1
|
Akbarialiabad H, Schmidt E, Patsatsi A, Lim YL, Mosam A, Tasanen K, Yamagami J, Daneshpazhooh M, De D, Cardones ARG, Joly P, Murrell DF. Bullous pemphigoid. Nat Rev Dis Primers 2025; 11:12. [PMID: 39979318 DOI: 10.1038/s41572-025-00595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/14/2025] [Indexed: 02/22/2025]
Abstract
Bullous pemphigoid is a chronic, subepidermal autoimmune blistering disease characterized by tense blisters on erythematous or normal skin that predominantly affects the older population. The disease arises from autoantibodies targeting hemidesmosomal proteins BP180 and BP230, which are crucial for dermal-epidermal adhesion. The incidence of bullous pemphigoid is increasing, attributed to an ageing population and improved diagnostic recognition. Genetic predisposition, environmental triggers and associations with other autoimmune disorders underline its multifactorial nature. Diagnosis involves clinical presentation, histopathology, direct immunofluorescence and serological tests. Treatment aims to reduce symptoms and prevent new blister formation, using corticosteroids, immunosuppressive agents and biologics such as rituximab and omalizumab. Despite therapeutic advancements, challenges persist in long-term management, especially in older patients with comorbidities. Ongoing research into molecular mechanisms and novel therapeutic targets and clinical trials are crucial for the development of safer and more effective treatments.
Collapse
Affiliation(s)
- Hossein Akbarialiabad
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Australasian Blistering Diseases Foundation (ABDF), Sydney, New South Wales, Australia
| | - Enno Schmidt
- Department of Dermatology and Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Aikaterini Patsatsi
- Center of Expertise on AIBD, 2nd Dermatology Department, Aristotle University School of Medicine, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Yen Loo Lim
- National Skin Centre, Singapore, Singapore
- Yong Loo Lin School of Medicine, Singapore, Singapore
- Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Anisa Mosam
- Department of Dermatology, Inkosi Albert Luthuli Central Hospital and Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Kaisa Tasanen
- Department of Dermatology and Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
- Research Unit of Clinical Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Jun Yamagami
- Department of Dermatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Maryam Daneshpazhooh
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Dipankar De
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Adela Rambi G Cardones
- Division of Dermatology, Department of Internal Medicine, University of Kansas Medical Center, Lawrence, KS, USA
| | - Pascal Joly
- Dermatology Department, Rouen University Hospital, INSERM U1234, Normandie University, Rouen, France
| | - Dedee F Murrell
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
- Australasian Blistering Diseases Foundation (ABDF), Sydney, New South Wales, Australia.
- Department of Dermatology, St George Hospital, Sydney, New South Wales, Australia.
| |
Collapse
|
2
|
Jing K, Jordan TJM, Li N, Burette S, Yang B, Marinkovich MP, Diaz LA, Googe P, Thomas NE, Feng S, Liu Z. Anti-NC16A IgA from Patients with Linear IgA Bullous Dermatosis Induce Neutrophil-Dependent Subepidermal Blistering in Mice. J Invest Dermatol 2024; 144:24-32.e1. [PMID: 37437774 PMCID: PMC10776798 DOI: 10.1016/j.jid.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 07/14/2023]
Abstract
Linear IgA bullous dermatosis (LABD) is an acquired autoimmune subepidermal blistering skin disease characterized by circulating and tissue-bound IgA autoantibodies that recognize epitopes within the hemidesmosomal protein BP180, including its NC16A domain. Histologically, LABD has long been defined by neutrophil infiltration and dermal-epidermal separation. However, the pathogenic roles of anti-NC16A IgA and neutrophils in LABD, as well as their interactions, have not been thoroughly studied. We show that passive transfer of patient-derived anti-NC16A IgA induce clinical and histologic LABD pathology in humanized NC16A mice that are reconstituted locally or systemically with human neutrophils. The lesional skin of mice exhibits significantly elevated levels of the neutrophil chemoattractants CXCL-1 and CXCL-2. Furthermore, we show significantly increased levels of the neutrophil chemoattractant IL-8 in blister fluids of patients with LABD. This study provides direct evidence that anti-NC16A IgA in patients with LABD are pathogenic and interact with neutrophils to mediate tissue injury and subepidermal blister formation. This study further corroborates the importance of neutrophil-mediated tissue injury in LABD disease physiology and establishes a clinically relevant in vivo model system that can be used to systematically dissect the immunopathogenesis of LABD.
Collapse
Affiliation(s)
- Ke Jing
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA; Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, P.R. China
| | - Tyler J M Jordan
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA; Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Ning Li
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Susan Burette
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Baoqi Yang
- Departmentof Dermatology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - M Peter Marinkovich
- Department of Dermatology, Stanford University, Stanford, and Dermatology, Veteran's Affairs Medical Center, Palo Alto, California, USA
| | - Luis A Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Paul Googe
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Nancy E Thomas
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Suying Feng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, P.R. China
| | - Zhi Liu
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
3
|
Sun R, Zhang M, Li B, Jiang S, Yu W, Yang L, Han Y, Zhong Z, Zhao W. A Novel Bromophenol Compound from Leathesia nana Inhibits Breast Cancer in a Direct Tumor Killing and Immunotherapy Manner. Molecules 2023; 28:5349. [PMID: 37513222 PMCID: PMC10385854 DOI: 10.3390/molecules28145349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Considering the resistance and toxicity of traditional chemotherapeutic drugs, seeking potential candidate for treating breast cancer effectively is a clinical problem that should be solved urgently. Natural products have attracted extensive attention, owing to their multi-target advantages and low toxicity. In the current study, the effects of XK-81, a novel bromophenol compound extracted from Leathesia nana, on breast cancer, and its underlying mechanisms, were explored. Firstly, data from in vitro experiments indicated that 4T-1, one of common mouse breast cancer cell lines, was a XK-81-susceptible cell line, and ferroptosis was the major death manner in response to XK-81 treatment, which was evidenced by increasing intracellular Fe2+ and ROS level with condensed mitochondrial membrane densities, as well as decreasing the protein expressions of SLC7A11 and GPX4. In vivo, XK-81 suppressed the growth of 4T-1 breast-tumor in both BALB/C mice and zebrafish. Obviously, XK-81 decreased the protein expression of SLC7A11 and GPX4 in tumor tissues, hinting at the occurrence of ferroptosis. Moreover, XK-81 increased CD8+ T cells and NK cells numbers and regulated M1/M2 macrophage ratio in tumor tissues, indicating XK-81's immunotherapeutic effect. Additionally, the secretions of immune-related cytokines, including TNF-α, IL-1β, and IL-12, were elevated with XK-81 stimulation in RAW 264.7 cells. Intriguingly, compared with doxorubicin-induced heart damage, XK-81 demonstrated the therapeutic advantage of little cardiotoxicity on the heart. XK-81 demonstrated potential antitumor advantage by both directly inducing ferroptosis-mediated death of tumor cells and immunization.
Collapse
Affiliation(s)
- Ruochen Sun
- College of Basic Medical Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| | - Mi Zhang
- College of Basic Medical Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| | - Bufan Li
- College of Basic Medical Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| | - Shan Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Wanpeng Yu
- College of Basic Medical Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| | - Lina Yang
- College of Basic Medical Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| | - Yantao Han
- College of Basic Medical Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wenwen Zhao
- College of Basic Medical Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| |
Collapse
|
4
|
Maglie R, Mercurio L, Morelli M, Madonna S, Salemme A, Baffa ME, Quintarelli L, Di Zenzo GM, Antiga E, Albanesi C. Interleukin-36 cytokines are overexpressed in the skin and sera of patients with bullous pemphigoid. Exp Dermatol 2023. [PMID: 36940975 DOI: 10.1111/exd.14791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/22/2023]
Abstract
Bullous pemphigoid (BP) is an autoimmune bullous disease, characterized by autoantibodies targeting BP180 and BP230. The role of interleukin (IL)-36, a potent chemoattractant for granulocytes, in BP remains elusive.The expression of IL-36 cytokines (IL-36α, β, γ) and their antagonists (IL-36Ra and IL-38) was analysed in the skin and serum samples of patients with BP (n = 31), psoriasis (n = 10) and healthy controls (HC) (n = 14) by quantitative polymerase chain reaction and enzyme linked immunosorbent assay, respectively. Skin and serum levels of all cytokines were correlated with the Bullous Pemphigoid Disease Area Index (BPDAI) score and with the serum concentration of pathogenic antibodies.IL-36α, IL-36β, IL-36γ and IL-36Ra were significantly (p < 0.05) overexpressed in BP skin compared to HC, without remarkable differences relative to psoriasis skin. The expression of IL-38 was significantly (p < 0.05) higher in BP compared to psoriasis skin.IL-36α and γ, but not β, serum concentrations were significantly (p < 0.05) higher in BP compared to HC. IL-36γ was significantly (p < 0.05) more expressed in the serum of psoriasis patients than BP. The serum concentration of IL-36Ra and IL-38 were similar between BP and HC, while IL-38 serum levels were significantly (p < 0.05) higher in BP compared to psoriasis patients. Serum IL-36α correlated significantly with BPDAI (r = 0.5 p = 0.001).IL-36 agonists are increased in BP patients, both locally and systemically. Serum IL-36α might represent a potential biomarker for BP. An inefficient balance between IL-36 agonists and antagonists is likely to occur during BP inflammation.
Collapse
Affiliation(s)
- Roberto Maglie
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Laura Mercurio
- Experimental Immunology Laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Martina Morelli
- Experimental Immunology Laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Stefania Madonna
- Experimental Immunology Laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Adele Salemme
- Molecular and Cell Biology laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Maria E Baffa
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Lavinia Quintarelli
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Giovanni M Di Zenzo
- Molecular and Cell Biology laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Emiliano Antiga
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Cristina Albanesi
- Experimental Immunology Laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| |
Collapse
|
5
|
Yan T, Zhang Z. Adaptive and innate immune pathogenesis of bullous pemphigoid: A review. Front Immunol 2023; 14:1144429. [PMID: 36993969 PMCID: PMC10041874 DOI: 10.3389/fimmu.2023.1144429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering disease that primarily affects elderly individuals. The presentation of BP is heterogeneous, typically manifesting as microscopic subepidermal separation with a mixed inflammatory infiltrate. The mechanism of pemphigoid development is unclear. B cells play a major role in pathogenic autoantibody production, and T cells, type II inflammatory cytokines, eosinophils, mast cells, neutrophils, and keratinocytes are also implicated in the pathogenesis of BP. Here, we review the roles of and crosstalk between innate and adaptive immune cells in BP.
Collapse
Affiliation(s)
- Tianmeng Yan
- Department of Dermatology, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Zhenying Zhang
- Department of Dermatology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Zhenying Zhang,
| |
Collapse
|
6
|
Maglie R, Solimani F, Didona D, Pipitò C, Antiga E, Di Zenzo G. The cytokine milieu of bullous pemphigoid: Current and novel therapeutic targets. Front Med (Lausanne) 2023; 10:1128154. [PMID: 36814775 PMCID: PMC9939461 DOI: 10.3389/fmed.2023.1128154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Bullous pemphigoid (BP) is the most common autoimmune bullous disease, characterized by severe pruritus and skin blistering. The loss of tolerance against Collagen XVII, also referred to as BP180, is the main pathogenic event of BP, leading to production of IgG autoantibodies which mainly target the juxtamembranous extracellular non-collagenous 16th A (NC16A) domain of BP180. A complex inflammatory network is activated upon autoantibody binding to the basement membrane zone; this inflammatory loop involves the complement cascade and the release of several inflammatory cytokines, chemokines and proteases from keratinocytes, lymphocytes, mast cells and granulocytes. Collectively, these events disrupt the integrity of the dermal-epidermal junction, leading to subepidermal blistering. Recent advances have led to identify novel therapeutic targets for BP, whose management is mainly based on the long-term use of topical and systemic corticosteroids. As an example, targeting type-2 T-helper cell-associated cytokines, such as Interleukin-4 and interleukin-13 has shown meaningful clinical efficacy in case series and studies; targeting IL-17 and IL-23 has also been tried, owing to an important role of these cytokines in the chronic maintenance phase of BP. In this review article, we discuss the complex cytokine milieu that characterized BP inflammation, highlighting molecules, which are currently investigated as present and future therapeutic targets for this life-threatening disease.
Collapse
Affiliation(s)
- Roberto Maglie
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Farzan Solimani
- Department of Dermatology, Venereology and Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany,BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
| | - Dario Didona
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Carlo Pipitò
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Emiliano Antiga
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Giovanni Di Zenzo
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy,*Correspondence: Giovanni Di Zenzo,
| |
Collapse
|
7
|
Fu C, Chen L, Cheng Y, Yang W, Zhu H, Wu X, Cai B. Identification of immune biomarkers associated with basement membranes in idiopathic pulmonary fibrosis and their pan-cancer analysis. Front Genet 2023; 14:1114601. [PMID: 36936416 PMCID: PMC10017543 DOI: 10.3389/fgene.2023.1114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease of unknown etiology, characterized by diffuse alveolitis and alveolar structural damage. Due to the short median survival time and poor prognosis of IPF, it is particularly urgent to find new IPF biomarkers. Previous studies have shown that basement membranes (BMs) are associated with the development of IPF and tumor metastasis. However, there is still a lack of research on BMs-related genes in IPF. Therefore, we investigated the expression level of BMs genes in IPF and control groups, and explored their potential as biomarkers for IPF diagnosis. In this study, the GSE32537 and GSE53845 datasets were used as training sets, while the GSE24206, GSE10667 and GSE101286 datasets were used as validation sets. In the training set, seven immune biomarkers related to BMs were selected by differential expression analysis, machine learning algorithm (LASSO, SVM-RFE, Randomforest) and ssGSEA analysis. Further ROC analysis confirmed that seven BMs-related genes played an important role in IPF. Finally, four immune-related Hub genes (COL14A1, COL17A1, ITGA10, MMP7) were screened out. Then we created a logistic regression model of immune-related hub genes (IHGs) and used a nomogram to predict IPF risk. The nomogram model was evaluated to have good reliability and validity, and ROC analysis showed that the AUC value of IHGs was 0.941 in the training set and 0.917 in the validation set. Pan-cancer analysis showed that IHGs were associated with prognosis, immune cell infiltration, TME, and drug sensitivity in 33 cancers, suggesting that IHGs may be potential targets for intervention in human diseases including IPF and cancer.
Collapse
Affiliation(s)
- Chenkun Fu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lina Chen
- Guiyang Public Health Clinical Center, Guiyang, China
- Guizhou Medical University, Guiyang, China
| | - Yiju Cheng
- Guizhou Medical University, Guiyang, China
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Guiyang, Guiyang, China
- *Correspondence: Yiju Cheng, ; Wenting Yang,
| | - Wenting Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Yiju Cheng, ; Wenting Yang,
| | - Honglan Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiao Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Banruo Cai
- Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|