1
|
Cho C, Haddadi NS, Kidacki M, Woodard GA, Shakiba S, Yıldız-Altay Ü, Richmond JM, Vesely MD. Spatial Transcriptomics in Inflammatory Skin Diseases Using GeoMx Digital Spatial Profiling: A Practical Guide for Applications in Dermatology. JID INNOVATIONS 2025; 5:100317. [PMID: 39559817 PMCID: PMC11570843 DOI: 10.1016/j.xjidi.2024.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 07/05/2024] [Accepted: 08/29/2024] [Indexed: 11/20/2024] Open
Abstract
The spatial organization of the skin is critical for its function. In particular, the skin immune microenvironment is arranged spatially and temporally, such that imbalances in the immune milieu are indicative of disease. Spatial transcriptomic platforms are helping to provide additional insights into aberrant inflammation in tissues that are not captured by tissue processing required for single-cell RNA sequencing. In this paper, we discuss a technical and user experience overview of NanoString's GeoMx Digital Spatial Profiler to perform in-depth spatial analysis of the transcriptome in inflammatory skin diseases. Our objective is to provide potential pitfalls and methods to optimize RNA capture that are not readily available in the manufacturer's guidelines. We use concrete examples from our experiments to demonstrate these strategies in inflammatory skin diseases, including psoriasis, lichen planus, and discoid lupus erythematosus. Overall, we hope to illustrate the potential of digital spatial profiling to dissect skin disease pathogenesis in a spatially resolved manner and provide a framework for other skin biology investigators using digital spatial profiling.
Collapse
Affiliation(s)
- Christina Cho
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nazgol-Sadat Haddadi
- Department of Dermatology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Michal Kidacki
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gavitt A. Woodard
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Saeed Shakiba
- Department of Dermatology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ümmügülsüm Yıldız-Altay
- Department of Dermatology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jillian M. Richmond
- Department of Dermatology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Matthew D. Vesely
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Danielsen M, Emmanuel T, Nielsen MM, Lindahl LM, Gluud M, Ødum N, Raaby L, Steiniche T, Iversen L, Bech R, Buus TB, Johansen C. RUNX2 as a novel biomarker for early identification of patients progressing to advanced-stage mycosis fungoides. Front Oncol 2024; 14:1421443. [PMID: 39435287 PMCID: PMC11491341 DOI: 10.3389/fonc.2024.1421443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction The majority of patients with mycosis fungoides (MF) have an indolent disease course, but a substantial fraction (20-30%) of patients progress to advanced stages - usually with a grave prognosis. Early differentiation between indolent and aggressive types of MF is important for the choice of treatment regimen and monitoring of the individual patient. Good biomarkers are therefore desired. Methods Here, we used spatial transcriptomics on skin samples at time-of-diagnosis to enable prediction of patients who later progressed to advanced stages of MF. Formalin-fixed, paraffin-embedded skin biopsies at time of diagnosis from six patients with MF who progressed to advanced stages of disease within 4 months to 12 years after diagnosis, and nine patients who remained in early-stage disease over 9 to 27 years were analyzed using the GeoMx Digital Spatial Profiler to capture spatially resolved high-plex RNA gene expression data. Five different regions of interest (the epidermis, the basal layer of epidermis, CD4+ T-cells and neighboring cells, and Pautrier's microabscesses) were profiled for further assessment. Results and discussion Interestingly, RUNX2, SHMT2, and MCM7 were upregulated in the enriched population of malignant T-cells in Pautrier's microabscesses in patients who later developed advanced stages of disease. Expression of RUNX2, SHMT2 and MCM7 in malignant T-cells was confirmed in a subset of patients in MF skin using scRNA-seq datasets across multiple studies and correlating with stage of disease. Taken together, we provide first evidence that RUNX2 has potential as a biomarker to identify MF patients progressing to advanced stage disease. As RUNX2 has not previously been linked to MF, our data also shows the analytical strength of combining spatial transcriptomics with scRNA-seq analysis.
Collapse
Affiliation(s)
- Maria Danielsen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Emmanuel
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Muhlig Nielsen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark
| | | | - Maria Gluud
- Skin Immunology Research Center, Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- Skin Immunology Research Center, Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Line Raaby
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Torben Steiniche
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Bech
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Terkild Brink Buus
- Skin Immunology Research Center, Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Schepps S, Xu J, Yang H, Mandel J, Mehta J, Tolotta J, Baker N, Tekmen V, Nikbakht N, Fortina P, Fuentes I, LaFleur B, Cho RJ, South AP. Skin in the game: a review of single-cell and spatial transcriptomics in dermatological research. Clin Chem Lab Med 2024; 62:1880-1891. [PMID: 38656304 DOI: 10.1515/cclm-2023-1245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/29/2024] [Indexed: 04/26/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) are two emerging research technologies that uniquely characterize gene expression microenvironments on a cellular or subcellular level. The skin, a clinically accessible tissue composed of diverse, essential cell populations, serves as an ideal target for these high-resolution investigative approaches. Using these tools, researchers are assembling a compendium of data and discoveries in healthy skin as well as a range of dermatologic pathophysiologies, including atopic dermatitis, psoriasis, and cutaneous malignancies. The ongoing advancement of single-cell approaches, coupled with anticipated decreases in cost with increased adoption, will reshape dermatologic research, profoundly influencing disease characterization, prognosis, and ultimately clinical practice.
Collapse
Affiliation(s)
- Samuel Schepps
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Jonathan Xu
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Henry Yang
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Jenna Mandel
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Jaanvi Mehta
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Julianna Tolotta
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Nicole Baker
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Volkan Tekmen
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Neda Nikbakht
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
- Department of Pharmacology, Physiology and Cancer Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Paolo Fortina
- Department of Pharmacology, Physiology and Cancer Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
- International Federation of Clinical Chemistry Working Group on Single Cell and Spatial Transcriptomics, Milan, Italy
| | - Ignacia Fuentes
- International Federation of Clinical Chemistry Working Group on Single Cell and Spatial Transcriptomics, Milan, Italy
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Directora de Investigación Fundación DEBRA Chile, Santiago, Chile
| | - Bonnie LaFleur
- International Federation of Clinical Chemistry Working Group on Single Cell and Spatial Transcriptomics, Milan, Italy
- R. Ken Coit College of Pharmacy, University of Arizona, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Raymond J Cho
- International Federation of Clinical Chemistry Working Group on Single Cell and Spatial Transcriptomics, Milan, Italy
- Department of Dermatology, University of San Francisco, San Francisco, CA, USA
| | - Andrew P South
- Department of Pharmacology, Physiology and Cancer Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
- International Federation of Clinical Chemistry Working Group on Single Cell and Spatial Transcriptomics, Milan, Italy
| |
Collapse
|
4
|
Cho I, Ji AL. Type 1 innate lymphoid cells: a biomarker and therapeutic candidate in sarcoidosis. J Clin Invest 2024; 134:e183708. [PMID: 39225095 PMCID: PMC11364376 DOI: 10.1172/jci183708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Sarcoidosis is an inflammatory disease characterized by immune cell-rich granulomas that form in multiple organs. In this issue of the JCI, Sati and colleagues used scRNA-seq and spatial transcriptomics of skin samples from patients with sarcoidosis and non-sarcoidosis granulomatous disease to identify upregulation of a stromal-immune CXCL12/CXCR4 axis and accumulation of type 1 innate lymphoid cells (ILC1s) in sarcoidosis. The accumulation of ILC1s in skin and blood was specific to patients with sarcoidosis and not observed in other granulomatous diseases. The authors used a mouse model of lung granuloma to show that ILCs contribute to granuloma formation and that blockade of CXCR4 reduced the formation of granulomas, providing a proof of concept that sarcoidosis may be treated by CXCR4 blockade to prevent the progression of disease in patients. These results suggest ILC1s could serve as a diagnostic biomarker in sarcoidosis and a potential therapeutic target.
Collapse
Affiliation(s)
- Inchul Cho
- Department of Dermatology
- Black Family Stem Cell Institute
| | - Andrew L. Ji
- Department of Dermatology
- Black Family Stem Cell Institute
- Department of Oncological Sciences
- Department of Cell, Developmental and Regenerative Biology, and
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
5
|
Magrill J, Moldoveanu D, Gu J, Lajoie M, Watson IR. Mapping the single cell spatial immune landscapes of the melanoma microenvironment. Clin Exp Metastasis 2024; 41:301-312. [PMID: 38217840 PMCID: PMC11374855 DOI: 10.1007/s10585-023-10252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/27/2023] [Indexed: 01/15/2024]
Abstract
Melanoma is a highly immunogenic malignancy with an elevated mutational burden, diffuse lymphocytic infiltration, and one of the highest response rates to immune checkpoint inhibitors (ICIs). However, over half of all late-stage patients treated with ICIs will either not respond or develop progressive disease. Spatial imaging technologies are being increasingly used to study the melanoma tumor microenvironment (TME). The goal of such studies is to understand the complex interplay between the stroma, melanoma cells, and immune cell-types as well as their association with treatment response. Investigators seeking a better understanding of the role of cell location within the TME and the importance of spatial expression of biomarkers are increasingly turning to highly multiplexed imaging approaches to more accurately measure immune infiltration as well as to quantify receptor-ligand interactions (such as PD-1 and PD-L1) and cell-cell contacts. CyTOF-IMC (Cytometry by Time of Flight - Imaging Mass Cytometry) has enabled high-dimensional profiling of melanomas, allowing researchers to identify complex cellular subpopulations and immune cell interactions with unprecedented resolution. Other spatial imaging technologies, such as multiplexed immunofluorescence and spatial transcriptomics, have revealed distinct patterns of immune cell infiltration, highlighting the importance of spatial relationships, and their impact in modulating immunotherapy responses. Overall, spatial imaging technologies are just beginning to transform our understanding of melanoma biology, providing new avenues for biomarker discovery and therapeutic development. These technologies hold great promise for advancing personalized medicine to improve patient outcomes in melanoma and other solid malignancies.
Collapse
Affiliation(s)
- Jamie Magrill
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Dan Moldoveanu
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Jiayao Gu
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Mathieu Lajoie
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Ian R Watson
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada.
- Department of Human Genetics, McGill University, Montréal, QC, Canada.
- Department of Biochemistry, McGill University, Montréal, QC, Canada.
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada.
| |
Collapse
|
6
|
Love NR, Williams C, Killingbeck EE, Merleev A, Saffari Doost M, Yu L, McPherson JD, Mori H, Borowsky AD, Maverakis E, Kiuru M. Melanoma progression and prognostic models drawn from single-cell, spatial maps of benign and malignant tumors. SCIENCE ADVANCES 2024; 10:eadm8206. [PMID: 38996022 PMCID: PMC11244543 DOI: 10.1126/sciadv.adm8206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Melanoma clinical outcomes emerge from incompletely understood genetic mechanisms operating within the tumor and its microenvironment. Here, we used single-cell RNA-based spatial molecular imaging (RNA-SMI) in patient-derived archival tumors to reveal clinically relevant markers of malignancy progression and prognosis. We examined spatial gene expression of 203,472 cells inside benign and malignant melanocytic neoplasms, including melanocytic nevi and primary invasive and metastatic melanomas. Algorithmic cell clustering paired with intratumoral comparative two-dimensional analyses visualized synergistic, spatial gene signatures linking cellular proliferation, metabolism, and malignancy, validated by protein expression. Metastatic niches included up-regulation of CDK2 and FABP5, which independently predicted poor clinical outcome in 473 patients with melanoma via Cox regression analysis. More generally, our work demonstrates a framework for applying single-cell RNA-SMI technology toward identifying gene regulatory landscapes pertinent to cancer progression and patient survival.
Collapse
Affiliation(s)
- Nick R Love
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
| | - Claire Williams
- NanoString Technologies, a Bruker Company, Seattle, WA 98109, USA
| | | | - Alexander Merleev
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
| | | | - Lan Yu
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
| | - John D McPherson
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95816, USA
| | - Hidetoshi Mori
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95816, USA
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95816, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
| | - Maija Kiuru
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95816, USA
| |
Collapse
|
7
|
Gutierrez Reyes CD, Alejo-Jacuinde G, Perez Sanchez B, Chavez Reyes J, Onigbinde S, Mogut D, Hernández-Jasso I, Calderón-Vallejo D, Quintanar JL, Mechref Y. Multi Omics Applications in Biological Systems. Curr Issues Mol Biol 2024; 46:5777-5793. [PMID: 38921016 PMCID: PMC11202207 DOI: 10.3390/cimb46060345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Traditional methodologies often fall short in addressing the complexity of biological systems. In this regard, system biology omics have brought invaluable tools for conducting comprehensive analysis. Current sequencing capabilities have revolutionized genetics and genomics studies, as well as the characterization of transcriptional profiling and dynamics of several species and sample types. Biological systems experience complex biochemical processes involving thousands of molecules. These processes occur at different levels that can be studied using mass spectrometry-based (MS-based) analysis, enabling high-throughput proteomics, glycoproteomics, glycomics, metabolomics, and lipidomics analysis. Here, we present the most up-to-date techniques utilized in the completion of omics analysis. Additionally, we include some interesting examples of the applicability of multi omics to a variety of biological systems.
Collapse
Affiliation(s)
| | - Gerardo Alejo-Jacuinde
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX 79409, USA; (G.A.-J.); (B.P.S.)
| | - Benjamin Perez Sanchez
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX 79409, USA; (G.A.-J.); (B.P.S.)
| | - Jesus Chavez Reyes
- Center of Basic Sciences, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes 20392, Mexico; (J.C.R.); (I.H.-J.); (D.C.-V.); (J.L.Q.)
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Damir Mogut
- Department of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Irma Hernández-Jasso
- Center of Basic Sciences, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes 20392, Mexico; (J.C.R.); (I.H.-J.); (D.C.-V.); (J.L.Q.)
| | - Denisse Calderón-Vallejo
- Center of Basic Sciences, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes 20392, Mexico; (J.C.R.); (I.H.-J.); (D.C.-V.); (J.L.Q.)
| | - J. Luis Quintanar
- Center of Basic Sciences, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes 20392, Mexico; (J.C.R.); (I.H.-J.); (D.C.-V.); (J.L.Q.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
8
|
Chen Q, Zhang S, Liu W, Sun X, Luo Y, Sun X. Application of emerging technologies in ischemic stroke: from clinical study to basic research. Front Neurol 2024; 15:1400469. [PMID: 38915803 PMCID: PMC11194379 DOI: 10.3389/fneur.2024.1400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Stroke is a primary cause of noncommunicable disease-related death and disability worldwide. The most common form, ischemic stroke, is increasing in incidence resulting in a significant burden on patients and society. Urgent action is thus needed to address preventable risk factors and improve treatment methods. This review examines emerging technologies used in the management of ischemic stroke, including neuroimaging, regenerative medicine, biology, and nanomedicine, highlighting their benefits, clinical applications, and limitations. Additionally, we suggest strategies for technological development for the prevention, diagnosis, and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qiuyan Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Wenxiu Liu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
9
|
Kehl A, Aupperle-Lellbach H, de Brot S, van der Weyden L. Review of Molecular Technologies for Investigating Canine Cancer. Animals (Basel) 2024; 14:769. [PMID: 38473154 PMCID: PMC10930838 DOI: 10.3390/ani14050769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Genetic molecular testing is starting to gain traction as part of standard clinical practice for dogs with cancer due to its multi-faceted benefits, such as potentially being able to provide diagnostic, prognostic and/or therapeutic information. However, the benefits and ultimate success of genomic analysis in the clinical setting are reliant on the robustness of the tools used to generate the results, which continually expand as new technologies are developed. To this end, we review the different materials from which tumour cells, DNA, RNA and the relevant proteins can be isolated and what methods are available for interrogating their molecular profile, including analysis of the genetic alterations (both somatic and germline), transcriptional changes and epigenetic modifications (including DNA methylation/acetylation and microRNAs). We also look to the future and the tools that are currently being developed, such as using artificial intelligence (AI) to identify genetic mutations from histomorphological criteria. In summary, we find that the molecular genetic characterisation of canine neoplasms has made a promising start. As we understand more of the genetics underlying these tumours and more targeted therapies become available, it will no doubt become a mainstay in the delivery of precision veterinary care to dogs with cancer.
Collapse
Affiliation(s)
- Alexandra Kehl
- Laboklin GmbH & Co. KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (A.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 München, Germany
| | - Heike Aupperle-Lellbach
- Laboklin GmbH & Co. KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (A.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 München, Germany
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, 3012 Bern, Switzerland;
| | | |
Collapse
|
10
|
Chen G, Xu W, Long Z, Chong Y, Lin B, Jie Y. Single-cell Technologies Provide Novel Insights into Liver Physiology and Pathology. J Clin Transl Hepatol 2024; 12:79-90. [PMID: 38250462 PMCID: PMC10794276 DOI: 10.14218/jcth.2023.00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 01/23/2024] Open
Abstract
The liver is the largest glandular organ in the body and has a unique distribution of cells and biomolecules. However, the treatment outcome of end-stage liver disease is extremely poor. Single-cell sequencing is a new advanced and powerful technique for identifying rare cell populations and biomolecules by analyzing the characteristics of gene expression between individual cells. These cells and biomolecules might be used as potential targets for immunotherapy of liver diseases and contribute to the development of precise individualized treatment. Compared to whole-tissue RNA sequencing, single-cell RNA sequencing (scRNA-seq) or other single-cell histological techniques have solved the problem of cell population heterogeneity and characterize molecular changes associated with liver diseases with higher accuracy and resolution. In this review, we comprehensively summarized single-cell approaches including transcriptomic, spatial transcriptomic, immunomic, proteomic, epigenomic, and multiomic technologies, and described their application in liver physiology and pathology. We also discussed advanced techniques and recent studies in the field of single-cell; our review might provide new insights into the pathophysiological mechanisms of the liver to achieve precise and individualized treatment of liver diseases.
Collapse
Affiliation(s)
| | | | - Zhicong Long
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yutian Chong
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bingliang Lin
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yusheng Jie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Houser AE, Kazmi A, Nair AK, Ji AL. The Use of Single-Cell RNA-Sequencing and Spatial Transcriptomics in Understanding the Pathogenesis and Treatment of Skin Diseases. JID INNOVATIONS 2023; 3:100198. [PMID: 37205302 PMCID: PMC10186616 DOI: 10.1016/j.xjidi.2023.100198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 05/21/2023] Open
Abstract
The development of multiomic profiling tools has rapidly expanded in recent years, along with their use in profiling skin tissues in various contexts, including dermatologic diseases. Among these tools, single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics (ST) have emerged as widely adopted and powerful assays for elucidating key cellular components and their spatial arrangement within skin disease. In this paper, we review the recent biological insights gained from the use of scRNA-seq and ST and the advantages of combining both for profiling skin diseases, including aberrant wound healing, inflammatory skin diseases, and cancer. We discuss the role of scRNA-seq and ST in improving skin disease treatments and moving toward the goal of achieving precision medicine in dermatology, whereby patients can be optimally matched to treatments that maximize therapeutic response.
Collapse
Affiliation(s)
- Aubrey E. Houser
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Abiha Kazmi
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Arjun K. Nair
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew L. Ji
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
12
|
Pielawski N, Andersson A, Avenel C, Behanova A, Chelebian E, Klemm A, Nysjö F, Solorzano L, Wählby C. TissUUmaps 3: Improvements in interactive visualization, exploration, and quality assessment of large-scale spatial omics data. Heliyon 2023; 9:e15306. [PMID: 37131430 PMCID: PMC10149187 DOI: 10.1016/j.heliyon.2023.e15306] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/04/2023] Open
Abstract
Background and objectives Spatially resolved techniques for exploring the molecular landscape of tissue samples, such as spatial transcriptomics, often result in millions of data points and images too large to view on a regular desktop computer, limiting the possibilities in visual interactive data exploration. TissUUmaps is a free, open-source browser-based tool for GPU-accelerated visualization and interactive exploration of 107+ data points overlaying tissue samples. Methods Herein we describe how TissUUmaps 3 provides instant multiresolution image viewing and can be customized, shared, and also integrated into Jupyter Notebooks. We introduce new modules where users can visualize markers and regions, explore spatial statistics, perform quantitative analyses of tissue morphology, and assess the quality of decoding in situ transcriptomics data. Results We show that thanks to targeted optimizations the time and cost associated with interactive data exploration were reduced, enabling TissUUmaps 3 to handle the scale of today's spatial transcriptomics methods. Conclusion TissUUmaps 3 provides significantly improved performance for large multiplex datasets as compared to previous versions. We envision TissUUmaps to contribute to broader dissemination and flexible sharing of largescale spatial omics data.
Collapse
Affiliation(s)
- Nicolas Pielawski
- Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Axel Andersson
- Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Christophe Avenel
- Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Andrea Behanova
- Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Eduard Chelebian
- Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Anna Klemm
- Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Fredrik Nysjö
- Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Leslie Solorzano
- Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Carolina Wählby
- Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Justin Margret J, Jain SK. Overview of gene expression techniques with an emphasis on vitamin D related studies. Curr Med Res Opin 2023; 39:205-217. [PMID: 36537177 DOI: 10.1080/03007995.2022.2159148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Each cell controls when and how its genes must be expressed for proper function. Every function in a cell is driven by signaling molecules through various regulatory cascades. Different cells in a multicellular organism may express very different sets of genes, even though they contain the same DNA. The set of genes expressed in a cell determines the set of proteins and functional RNAs it contains, giving it its unique properties. Malfunction in gene expression harms the cell and can lead to the development of various disease conditions. The use of rapid high-throughput gene expression profiling unravels the complexity of human disease at various levels. Peripheral blood mononuclear cells (PBMC) have been used frequently to understand gene expression homeostasis in various disease conditions. However, more studies are required to validate whether PBMC gene expression patterns accurately reflect the expression of other cells or tissues. Vitamin D, which is responsible for a multitude of health consequences, is also an immune modulatory hormone with major biological activities in the innate and adaptive immune systems. Vitamin D exerts its diverse biological effects in target tissues by regulating gene expression and its deficiency, is recognized as a public health problem worldwide. Understanding the genetic factors that affect vitamin D has the potential benefit that it will make it easier to identify individuals who require supplementation. Different technological advances in gene expression can be used to identify and assess the severity of disease and aid in the development of novel therapeutic interventions. This review focuses on different gene expression approaches and various clinical studies of vitamin D to investigate the role of gene expression in identifying the molecular signature of the disease.
Collapse
Affiliation(s)
- Jeffrey Justin Margret
- Department of Pediatrics, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| |
Collapse
|