayashi Y, Hidaka T, Fujimura T. Plasminogen Activating Inhibitor-1 Might Predict the Efficacy of Anti-PD1 Antibody in Advanced Melanoma Patients. Front Oncol 2021; 11:798385. [PMID: 34912726 PMCID: PMC8666429 DOI: 10.3389/fonc.2021.798385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/05/2021] [Indexed: 01/19/2023] Open
Abstract
Plasminogen activating inhibitor-1 (PAI-1) plays crucial roles in the development of various cancers, including melanomas. Indeed, various pro-tumorigenic functions of PAI-1 in cancer progression and metastasis have been widely reported. Among them, PAI-1 is also reported as a key regulator of PD-L1 expression on melanoma cells through endocytosis, leading to abrogating the efficacy of anti-PD1 antibodies (Abs). These findings suggested that PAI-1 expression might predict the efficacy of anti-PD1 Abs. In this report, the expression and production of PAI-1 in melanoma patients were evaluated, and the immunomodulatory effects of PAI-1 on tumor-associated macrophages were investigated in vitro. Immunohistochemical staining of PAI-1 showed that PAI-1 expression on melanoma cells was significantly decreased in responders compared to non-responders. Moreover, baseline serum levels of PAI-1 were significantly decreased in responders compared to non-responders. Notably, PAI-1 decreased the production of various chemokines from monocyte-derived M2 macrophages in vitro, suggesting that PAI-1 might decrease tumor-infiltrating lymphocytes to hamper the anti-tumor effects of anti-PD1 Abs. These results suggest that baseline serum levels of PAI-1 may be useful as a biomarker for identifying patients with advanced cutaneous melanoma most likely to benefit from anti-melanoma immunotherapy.
Collapse
Affiliation(s)
- Kentaro Ohuchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yumi Kambayashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Hidaka
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
20
|
A Possible Role for PAI-1 Blockade in Melanoma Immunotherapy. J Invest Dermatol 2021; 141:2566-2568. [PMID: 34688409 DOI: 10.1016/j.jid.2021.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022]
Abstract
In their new article in the Journal of Investigative Dermatology, Tseng et al. (2021) confirm that the sensitivity of melanoma cells to anti‒PD-L1 checkpoint inhibitor therapy is correlated with high PD-L1 surface expression. By blocking PD-L1 membrane clearing, controlled by LRP1 and PAI-1, the expression of high-cell-surface levels of PD-L1 was maintained.
Collapse
|