1
|
Jia L, Liu W, Cao J, Wu Z, Yang C. Modified multi-walled carbon nanotubes assisted foam fractionation for effective removal of acid orange 7 from the dyestuff wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 262:110260. [PMID: 32090883 DOI: 10.1016/j.jenvman.2020.110260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
In this study, multi-walled carbon nanotubes (MWCNTs) had been used to strengthen the removal of acid orange 7 (AO7) from the dyestuff wastewater by using foam fractionation. First, the surface modification of MWCNTs was performed by introducing hypochlorite groups (-OCl). The modified MWCNTs were characterized by using SEM, XRD, FTIR and Raman spectroscopy. Subsequently, the potential of modified MWCNTs as a novel collector for AO7 adsorption was examined. The adsorption conditions of modified MWCNTs towards AO7 were optimized by using response surface methodology (RSM) with a central composite design (CCD). The adsorption capacity of modified MWCNTs towards AO7 could reach 47.72 ± 0.79 mg·g-1 under the optimum conditions. The kinetics and the equilibrium adsorption data were analyzed by using different kinetic and isotherm models. According to the regression results, adsorption kinetics data were well described by pseudo-second order model, whereas adsorption isotherm data were best represented by Langmuir isotherm model. Finally, foam fractionation was performed with a batch mode. Under the suitable conditions of loading liquid volume 300 mL, modified MWCNTs dosage 180 mg, cetyltrimethylammonium bromide (CTAB) concentration 50 mg·L-1, AO7 concentration 30 mg·L-1, pore diameter of gas distributor 0.125 mm and air flow rate 100 mL·min-1, the removal percentage and enrichment ratio of AO7 were 91.23% and 6.17, respectively. The decolourization ratio of solution after foam fractionation was found to be 98.66%.
Collapse
Affiliation(s)
- Lei Jia
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, Dingzi Gu, Hongqiao District, Tianjin, 300130, China
| | - Wei Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, Dingzi Gu, Hongqiao District, Tianjin, 300130, China.
| | - Jilin Cao
- State Key Laboratory of Green Chemical Engineering and Efficient Energy Saving, School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Zhaoliang Wu
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, Dingzi Gu, Hongqiao District, Tianjin, 300130, China
| | - Chunyan Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, Dingzi Gu, Hongqiao District, Tianjin, 300130, China
| |
Collapse
|
2
|
Chua JY, Liu SQ. Soy whey: More than just wastewater from tofu and soy protein isolate industry. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Chen H, Zhang H, Tian J, Shi J, Linhardt RJ, Ye TDX, Chen S. Recovery of High Value-Added Nutrients from Fruit and Vegetable Industrial Wastewater. Compr Rev Food Sci Food Saf 2019; 18:1388-1402. [PMID: 33336910 DOI: 10.1111/1541-4337.12477] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/16/2023]
Abstract
The industrial processing water of fruit and vegetables has raised serious environmental concerns due to the presence of many important bioactive compounds being disposed in the wastewater. Bioactive compounds have great potential for the food industry to optimize their process and to recover these compounds in order to develop value-added products and to reduce environmental impacts. However, to achieve this goal, some challenges need to be addressed such as safety assurance, technology request, product regulations, cost effectiveness, and customer factors. Therefore, this review aims to summarize the recent advances of bioactive compounds recovery and the current challenges in wastewater from fruit and vegetable processing industry, including fruit and beverage, soybean by-products, starch and edible oil industry. Moreover, future direction for novel and green technology of bioactive compounds recovery are discussed, and a prospect of bioactive compounds reuse and sustainable development is proposed.
Collapse
Affiliation(s)
- Honglin Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang Univ., Hangzhou, 310058, China
| | - Hua Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang Univ., Hangzhou, 310058, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang Univ., Hangzhou, 310058, China
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Canada
| | - Robert J Linhardt
- Center for Biotechnology & Interdisciplinary Studies and Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Inst., Biotechnology Center 4005, Troy, NY, 12180, USA
| | - Tian Ding Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang Univ., Hangzhou, 310058, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang Univ., Hangzhou, 310058, China
| |
Collapse
|
4
|
Xu N, Wang L, Dou N, Zhang L, Guan J, Chang Y, Li R. Foam fractionation for enhancing silica gel adsorption of urokinase from human urine. ASIA-PAC J CHEM ENG 2019. [DOI: 10.1002/apj.2334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Na Xu
- School of Biological ScienceJining Medical University Rizhao Shandong Province China
| | - Lu Wang
- School of Biological ScienceJining Medical University Rizhao Shandong Province China
| | - Nongxiao Dou
- School of Biological ScienceJining Medical University Rizhao Shandong Province China
| | - Lili Zhang
- School of Biological ScienceJining Medical University Rizhao Shandong Province China
| | - Jing Guan
- School of Biological ScienceJining Medical University Rizhao Shandong Province China
| | - Yunkang Chang
- School of Biological ScienceJining Medical University Rizhao Shandong Province China
| | - Rui Li
- School of Biological ScienceJining Medical University Rizhao Shandong Province China
| |
Collapse
|
5
|
Cheng QB, Zhang LW. Highly Efficient Enzymatic Preparation of Daidzein in Deep Eutectic Solvents. Molecules 2017; 22:E186. [PMID: 28117755 PMCID: PMC6155624 DOI: 10.3390/molecules22010186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 01/19/2023] Open
Abstract
Daidzein, which is scarce in nature, has gained significant attention due to its superior biological activity and bioavailability compared with daidzin. So far, it has been widely used in the medicine and health care products industries. The enzymatic approach for the preparation of daidzein has prevailed, benefitted by its high efficiency and eco-friendly nature. Our present research aimed at providing a preparation method of daidzein by enzymatic hydrolysis of daidzin in a new "green" reaction medium-deep eutectic solvents (DESs). Herein, the DESs were screened via evaluating enzyme activity, enzyme stability and the substrate solubility, and the DES (ChCl/EG 2:1, 30 vol %) was believed to be the most appropriate co-solvent to improve the bioconversion efficiency. Based on the yield of daidzein, response surface methodology (RSM) was employed to model and optimize the reaction parameters. Under these optimum process conditions, the maximum yield of 97.53% was achieved and the purity of daidzein crude product reached more than 70%, which is more efficient than conversions in DESs-free buffer. Importantly, it has been shown that DESs medium could be reused for six batches of the process with a final conversion of above 50%. The results indicated that this procedure could be considered a mild, environmentally friendly, highly efficient approach to the economical production of daidzein, with a simple operation process and without any harmful reagents being involved.
Collapse
Affiliation(s)
- Qi-Bin Cheng
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Li-Wei Zhang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
7
|
|
8
|
Cheng J, Xie S, Wang S, Xue Y, Jiang L, Liu L. Optimization of Protein Removal from Soybean Whey Wastewater Using Chitosan Ultrafiltration. J FOOD PROCESS ENG 2016. [DOI: 10.1111/jfpe.12370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jianjun Cheng
- College of Food Science; Northeast Agriculture University; Harbin 150030 China
| | - Siyu Xie
- College of Food Science; Northeast Agriculture University; Harbin 150030 China
| | - Shuai Wang
- College of Food Science; Northeast Agriculture University; Harbin 150030 China
| | - Yanfang Xue
- College of Food Science; Northeast Agriculture University; Harbin 150030 China
| | - Lianzhou Jiang
- College of Food Science; Northeast Agriculture University; Harbin 150030 China
| | - Li Liu
- College of Food Science; Northeast Agriculture University; Harbin 150030 China
| |
Collapse
|