1
|
Desprès P, Salmon D, Bellec L, Cabié A, Gougeon ML. [The dengue vaccine: a major scientific challenge and a public health issue]. Med Sci (Paris) 2024; 40:737-747. [PMID: 39450959 DOI: 10.1051/medsci/2024116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Almost half of the world's population is exposed to the risk of transmission of the four dengue virus serotypes (DENV 1-4), by mosquitoes of the genus Aedes. A dengue vaccine is effective if it induces prolonged protective immunity against all circulating viral strains, irrespective of the age and infection history of the vaccinated subject. An effective vaccine strategy against dengue is based on the injection of live attenuated viruses in a tetravalent formulation. In this review, we present the most promising candidate vaccines against dengue, their successes and also the questions raised by the correlates of protection that have been adopted to assess their level of effectiveness against the disease.
Collapse
Affiliation(s)
- Philippe Desprès
- Processus infectieux en milieu insulaire tropical (PIMIT), Université de La Réunion, Inserm U1187, CNRS 9192, IRD 249, Plateforme technologique CYROI, Sainte-Clotilde La Réunion France
| | | | | | - André Cabié
- Service de maladies infectieuses et tropicales, CHU de Martinique Fort-de-France, France ; PCCEI, Univ Montpellier, Inserm, EFS Montpellier, France ; CIC Antilles Guyane, Inserm CIC1424 Fort-de-France France
| | | |
Collapse
|
2
|
Castanha PMS, Azar SR, Yeung J, Wallace M, Kettenburg G, Watkins SC, Marques ETA, Vasilakis N, Barratt-Boyes SM. Aedes aegypti Mosquito Probing Enhances Dengue Virus Infection of Resident Myeloid Cells in Human Skin. Viruses 2024; 16:1253. [PMID: 39205228 PMCID: PMC11360165 DOI: 10.3390/v16081253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
The most prevalent arthropod-borne viruses, including the dengue viruses, are primarily transmitted by infected mosquitoes. However, the dynamics of dengue virus (DENV) infection and dissemination in human skin following Aedes aegypti probing remain poorly understood. We exposed human skin explants to adult female Ae. aegypti mosquitoes following their infection with DENV-2 by intrathoracic injection. Skin explants inoculated with a similar quantity of DENV-2 by a bifurcated needle were used as controls. Quantitative in situ imaging revealed that DENV replication was greatest in keratinocytes in the base of the epidermis, accounting for 50-60% of all infected cells regardless of the route of inoculation. However, DENV inoculation by Ae. aegypti probing resulted in an earlier and increased viral replication in the dermis, infecting twice as many cells at 24 h when compared to needle inoculation. Within the dermis, enhanced replication of DENV by Ae. aegypti infected mosquitoes was mediated by increased local recruitment of skin-resident macrophages, dermal dendritic cells, and epidermal Langerhans cells relative to needle inoculation. An enhanced but less pronounced influx of resident myeloid cells to the site of mosquito probing was also observed in the absence of infection. Ae. aegypti probing also increased recruitment and infection of dermal mast cells. Our findings reveal for the first time that keratinocytes are the primary targets of DENV infection following Ae. aegypti inoculation, even though most of the virus is inoculated into the dermis during probing. The data also show that mosquito probing promotes the local recruitment and infection of skin-resident myeloid cells in the absence of an intact vasculature, indicating that influx of blood-derived neutrophils is not an essential requirement for DENV spread within and out of skin.
Collapse
Affiliation(s)
- Priscila M. S. Castanha
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (P.M.S.C.); (M.W.); (G.K.); (E.T.A.M.)
| | - Sasha R. Azar
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Jason Yeung
- Department of Biochemistry, Cellular and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0645, USA;
| | - Megan Wallace
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (P.M.S.C.); (M.W.); (G.K.); (E.T.A.M.)
| | - Gwenddolen Kettenburg
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (P.M.S.C.); (M.W.); (G.K.); (E.T.A.M.)
| | - Simon C. Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ernesto T. A. Marques
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (P.M.S.C.); (M.W.); (G.K.); (E.T.A.M.)
- Aggeu Magalhaes Institute, Oswaldo Cruz Foundation, Recife 50.740-465, Pernambuco, Brazil
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Simon M. Barratt-Boyes
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (P.M.S.C.); (M.W.); (G.K.); (E.T.A.M.)
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Hadpech S, Thongboonkerd V. Proteomic investigations of dengue virus infection: key discoveries over the last 10 years. Expert Rev Proteomics 2024; 21:281-295. [PMID: 39049185 DOI: 10.1080/14789450.2024.2383580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Dengue virus (DENV) infection remains one of the most significant infectious diseases in humans. Several efforts have been made to address its molecular mechanisms. Over the last 10 years, proteomics has been widely applied to investigate various aspects of DENV infection. AREAS COVERED In this review, we briefly introduce common proteomics approaches using various mass spectrometric modalities followed by summarizing all the discoveries obtained from proteomic investigations of DENV infection over the last 10 years. These include the data on DENV-vector interactions and host responses to address the DENV biology and disease mechanisms. Moreover, applications of proteomics to disease prevention, diagnosis, vaccine design, development of anti-DENV agents and other new treatment strategies are discussed. EXPERT OPINION Despite efforts on disease prevention, DENV infection is still a significant global healthcare burden that affects the general population. As summarized herein, proteomic technologies with high-throughput capabilities have provided more in-depth details of protein dynamics during DENV infection. More extensive applications of proteomics and other powerful research tools would provide a promise to better cope and prevent this mosquito-borne infectious disease.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
4
|
Martí MM, Castanha PMS, Barratt-Boyes SM. The Dynamic Relationship between Dengue Virus and the Human Cutaneous Innate Immune Response. Viruses 2024; 16:727. [PMID: 38793609 PMCID: PMC11125669 DOI: 10.3390/v16050727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Dengue virus (DENV) is a continuing global threat that puts half of the world's population at risk for infection. This mosquito-transmitted virus is endemic in over 100 countries. When a mosquito takes a bloodmeal, virus is deposited into the epidermal and dermal layers of human skin, infecting a variety of permissive cells, including keratinocytes, Langerhans cells, macrophages, dermal dendritic cells, fibroblasts, and mast cells. In response to infection, the skin deploys an array of defense mechanisms to inhibit viral replication and prevent dissemination. Antimicrobial peptides, pattern recognition receptors, and cytokines induce a signaling cascade to increase transcription and translation of pro-inflammatory and antiviral genes. Paradoxically, this inflammatory environment recruits skin-resident mononuclear cells that become infected and migrate out of the skin, spreading virus throughout the host. The details of the viral-host interactions in the cutaneous microenvironment remain unclear, partly due to the limited body of research focusing on DENV in human skin. This review will summarize the functional role of human skin, the cutaneous innate immune response to DENV, the contribution of the arthropod vector, and the models used to study DENV interactions in the cutaneous environment.
Collapse
Affiliation(s)
- Michelle M. Martí
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.M.M.); (P.M.S.C.)
| | - Priscila M. S. Castanha
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.M.M.); (P.M.S.C.)
- Faculdade de Ciệncias Médicas, Universidade de Pernambuco, Recife 52171-011, Brazil
| | - Simon M. Barratt-Boyes
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.M.M.); (P.M.S.C.)
| |
Collapse
|
5
|
Caucheteux SM, Piguet V. Contribution of Langerhans Cells to Early Dengue Infection. J Invest Dermatol 2024; 144:927-929. [PMID: 38206271 DOI: 10.1016/j.jid.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Affiliation(s)
- Stephan M Caucheteux
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Vincent Piguet
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Canada; Division of Dermatology, Department of Medicine, Women's College Hospital, Toronto, Canada.
| |
Collapse
|