1
|
Güncüm E, Geyik G, Işıklan N. Magnetic graphene oxide functionalized alginate-g-poly(2-hydroxypropylmethacrylamide) nanoplatform for near-infrared light/pH/magnetic field-sensitive drug release and chemo/phototherapy. Int J Pharm 2024; 659:124287. [PMID: 38815638 DOI: 10.1016/j.ijpharm.2024.124287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Multifunctional nanoplatforms developed from natural polymers and graphene oxide (GO) with enhanced biological/physicochemical features have recently attracted attention in the biomedical field. Herein, a new multifunctional near-infrared (NIR) light-, pH- and magnetic field-sensitive hybrid nanoplatform (mGO@AL-g-PHPM@ICG/EP) is developed by combining iron oxide decorated graphene oxide nanosheets (mGO) and poly(2-hydroxypropylmethacrylamide) grafted alginate (AL-g-PHPM) copolymer loaded with indocyanine green (ICG) and etoposide (EP) for chemo/phototherapy. The functional groups, specific crystal structure, size, morphology, and thermal stability of the nanoplatform were fully characterized by XRD, UV, FTIR, AFM/TEM/FE-SEM, VSM, DSC/TG, and BET analyses. In this platform, the mGO and ICG, as phototherapeutic agents, demonstrate excellent thermal effects and singlet oxygen production under NIR-light (808 nm) irradiation. The XRD and DSC analysis confirmed the amorphous state of the ICG/EP in the nanoparticles. In vitro photothermal tests proved that the mGO@AL-g-PHPM@ICG/EP nanoparticles had outstanding light stability and photothermal conversion ability. The in vitro release profiles presented NIR light-, pH- and magnetic field-controlled EP/ICG release behaviors. In vitro experiments demonstrated the excellent antitumor activity of the mGO@AL-g-PHPM@ICG/EP against H1299 tumor cells under NIR laser. Benefiting from its low-cost, facile preparation, and good dual-modal therapy, the mGO@AL-g-PHPM@ICG/EP nanoplatform holds great promise in multi-stimuli-sensitive drug delivery and chemo/phototherapy.
Collapse
Affiliation(s)
- Enes Güncüm
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Kırıkkale University, 71450 Yahşihan, Kırıkkale, Turkey
| | - Gülcan Geyik
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Kırıkkale University, Yahşihan, 71450 Kırıkkale, Turkey; Alaca Avni Çelik Vocational School, Hitit University, Çorum, Turkey
| | - Nuran Işıklan
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Kırıkkale University, Yahşihan, 71450 Kırıkkale, Turkey.
| |
Collapse
|
2
|
Jin X, Wei CX, Wu CW, Zhang W. Customized Hydrogel for Sustained Release of Highly Water-Soluble Drugs. ACS OMEGA 2022; 7:8493-8497. [PMID: 35309415 PMCID: PMC8928546 DOI: 10.1021/acsomega.1c06106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/27/2022] [Indexed: 05/03/2023]
Abstract
Highly water-soluble drugs, due to the rapid diffusion in water, are difficult to be released sustainably. To address the issue, a hydrogel with a core-shell structure is designed for the release of highly water-soluble drugs. The core is used to load the drug and the shell is devoted to isolating the drug from the release medium, which can decrease the drug concentration gradient and the driving force of drug release. The core-shell structure prolongs the drug release time by extending the drug release pathway. Moreover, the core-shell hydrogel possesses high swelling properties to reside in the stomach. The results demonstrate that the customized hydrogel can prolong the release of the highly water-soluble drug (metformin hydrochloride) for more than 50 h and alleviate the burst release of the drug.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Structure Analysis
for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Cheng-xiong Wei
- State Key Laboratory of Structure Analysis
for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Cheng-wei Wu
- State Key Laboratory of Structure Analysis
for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Wei Zhang
- State Key Laboratory of Structure Analysis
for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Sonker M, Bajpai S, Khan MA, Yu X, Tiwary SK, Shreyash N. Review of Recent Advances and Their Improvement in the Effectiveness of Hydrogel-Based Targeted Drug Delivery: A Hope for Treating Cancer. ACS APPLIED BIO MATERIALS 2021; 4:8080-8109. [PMID: 35005919 DOI: 10.1021/acsabm.1c00857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Using hydrogels for delivering cancer therapeutics is advantageous in pharmaceutical usage as they have an edge over traditional delivery, which is tainted due to the risk of toxicity that it imbues. Hydrogel usage leads to the development of a more controlled drug release system owing to its amenability for structural metamorphosis, its higher porosity to seat the drug molecules, and its ability to shield the drug from denaturation. The thing that makes its utility even more enhanced is that they make themselves more recognizable to the body tissues and hence can stay inside the body for a longer time, enhancing the efficiency of the delivery, which otherwise is negatively affected since the drug is identified by the human immunity as a foreign substance, and thus, an attack of the immunity begins on the drug injected. A variety of hydrogels such as thermosensitive, pH-sensitive, and magnetism-responsive hydrogels have been included and their potential usage in drug delivery has been discussed in this review that aims to present recent studies on hydrogels that respond to alterations under a variety of circumstances in "reducing" situations that mimic the microenvironment of cancerous cells.
Collapse
Affiliation(s)
- Muskan Sonker
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, United States
| | - Sushant Bajpai
- Department of Petroleum Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| | - Mohd Ashhar Khan
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| | - Xiaojun Yu
- Department of Biomedical Engineering Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Saurabh Kr Tiwary
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| | - Nehil Shreyash
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| |
Collapse
|
4
|
Synthesis and drug delivery performance of gelatin-decorated magnetic graphene oxide nanoplatform. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Oral Drug Delivery: Conventional to Long Acting New-Age Designs. Eur J Pharm Biopharm 2021; 162:23-42. [PMID: 33631319 DOI: 10.1016/j.ejpb.2021.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/16/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022]
Abstract
The Oral route of administration forms the heartwood of the ever-growing tree of drug delivery technology. It is one of the most preferred dosage forms among patients and controlled release community. Despite the high patient compliance, the deliveries of anti-cancerous drugs, vaccines, proteins, etc. via the oral route are limited and have recorded a very low bioavailability. The oral administration must overcome the physiological barriers (low solubility, permeation and early degradation) to achieve efficient and sustained delivery. This review aims at highlighting the conventional and modern-age strategies that address some of these physiological barriers. The modern age designs include the 3D printed devices and formulations. The superiority of 3D dosage forms over conventional cargos is summarized with a focus on long-acting designs. The innovations in Pharmaceutical organizations (Lyndra, Assertio and Intec) that have taken giant steps towards commercialization of long-acting vehicles are discussed. The recent advancements made in the arena of oral peptide delivery are also highlighted. The review represents a comprehensive journey from Nano-formulations to micro-fabricated oral implants aiming at specific patient-centric designs.
Collapse
|
6
|
Application of gelatin nanoconjugates as potential internal stimuli-responsive platforms for cancer drug delivery. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Entrapping Immobilisation of Lipase on Biocomposite Hydrogels toward for Biodiesel Production from Waste Frying Acid Oil. Catalysts 2020. [DOI: 10.3390/catal10080834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A new application of biocomposite hydrogels named gelatin-alginate (GA) and pectin alginate (PA) enables the use of the hydrogels as carriers for lipase entrapment during biodiesel production. Waste frying acid oil (WFAO), a raw material, was converted to biodiesel via an esterification reaction catalysed by two different immobilised biocatalysts: gelatin-alginate lipase (GAL) and pectin-alginate lipase (PAL). The highest immobilisation yield of GAL and PAL beads was achieved at 97.61% and 98.30%, respectively. Both of them gave biodiesel yields in the range of 75–78.33%. Furthermore, capability and reusability of biocatalysts were improved such that they could be reused up to 7 cycles. Moreover, the predicted biodiesel properties met the European biodiesel standard (EN14214). Interestingly, entrapped lipase on composite hydrogels can be used as an alternative catalyst choice for replacing the chemical catalyst during the biodiesel production.
Collapse
|
8
|
Bulut E. Chitosan coated- and uncoated-microspheres of sodium carboxymethyl cellulose/polyvinyl alcohol crosslinked with ferric ion: flurbiprofen loading and in vitro drug release study. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1671770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Emine Bulut
- Department of Food Processing, Bolvadin Vocational School, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
9
|
Tailoring swelling of alginate-gelatin hydrogel microspheres by crosslinking with calcium chloride combined with transglutaminase. Carbohydr Polym 2019; 223:115035. [PMID: 31426956 DOI: 10.1016/j.carbpol.2019.115035] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 01/03/2023]
Abstract
Alginate-based hydrogels can find uses in a wide range of applications, including in the encapsulation field. This type of hydrogels is usually ionically crosslinked using calcium sources giving rise to products with limited internal crosslinking. In this work, it is hypothesized that the combination of alginate crosslinked by calcium chloride (external crosslinking; ionic mechanism) with gelatin crosslinked by transglutaminase (internal crosslinking; enzymatic induced mechanism) can be used to tailor the swelling behavior of alginate-based hydrogel microspheres. A systematic study was conducted by covering process variables such as gelatin content, TGase concentration, and CaCl2 contact time, added by statistic tools as central composite rotatable design (CCRD), principal component analysis (PCA) and multiobjective optimization, to map their effect on the resulting water content after production (expressed as swelling ratio), and swelling properties at pH 3 and 7. Among the studied variables, particle's swelling was mostly affected by the gelatin content and transglutaminase concentration.
Collapse
|
10
|
Zhang W, Jin X, Li H, Wei CX, Wu CW. Onion-structure bionic hydrogel capsules based on chitosan for regulating doxorubicin release. Carbohydr Polym 2019; 209:152-160. [DOI: 10.1016/j.carbpol.2019.01.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 01/30/2023]
|
11
|
Işıklan N, Altınışık Z. Temperature-responsive alginate-g
-poly(N
,N
-diethylacrylamide) copolymer: Synthesis, characterization, and swelling behavior. J Appl Polym Sci 2018. [DOI: 10.1002/app.46688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nuran Işıklan
- Department of Chemistry, Faculty of Arts and Sciences; Kırıkkale University; Yahşihan Kırıkkale 71450 Turkey
| | - Zeynep Altınışık
- Department of Chemistry, Faculty of Arts and Sciences; Kırıkkale University; Yahşihan Kırıkkale 71450 Turkey
| |
Collapse
|
12
|
Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:25-32. [DOI: 10.1016/j.msec.2018.03.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/27/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
|
13
|
Structural and optical properties improvements of PVP/gelatin blends induced by neutron irradiation. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Picchioni F, Muljana H. Hydrogels Based on Dynamic Covalent and Non Covalent Bonds: A Chemistry Perspective. Gels 2018; 4:E21. [PMID: 30674797 PMCID: PMC6318606 DOI: 10.3390/gels4010021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/29/2022] Open
Abstract
Hydrogels based on reversible covalent bonds represent an attractive topic for research at both academic and industrial level. While the concept of reversible covalent bonds dates back a few decades, novel developments continue to appear in the general research area of gels and especially hydrogels. The reversible character of the bonds, when translated at the general level of the polymeric network, allows reversible interaction with substrates as well as responsiveness to variety of external stimuli (e.g., self-healing). These represent crucial characteristics in applications such as drug delivery and, more generally, in the biomedical world. Furthermore, the several possible choices that can be made in terms of reversible interactions generate an almost endless number of possibilities in terms of final product structure and properties. In the present work, we aim at reviewing the latest developments in this field (i.e., the last five years) by focusing on the chemistry of the systems at hand. As such, this should allow molecular designers to develop a toolbox for the synthesis of new systems with tailored properties for a given application.
Collapse
Affiliation(s)
- Francesco Picchioni
- Department of Chemical Engineering, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Henky Muljana
- Department of Chemical Engineering, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Chemical Engineering, Parahyangan Catholic University, Ciumbuleuit 94, Bandung 40141, West Java, Indonesia.
| |
Collapse
|