1
|
Degli Esposti L, Squitieri D, Fusacchia C, Bassi G, Torelli R, Altamura D, Manicone E, Panseri S, Adamiano A, Giannini C, Montesi M, Bugli F, Iafisco M. Bioinspired oriented calcium phosphate nanocrystal arrays with bactericidal and osteogenic properties. Acta Biomater 2024; 186:470-488. [PMID: 39117114 DOI: 10.1016/j.actbio.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The global diffusion of antibiotic resistance poses a severe threat to public health. Addressing antibiotic-resistant infections requires innovative approaches, such as antibacterial nanostructured surfaces (ANSs). These surfaces, featuring ordered arrays of nanostructures, exhibit the ability to kill bacteria upon contact. However, most currently developed ANSs utilize bioinert materials, lacking bioactivity crucial for promoting tissue regeneration, particularly in the context of bone infections. This study introduces ANSs composed of bioactive calcium phosphate nanocrystals. Two distinct ANSs were created through a biomineralization-inspired growth of amorphous calcium phosphate (ACP) precursors. The ANSs demonstrated efficient antibacterial properties against both Gram-negative (P. aeruginosa) and Gram-positive (S. aureus) antibiotic resistant bacteria, with up to 75 % mortality in adhered bacteria after only 4 h of contact. Notably, the ANS featuring thinner and less oriented nano-needles exhibited superior efficacy attributed to simultaneous membrane rupturing and oxidative stress induction. Moreover, the ANSs facilitate the proliferation of mammalian cells, enhancing adhesion, spreading, and reducing oxidative stress. The ANSs displayed also significant bioactivity towards human mesenchymal stem cells, promoting colonization and inducing osteogenic differentiation. Specifically, the ANS with thicker and more ordered nano-needles demonstrated heightened effects. In conclusion, ANSs introduced in this work have the potential to serve as foundation for developing bone graft materials capable of eradicate site infections while concurrently stimulating bone regeneration. STATEMENT OF SIGNIFICANCE: Nanostructured surfaces with antibacterial properties through a mechano-bactericidal mechanism have shown significant potential in fighting antibiotic resistance. However, these surfaces have not been fabricated with bioactive materials necessary for developing devices that are both antibacterial and able to stimulate tissue regeneration. This study demonstrates the feasibility of creating nanostructured surfaces of ordered calcium phosphate nano-needles through a biomineralization-inspired growth. These surfaces exhibit dual functionality, serving as effective bactericidal agents against Gram-negative and Gram-positive antibiotic-resistant bacteria while also promoting the proliferation of mammalian cells and inducing osteogenic differentiation of human mesenchymal stem cells. Consequently, this approach holds promise in the context of bone infections, introducing innovative nanostructured surfaces that could be utilized in the development of antimicrobial and osteogenic grafts.
Collapse
Affiliation(s)
- Lorenzo Degli Esposti
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Damiano Squitieri
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Camilla Fusacchia
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy; Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Via delle Scienze 11/A, 43124, Parma (PR), Italy
| | - Giada Bassi
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy; Department of Neuroscience, Imaging and Clinical Science. University of G. d'Annunzio, Via dei Vestini 31, 66100, Chieti, Italy
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Davide Altamura
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Erika Manicone
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Via Amendola 122/O, 70126 Bari, Italy; Dipartimento di Chimica, Università degli studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Silvia Panseri
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Alessio Adamiano
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Cinzia Giannini
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Monica Montesi
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
| | - Michele Iafisco
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy.
| |
Collapse
|
2
|
Ma S, Ma B, Yang Y, Mu Y, Wei P, Yu X, Zhao B, Zou Z, Liu Z, Wang M, Deng J. Functionalized 3D Hydroxyapatite Scaffold by Fusion Peptides-Mediated Small Extracellular Vesicles of Stem Cells for Bone Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3064-3081. [PMID: 38215277 DOI: 10.1021/acsami.3c13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
3D printing technology offers extensive applications in tissue engineering and regenerative medicine (TERM) because it can create a three-dimensional porous structure with acceptable porosity and fine mechanical qualities that can mimic natural bone. Hydroxyapatite (HA) is commonly used as a bone repair material due to its excellent biocompatibility and osteoconductivity. Small extracellular vesicles (sEVs) derived from bone marrow mesenchymal stem cells (BMSCs) can regulate bone metabolism and stimulate the osteogenic differentiation of stem cells. This study has designed a functionalized bone regeneration scaffold (3D H-P-sEVs) by combining the biological activity of BMSCs-sEVs and the 3D-HA scaffold to improve bone regeneration. The scaffold utilizes the targeting of fusion peptides to increase the loading efficiency of sEVs. The composition, structure, mechanical properties, and in vitro degradation performance of the 3D H-P-sEVs scaffolds were examined. The composite scaffold demonstrated good biocompatibility, substantially increased the expression of osteogenic-related genes and proteins, and had a satisfactory bone integration effect in the critical skull defect model of rats. In conclusion, the combination of EVs and 3D-HA scaffold via fusion peptide provides an innovative composite scaffold for bone regeneration and repair, improving osteogenic performance.
Collapse
Affiliation(s)
- Shiqing Ma
- Department of Stomatology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin 300211, China
| | - Beibei Ma
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Yilin Yang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Yuzhu Mu
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd., No. 6 Plant West, Valley No. 1 Bio-medicine Industry Park, Beijing 102600, China
| | - Xueqiao Yu
- Beijing Biosis Healing Biological Technology Co., Ltd., No. 6 Plant West, Valley No. 1 Bio-medicine Industry Park, Beijing 102600, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd., No. 6 Plant West, Valley No. 1 Bio-medicine Industry Park, Beijing 102600, China
| | - Zhenyu Zou
- Department of Hernia and Abdominal Wall Surgery, Beijing Chaoyang Hospital, Capital Medical University, 5 Jingyuan Road, Shijingshan District, Beijing 100043, China
| | - Zihao Liu
- Tianjin Zhongnuo Dental Hospital, Dingfu Building at the intersection of Nanma Road and Nankai Sanma Road in Nankai District, Tianjin 300100, China
| | - Minggang Wang
- Department of Hernia and Abdominal Wall Surgery, Beijing Chaoyang Hospital, Capital Medical University, 5 Jingyuan Road, Shijingshan District, Beijing 100043, China
| | - Jiayin Deng
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| |
Collapse
|
3
|
Dorozhkin SV. There Are over 60 Ways to Produce Biocompatible Calcium Orthophosphate (CaPO4) Deposits on Various Substrates. JOURNAL OF COMPOSITES SCIENCE 2023; 7:273. [DOI: 10.3390/jcs7070273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A The present overview describes various production techniques for biocompatible calcium orthophosphate (abbreviated as CaPO4) deposits (coatings, films and layers) on the surfaces of various types of substrates to impart the biocompatible properties for artificial bone grafts. Since, after being implanted, the grafts always interact with the surrounding biological tissues at the interfaces, their surface properties are considered critical to clinical success. Due to the limited number of materials that can be tolerated in vivo, a new specialty of surface engineering has been developed to desirably modify any unacceptable material surface characteristics while maintaining the useful bulk performance. In 1975, the development of this approach led to the emergence of a special class of artificial bone grafts, in which various mechanically stable (and thus suitable for load-bearing applications) implantable biomaterials and artificial devices were coated with CaPO4. Since then, more than 7500 papers have been published on this subject and more than 500 new publications are added annually. In this review, a comprehensive analysis of the available literature has been performed with the main goal of finding as many deposition techniques as possible and more than 60 methods (double that if all known modifications are counted) for producing CaPO4 deposits on various substrates have been systematically described. Thus, besides the introduction, general knowledge and terminology, this review consists of two unequal parts. The first (bigger) part is a comprehensive summary of the known CaPO4 deposition techniques both currently used and discontinued/underdeveloped ones with brief descriptions of their major physical and chemical principles coupled with the key process parameters (when possible) to inform readers of their existence and remind them of the unused ones. The second (smaller) part includes fleeting essays on the most important properties and current biomedical applications of the CaPO4 deposits with an indication of possible future developments.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
4
|
Electrodeposition of Calcium Phosphate Coatings on Metallic Substrates for Bone Implant Applications: A Review. COATINGS 2022. [DOI: 10.3390/coatings12040539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review summaries more than three decades of scientific knowledge on electrodeposition of calcium phosphate coatings. This low-temperature process aims to make the surface of metallic bone implants bioactive within a physiological environment. The first part of the review describes the reaction mechanisms that lead to the synthesis of a bioactive coating. Electrodeposition occurs in three consecutive steps that involve electrochemical reactions, pH modification, and precipitation of the calcium phosphate coating. However, the process also produces undesired dihydrogen bubbles during the deposition because of the reduction of water, the solvent of the electrolyte solution. To prevent the production of large amounts of dihydrogen bubbles, the current density value is limited during deposition. To circumvent this issue, the use of pulsed current has been proposed in recent years to replace the traditional direct current. Thanks to breaking times, dihydrogen bubbles can regularly escape from the surface of the implant, and the deposition of the calcium phosphate coating is less disturbed by the accumulation of bubbles. In addition, the pulsed current has a positive impact on the chemical composition, morphology, roughness, and mechanical properties of the electrodeposited calcium phosphate coating. Finally, the review describes one of the most interesting properties of electrodeposition, i.e., the possibility of adding ionic substituents to the calcium phosphate crystal lattice to improve the biological performance of the bone implant. Several cations and anions are reviewed from the scientific literature with a description of their biological impact on the physiological environment.
Collapse
|
5
|
Jang KJ, Seonwoo H, Yang M, Park S, Lim KT, Kim J, Choung PH, Chung JH. Development and characterization of waste equine bone-derived calcium phosphate cements with human alveolar bone-derived mesenchymal stem cells. Connect Tissue Res 2021; 62:164-175. [PMID: 31581855 DOI: 10.1080/03008207.2019.1655003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Calcium phosphate cements (CPCs) are regarded as promising graft substitutes for bone tissue engineering. However, their wide use is limited by the high cost associated with the complex synthetic processes involved in their fabrication. Cheaper xenogeneic calcium phosphate (CaP) materials derived from waste animal bone may solve this problem. Moreover, the surface topography, mechanical strength, and cellular function of CPCs are influenced by the ratio of micro- to nano-sized CaP (M/NCaP) particles. In this study, we developed waste equine bone (EB)-derived CPCs with various M/NCaP particle ratios to examine the potential capacity of EB-CPCs for bone grafting materials. Our study showed that increasing the number of NCaP particles resulted in reductions in roughness and porosity while promoting smoother surfaces of EB-CPCs. Changes in the chemical properties of EB-CPCs by NCaP particles were observed using X-ray diffractometry. The mechanical properties and cohesiveness of the EB-CPCs improved as the NCaP particle content increased. In an in vitro study, EB-CPCs with a greater proportion of MCaP particles showed higher cell adhesion. Alkaline phosphatase activity indicated that osteogenic differentiation by EB-CPCs was promoted with increased NCaP particle content. These results could provide a design criterion for bone substitutes for orthopedic disease, including periodontal bone defects.
Collapse
Affiliation(s)
- Kyoung-Je Jang
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University , Seoul, Republic of Korea
| | - Hoon Seonwoo
- Department of Industrial Machinery Engineering, College of Life Science and Natural Resources, Sunchon National University , Sunchon, Republic of Korea
| | - Minho Yang
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University , Seoul, Republic of Korea
| | - Sangbae Park
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University , Seoul, Republic of Korea
| | - Ki Taek Lim
- Department of Biosystems Engineering, College of Agricultural and Life Sciences, Kangwon National University , Chuncheon, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University , Gwangju, Republic of Korea
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University , Seoul, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University , Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University , Seoul, Republic of Korea
| |
Collapse
|
6
|
Gómez-Cerezo MN, Lozano D, Arcos D, Vallet-Regí M, Vaquette C. The effect of biomimetic mineralization of 3D-printed mesoporous bioglass scaffolds on physical properties and in vitro osteogenicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110572. [PMID: 32228951 DOI: 10.1016/j.msec.2019.110572] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 01/24/2023]
Abstract
Three-dimensional Mesoporous bioactive glasses (MBGs) scaffolds has been widely considered for bone regeneration purposes and additive manufacturing enables the fabrication of highly bioactive patient-specific constructs for bone defects. Commonly, this process is performed with the addition of polymeric binders that facilitate the printability of scaffolds. However, these additives cover the MBG particles resulting in the reduction of their osteogenic potential. The present work investigates a simple yet effective phosphate-buffered saline immersion method for achieving polyvinyl alcohol binder removal while enables the maintenance of the mesoporous structure of MBG 3D-printed scaffolds. This resulted in significantly modifying the surface of the scaffold via the spontaneous formation of a biomimetic mineralized layer which positively affected the physical and biological properties of the scaffold. The extensive surface remodeling induced by the deposition of the apatite-like layer lead to a 3-fold increase in surface area, a 5-fold increase in the roughness, and 4-fold increase in the hardness of the PBS-immersed scaffolds when compared to the as-printed counterpart. The biomimetic mineralization also occurred throughout the bulk of the scaffold connecting the MBGs particles and was responsible for the maintenance of structural integrity. In vitro assays using MC3T3-E1 pre-osteoblast like cells demonstrated a significant upregulation of osteogenic-related genes for the scaffolds previously immersed in PBS when compared to the as-printed PVA-containing scaffolds. Although the pre-immersion scaffolds performed equally towards osteogenic cell differentiation, our data suggest that a short immersion in PBS of MBG scaffolds is beneficial for the osteogenic properties and might accelerate bone formation after implantation.
Collapse
Affiliation(s)
- M Natividad Gómez-Cerezo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; The University of Queensland, School of Dentistry, Herston, QLD, Australia
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, Herston, QLD, Australia.
| |
Collapse
|
7
|
Mokabber T, Zhou Q, Vakis A, van Rijn P, Pei Y. Mechanical and biological properties of electrodeposited calcium phosphate coatings. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:475-484. [DOI: 10.1016/j.msec.2019.03.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
|
8
|
Li J, Yang L, Guo X, Cui W, Yang S, Wang J, Qu Y, Shao Z, Xu S. Osteogenesis effects of strontium-substituted hydroxyapatite coatings on true bone ceramic surfaces in vitro and in vivo. Biomed Mater 2017; 13:015018. [PMID: 28862155 DOI: 10.1088/1748-605x/aa89af] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To develop bioactive bone graft materials that can induce rapid bone regeneration, a novel biomaterial was synthesized by coating true bone ceramic (TBC) substrates with strontium-substituted nano-hydroxyapatites (SrHA) (Sr concentrations of 0%, 10%, 40%, 100%) through a sol-gel dip-coating approach. All coated TBC scaffolds retained the inherent natural trabecular structure, porosity, compressive strength and simultaneously possessed a micro/nanotopography SrHA layer on the substrate surface. The dimension of the deposited crystal increased and the density of the deposited apatite particles became sparse with increasing Sr content, but a unique HA crystalline phase was observed under all conditions. The modified TBC scaffolds significantly enhanced the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 osteoblasts in vitro. Particularly, the Sr10-TBC group (10 mol% Sr2+ in apatite coating) revealed the highest osteogenic efficacy over the other groups. Three-dimensional CT imaging and histological evaluations on a bilateral critical-sized rabbit radial defect model for 12 weeks showed significant bone formation in the Sr10-TBC implants. The new bone area ratios of the Sr10-TBC group were significantly higher than that of the TBC group. Additionally, Sr10-TBC implants showed faster degradability compared with raw TBC implants during the 12 weeks of implantation. The results indicate that TBC modification with 10% SrHA coating stimulated osteogenesis and could be a promising biomaterial for future bone defect regeneration.
Collapse
Affiliation(s)
- Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chakrapani Venkatesan Y, Sampath Kumar TS, Raj DK, Kumary TV. Osteogenic apatite particles by sol-gel assisted electrospraying. J Biomed Mater Res B Appl Biomater 2017; 106:1941-1954. [DOI: 10.1002/jbm.b.34013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/28/2017] [Accepted: 09/17/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Yogeshwar Chakrapani Venkatesan
- Medical Materials Laboratory; Indian Institute of Technology Madras; Chennai 600036 India
- Tissue Culture Laboratory; Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura; Trivandrum 695 012 India
| | - T. S. Sampath Kumar
- Medical Materials Laboratory; Indian Institute of Technology Madras; Chennai 600036 India
| | - Deepa K. Raj
- Tissue Culture Laboratory; Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura; Trivandrum 695 012 India
| | - T. V. Kumary
- Tissue Culture Laboratory; Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura; Trivandrum 695 012 India
| |
Collapse
|
10
|
Onder S, Calikoglu-Koyuncu AC, Kazmanli K, Urgen M, Torun Kose G, Kok FN. Behavior of mammalian cells on magnesium substituted bare and hydroxyapatite deposited (Ti,Mg)N coatings. N Biotechnol 2015; 32:747-55. [DOI: 10.1016/j.nbt.2014.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/14/2014] [Accepted: 11/24/2014] [Indexed: 01/09/2023]
|
11
|
Surmenev RA, Surmeneva MA, Ivanova AA. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis--a review. Acta Biomater 2014; 10:557-79. [PMID: 24211734 DOI: 10.1016/j.actbio.2013.10.036] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 12/15/2022]
Abstract
A systematic analysis of results available from in vitro, in vivo and clinical trials on the effects of biocompatible calcium phosphate (CaP) coatings is presented. An overview of the most frequently used methods to prepare CaP-based coatings was conducted. Dense, homogeneous, highly adherent and biocompatible CaP or hybrid organic/inorganic CaP coatings with tailored properties can be deposited. It has been demonstrated that CaP coatings have a significant effect on the bone regeneration process. In vitro experiments using different cells (e.g. SaOS-2, human mesenchymal stem cells and osteoblast-like cells) have revealed that CaP coatings enhance cellular adhesion, proliferation and differentiation to promote bone regeneration. However, in vivo, the exact mechanism of osteogenesis in response to CaP coatings is unclear; indeed, there are conflicting reports of the effectiveness of CaP coatings, with results ranging from highly effective to no significant or even negative effects. This review therefore highlights progress in CaP coatings for orthopaedic implants and discusses the future research and use of these devices. Currently, an exciting area of research is in bioactive hybrid composite CaP-based coatings containing both inorganic (CaP coating) and organic (collagen, bone morphogenetic proteins, arginylglycylaspartic acid etc.) components with the aim of promoting tissue ingrowth and vascularization. Further investigations are necessary to reveal the relative influences of implant design, surgical procedure, and coating characteristics (thickness, structure, topography, porosity, wettability etc.) on the long-term clinical effects of hybrid CaP coatings. In addition to commercially available plasma spraying, other effective routes for the fabrication of hybrid CaP coatings for clinical use still need to be determined and current progress is discussed.
Collapse
Affiliation(s)
- Roman A Surmenev
- Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany.
| | - Maria A Surmeneva
- Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Anna A Ivanova
- Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| |
Collapse
|
12
|
Abou Neel EA, Chrzanowski W, Knowles JC. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 35:307-13. [PMID: 24411382 DOI: 10.1016/j.msec.2013.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/22/2013] [Accepted: 10/29/2013] [Indexed: 11/26/2022]
Abstract
The interplay between glass chemistry, structure, degradation kinetics, and biological activity provides flexibility for the development of scaffolds with highly specific cellular response. The aim of this study was therefore to investigate the role of titania inclusion into the phosphate-based glass on its ability to stimulate osteoblast-like human osteosarcoma (HOS) cells to adhere, proliferate and differentiate. In depth morphological and biochemical characterisation was performed on HOS cells cultured on the surface of glass discs. Cell proliferation was also studied in the presence of the glass extract. Cell differentiation, through osteoblast phenotype genes, alkaline phosphatase (ALP) activity and osteocalcin production, was carried out using normal or osteogenic media. Both Thermanox® and titania free glass were used as controls. The data demonstrated that titania inclusion provides desired cytocompatible surface that supported initial cell attachment, sustained viability, and increased cell proliferation similar or significantly higher than Thermanox®. The modified glasses regulated osteoblastic cell differentiation as detected by osteoblast phenotype gene transcription and upregulated ALP and osteocalcin expression. Using osteogenic media had no significant effect on ALP activity and osteocalcin expression. Therefore, titania modified phosphate glasses may have future use as bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Ensanya Ali Abou Neel
- Division of Biomaterials, Conservative Dental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia; Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt; Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom.
| | - Wojciech Chrzanowski
- The University of Sydney, Faculty of Pharmacy, Pharmacy and Bank Building, NSW2006, Australia; Department of Nanobiomedical Science & BK21 Plus NBM Global Reserch Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Jonathan Campbell Knowles
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom; Department of Nanobiomedical Science & BK21 Plus NBM Global Reserch Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea.
| |
Collapse
|
13
|
Onder S, Kok FN, Kazmanli K, Urgen M. Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4337-42. [DOI: 10.1016/j.msec.2013.06.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/21/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022]
|
14
|
Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater 2013; 9:8037-45. [PMID: 23791671 DOI: 10.1016/j.actbio.2013.06.014] [Citation(s) in RCA: 455] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/14/2013] [Accepted: 06/11/2013] [Indexed: 12/16/2022]
Abstract
Calcium phosphate ceramics (CPCs) have been widely used as biomaterials for the regeneration of bone tissue because of their ability to induce osteoblastic differentiation in progenitor cells. Despite the progress made towards fabricating CPCs possessing a range of surface features and chemistries, the influence of material properties in orchestrating cellular events such as adhesion and differentiation is still poorly understood. Specifically, questions such as why certain CPCs may be more osteoinductive than others, and how material properties contribute to osteoinductivity/osteoconductivity remain unanswered. Therefore, this review article systematically discusses the effects of the physical (e.g. surface roughness) and chemical properties (e.g. solubility) of CPCs on protein adsorption, cell adhesion and osteoblastic differentiation in vitro. The review also provides a summary of possible signaling pathways involved in osteoblastic differentiation in the presence of CPCs. In summary, these insights on the contribution of material properties towards osteoinductivity and the role of signaling molecules involved in osteoblastic differentiation can potentially aid the design of CPC-based biomaterials that support bone regeneration without the need for additional biochemical supplements.
Collapse
|
15
|
Shen W, Cai K, Yang Z, Yan Y, Yang W, Liu P. Improved endothelialization of NiTi alloy by VEGF functionalized nanocoating. Colloids Surf B Biointerfaces 2012; 94:347-53. [DOI: 10.1016/j.colsurfb.2012.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 01/02/2023]
|
16
|
Modification of porous calcium phosphate surfaces with different geometries of bioactive glass nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2012.01.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Bayrak B, Laçin O, Saraç H. Kinetic study on the leaching of calcined magnesite in gluconic acid solutions. J IND ENG CHEM 2010. [DOI: 10.1016/j.jiec.2010.01.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|