1
|
Chen C, Wang Y, Zhang D, Zhang Z. 316 stainless steel wire mesh for visual detection of H 2O 2, glutathione and glucose based on the peroxidase-like activity. ANAL SCI 2022; 38:941-948. [PMID: 35482234 DOI: 10.1007/s44211-022-00115-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/03/2022] [Indexed: 11/30/2022]
Abstract
Stainless steel is a frequently used and cost-effective material. In this study, we discovered for the first time that fresh 316ss possessed an intrinsic peroxidase (POD) catalytic activity, which can catalyze the substrate of POD-like reaction 3,3',5,5'-tetramethylbenzidine (TMB) changing to a blue-colored product, oxidation of TMB, in the presence of hydrogen peroxide (H2O2). Subsequently, a rapid method was conducted to enable the active composites of the 316ss with reused POD activity for 25 circles at least. Based on this finding, the method exhibits a highly sensitive and selective application for H2O2, glutathione (GSH), and Glucose determination. The linear range of glucose detection was 5-100 μM and the detection limit was 3 μM. Finally, this method was further used for detection of glucose in human serum. This work finds a new function of 316ss and develops its novel application, which promotes the potential application of nanozyme in nanoscience and nanotechnology. Schematic representation of the enzyme mimic activities of 316ss wire mesh for the colorimetric detection of hydrogen peroxide H2O2 and GSH with a superior reusability for more than 25 cycles. Based on this, the colorimetric detection of glucose can be constructed combined with GOx.
Collapse
Affiliation(s)
- Chao Chen
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao, 266237, China
| | - Yi Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China. .,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao, 266237, China.
| | - Dun Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China. .,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao, 266237, China.
| | - Zhihao Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| |
Collapse
|
2
|
Palladium nanocluster-based fluorescent sensing platform via synergistic effects of inner filter effect and agglomeration-induced quenching for myoglobin determination. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Sindhu RK, Najda A, Kaur P, Shah M, Singh H, Kaur P, Cavalu S, Jaroszuk-Sierocińska M, Rahman MH. Potentiality of Nanoenzymes for Cancer Treatment and Other Diseases: Current Status and Future Challenges. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5965. [PMID: 34683560 PMCID: PMC8539628 DOI: 10.3390/ma14205965] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 01/08/2023]
Abstract
Studies from past years have observed various enzymes that are artificial, which are issued to mimic naturally occurring enzymes based on their function and structure. The nanozymes possess nanomaterials that resemble natural enzymes and are considered an innovative class. This innovative class has achieved a brilliant response from various developments and researchers owing to this unique property. In this regard, numerous nanomaterials are inspected as natural enzyme mimics for multiple types of applications, such as imaging, water treatment, therapeutics, and sensing. Nanozymes have nanomaterial properties occurring with an inheritance that provides a single substitute and multiple platforms. Nanozymes can be controlled remotely via stimuli including heat, light, magnetic field, and ultrasound. Collectively, these all can be used to increase the therapeutic as well as diagnostic efficacies. These nanozymes have major biomedical applications including cancer therapy and diagnosis, medical diagnostics, and bio sensing. We summarized and emphasized the latest progress of nanozymes, including their biomedical mechanisms and applications involving synergistic and remote control nanozymes. Finally, we cover the challenges and limitations of further improving therapeutic applications and provide a future direction for using engineered nanozymes with enhanced biomedical and diagnostic applications.
Collapse
Affiliation(s)
- Rakesh K. Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.K.S.); (P.K.); (H.S.); (P.K.)
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna St., 20-280 Lublin, Poland
| | - Prabhjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.K.S.); (P.K.); (H.S.); (P.K.)
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Harmanpreet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.K.S.); (P.K.); (H.S.); (P.K.)
| | - Parneet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.K.S.); (P.K.); (H.S.); (P.K.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
| | - Monika Jaroszuk-Sierocińska
- Institute of Soil Science and Environment Shaping, University of Life Sciences in Lublin, 7 Leszczyńskiego St., 20-069 Lublin, Poland;
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
| |
Collapse
|
4
|
Microbial fuel cell-assisted biogenic synthesis of gold nanoparticles and its application to energy production and hydrogen peroxide detection. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0539-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Izzi M, Sportelli MC, Tursellino L, Palazzo G, Picca RA, Cioffi N, López Lorente ÁI. Gold Nanoparticles Synthesis Using Stainless Steel as Solid Reductant: A Critical Overview. NANOMATERIALS 2020; 10:nano10040622. [PMID: 32230948 PMCID: PMC7221709 DOI: 10.3390/nano10040622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Gold nanoparticles (AuNPs) were produced using stainless steel as a solid reductant to assist the synthesis of metal NPs, using HAuCl4 as a precursor. This method is very easy, quick, and cost-effective, allowing the synthesis of highly stable NPs without additional capping agents. However, the reaction mechanism is still under debate. In order to contribute to the investigation of the synthesis of AuNPs using stainless steel, different experimental conditions were tested. Cl− concentration, pH of the precursor solution, as well as stainless steel composition were systematically changed. The syntheses were performed recording the open circuit potential to potentiometrically explore the electrochemical properties of the system, under operando conditions. Spectroscopic and morphological characterizations were carried out along with potentiometric monitoring, aiming at correlating the synthesis parameters with the AuNPs characteristics. As a result, an overview of the process features, and of its most reasonable mechanism were obtained.
Collapse
Affiliation(s)
- Margherita Izzi
- Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona, 4, 70126 Bari, Italy; (M.I.); (M.C.S.); (L.T.); (G.P.)
| | - Maria C. Sportelli
- Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona, 4, 70126 Bari, Italy; (M.I.); (M.C.S.); (L.T.); (G.P.)
| | - Luciana Tursellino
- Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona, 4, 70126 Bari, Italy; (M.I.); (M.C.S.); (L.T.); (G.P.)
| | - Gerardo Palazzo
- Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona, 4, 70126 Bari, Italy; (M.I.); (M.C.S.); (L.T.); (G.P.)
| | - Rosaria A. Picca
- Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona, 4, 70126 Bari, Italy; (M.I.); (M.C.S.); (L.T.); (G.P.)
- Correspondence: (R.A.P.); (N.C.)
| | - Nicola Cioffi
- Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona, 4, 70126 Bari, Italy; (M.I.); (M.C.S.); (L.T.); (G.P.)
- Correspondence: (R.A.P.); (N.C.)
| | - Ángela I. López Lorente
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUIQFN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain;
| |
Collapse
|
6
|
Sharifi M, Hosseinali SH, Yousefvand P, Salihi A, Shekha MS, Aziz FM, JouyaTalaei A, Hasan A, Falahati M. Gold nanozyme: Biosensing and therapeutic activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110422. [DOI: 10.1016/j.msec.2019.110422] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 01/12/2023]
|
7
|
Lee SH, Kim KH, Seo SE, Kim MI, Park SJ, Kwon OS. Cytochrome C-decorated graphene field-effect transistor for highly sensitive hydrogen peroxide detection. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Zhang H, Yang KL. In situ formation and immobilization of gold nanoparticles on polydimethylsiloxane (PDMS) exhibiting catalase-mimetic activity. Chem Commun (Camb) 2020; 56:6416-6419. [DOI: 10.1039/d0cc01344g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We used needles to prepare immobilized AuNPs on the surface of PDMS in situ with catalase-mimetic activity.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| |
Collapse
|
9
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 325.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
10
|
|
11
|
MnO2 nanorods grown NGNF nanocomposites for the application of highly sensitive and selective electrochemical detection of hydrogen peroxide. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Wang X, Hu Y, Wei H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front 2016. [DOI: 10.1039/c5qi00240k] [Citation(s) in RCA: 430] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanozymes are nanomaterials with enzyme-like characteristics, which have found broad applications in various areas including bionanotechnology and beyond.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| | - Yihui Hu
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| | - Hui Wei
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| |
Collapse
|