1
|
Gedawy A, Al-Salami H, Dass CR. Polydimethylsiloxane Organic-Inorganic Composite Drug Reservoir with Gliclazide. Int J Mol Sci 2024; 25:3991. [PMID: 38612802 PMCID: PMC11012350 DOI: 10.3390/ijms25073991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
A novel organic-inorganic gliclazide-loaded composite bead was developed by an ionic gelation process using acidified CaCl2, chitosan and tetraethylorthosilicate (TEOS) as a crosslinker. The beads were manufactured by crosslinking an inorganic silicone elastomer (-OH terminated polydimethylsiloxane, PDMS) with TEOS at different ratios before grafting onto an organic backbone (Na-alginate) using a 32 factorial experimental design. Gliclazide's encapsulation efficiency (EE%) and drug release over 8 h (% DR 8 h) were set as dependent responses for the optimisation of a pharmaceutical formula (herein referred to as 'G op') by response surface methodology. EE % and %DR 8 h of G op were 93.48% ± 0.19 and 70.29% ± 0.18, respectively. G op exhibited a controlled release of gliclazide that follows the Korsmeyer-Peppas kinetic model (R2 = 0.95) with super case II transport and pH-dependent swelling behaviour. In vitro testing of G op showed 92.17% ± 1.18 cell viability upon testing on C2C12 myoblasts, indicating the compatibility of this novel biomaterial platform with skeletal muscle drug delivery.
Collapse
Affiliation(s)
- Ahmed Gedawy
- Curtin Medical School, Curtin University, Bentley 6102, Australia; (A.G.); (H.A.-S.)
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Hani Al-Salami
- Curtin Medical School, Curtin University, Bentley 6102, Australia; (A.G.); (H.A.-S.)
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Crispin R. Dass
- Curtin Medical School, Curtin University, Bentley 6102, Australia; (A.G.); (H.A.-S.)
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| |
Collapse
|
2
|
Udomsom S, Kanthasap K, Paengnakorn P, Jantrawut P, Kumphune S, Auephanwiriyakul S, Mankong U, Theera-Umpon N, Baipaywad P. Itaconic Acid Cross-Linked Biomolecule Immobilization Approach on Amine-Functionalized Silica Nanoparticles for Highly Sensitive Enzyme-Linked Immunosorbent Assay (ELISA). ACS OMEGA 2024; 9:13636-13643. [PMID: 38559953 PMCID: PMC10975634 DOI: 10.1021/acsomega.3c07548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/20/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024]
Abstract
Biomolecule immobilization on nanomaterials is attractive for biosensors since it enables the capture of a higher concentration of bioreceptor units while also serving as a transduction element. The technique could enhance the accuracy, specificity, and sensitivity of the analytical measurements of biomolecules. However, it was found that the limitation in chemically binding biomolecules on nanoparticle surfaces could only cross-link between the C-terminal and N-terminal. Here, we report the facile one-step synthesis of amine-functionalized silica nanoparticles (AFSNPs). (3-Aminopropyl)triethoxysilane was used as a precursor to modify the functional surface of nanoparticles via the Stöber process. The biomolecules were immobilized to the AFSNPs through itaconic acid, a novel cross-linker that binds between the N-terminal and N-terminal and potentially improves proteins and nucleic acid immobilization onto the nanoparticle surface. The newly developed immobilization approach on AFSNPs for biomolecular detection enhanced the efficiency of ELISA, resulting in increased sensitivity. It might also be easily used to identify different pathogens for clinical diagnostics.
Collapse
Affiliation(s)
- Suruk Udomsom
- Biomedical
Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical
Engineering and Innovation Research Center, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Kritsana Kanthasap
- Biomedical
Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical
Engineering and Innovation Research Center, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Pathinan Paengnakorn
- Biomedical
Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical
Engineering and Innovation Research Center, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Pensak Jantrawut
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Sarawut Kumphune
- Biomedical
Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical
Engineering and Innovation Research Center, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Sansanee Auephanwiriyakul
- Biomedical
Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical
Engineering and Innovation Research Center, Chiang Mai University, Chiang
Mai 50200, Thailand
- Department
of Computer Engineering, Faculty of Engineering, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Ukrit Mankong
- Biomedical
Engineering and Innovation Research Center, Chiang Mai University, Chiang
Mai 50200, Thailand
- Department
of Electrical Engineering, Faculty of Engineering, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Nipon Theera-Umpon
- Biomedical
Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical
Engineering and Innovation Research Center, Chiang Mai University, Chiang
Mai 50200, Thailand
- Department
of Electrical Engineering, Faculty of Engineering, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Phornsawat Baipaywad
- Biomedical
Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical
Engineering and Innovation Research Center, Chiang Mai University, Chiang
Mai 50200, Thailand
| |
Collapse
|
3
|
Pikwong F, Phutiyothin C, Chouyratchakarn W, Baipaywad P, Mongkolpathumrat P, Kumphune S. Gelatin-coated silicon oxide nanoparticles encapsulated recombinant human secretory leukocyte protease inhibitor (rhSLPI) reduced cardiac cell death against an in vitro simulated ischaemia/reperfusion injury. Heliyon 2023; 9:e20150. [PMID: 37809945 PMCID: PMC10559932 DOI: 10.1016/j.heliyon.2023.e20150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Ischemic Heart Disease (IHD) is the main global cause of death. Previous studies indicated that recombinant human secretory leukocyte protease inhibitor (rhSLPI) exhibits a cardioprotective effect against myocardial ischaemia/reperfusion (I/R) injury. However, SLPI has a short half-life in vivo due to digestion by protease enzymes in circulation. The application of nanoparticle encapsulation could be beneficial for SLPI delivery. Several types of nanoparticles have been developed to encapsulate SLPI and applied in some disease models. However, silica nanoparticles for rhSLPI delivery, particularly on myocardial I/R injury, have never been studied. In this study, we aimed to fabricate gelatin-covered silica nanoparticles (GSNPs) to encapsulate rhSLPI and cardioprotective effect of GSNP-SLPI against an in vitro simulated ischaemia/reperfusion (sI/R). Silica dioxide nanoparticles (SNPs) were fabricated followed by incubation with 0.33 mg/mL of rhSLPI. Then, SNPs containing rhSLPI were coated with gelatin (GSNPs). The GSNPs and rhSLPI-GSNPs were characterized by particle size, zeta potential, and morphology scanning electron microscope (SEM). The concentration of rhSLPI in rhSLPI-GSNPs and drug release was determined by ELISA. Then, cytotoxicity and cardioprotective effect were determined by incubation of GSNPs or rhSLPI-GSNPs with rat cardiac myoblast cell line (H9c2) subjected to simulated ischaemia/reperfusion (sI/R). The results showed the particle size of SNPs, GSNPs, and rhSLPI-GSNPs was 273, 300, and 301 nm, with a zeta potential of -57.21, -22.40, and -24.50 mV, respectively. One milligram of rhSLPI-GSNPs contains 235 ng of rhSLPI. The rhSLPI-GSNPs showed no cytotoxicity on cardiac cells. Treatment with 10 μg/ml of rhSLPI-GSNPs could significantly reduce sI/R induced cardiac cell injury and death. In conclusion, this is the first study to show successful of fabricating novel rhSLPI-encapsulating gelatin-covered silica nanoparticles (rhSLPI-GSNPs) and the cardioprotective effects of rhSLPI-GSNPs against cardiac cell injury and death from myocardial ischaemia/reperfusion.
Collapse
Affiliation(s)
- Faprathan Pikwong
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| | - Chayanisa Phutiyothin
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| | - Wannapat Chouyratchakarn
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| | - Phornsawat Baipaywad
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| | - Podsawee Mongkolpathumrat
- Cardio-Thoracic Technology program, Chulabhorn International College of Medicine, Thammasat University (Rangsit Center), Cooperative Learning Center, Piyachart 2, 99 Moo 18 Klong Luang, Rangsit, Pathumthani 12120, Thailand
| | - Sarawut Kumphune
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| |
Collapse
|
4
|
Wang W, Zhang W, Li L, Deng W, Liu M, Hu J. Biodegradable starch-based packaging films incorporated with polyurethane-encapsulated essential-oil microcapsules for sustained food preservation. Int J Biol Macromol 2023; 235:123889. [PMID: 36870661 DOI: 10.1016/j.ijbiomac.2023.123889] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Novel starch-based packaging films with sustained antibacterial activity were successfully made by incorporating polyurethane-encapsulated essential-oil microcapsules (EOs@PU) as an alternative synthetic preservative for food preservation. Herein, three essential oils (EOs) were blended to make composite essential oils with a more harmonious aroma and higher antibacterial ability and encapsulated into polyurethane (PU) to form EOs@PU microcapsules based on interfacial polymerization. The morphology of the constructed EOs@PU microcapsules was regular and uniform with an average size of approximately 3 μm, thus enabling high loading capacity (59.01 %). As such, we further integrated the obtained EOs@PU microcapsules into potato starch to prepare food packaging films for sustained food preservation. Consequently, the prepared starch-based packaging films incorporated with EOs@PU microcapsules had an excellent UV blocking rate (>90 %) and low cell toxicity. Notably, the long-term release of EOs@PU microcapsules gave the packaging films a sustained antibacterial ability, prolonging the shelf life of fresh blueberries and raspberries at 25 °C (> 7 days). Furthermore, the biodegradation rate of food packaging films cultured with natural soil was 95 % after 8 days, clarifying the excellent biodegradability of the packaging films for environmental protection. As demonstrated, the biodegradable packaging films provided a natural and safe strategy for food preservation.
Collapse
Affiliation(s)
- Wei Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Weiwei Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Lin Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Weijun Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Ming Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China.
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China.
| |
Collapse
|
5
|
Maparu AK, Singh P, Rai B, Sharma A, Sivakumar S. A simple, robust and scalable route to prepare sub-50 nm soft PDMS nanoparticles for intracellular delivery of anticancer drugs. NANOTECHNOLOGY 2022; 33:495102. [PMID: 36041371 DOI: 10.1088/1361-6528/ac8d99] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Soft nanoparticles (NPs) have recently emerged as a promising material for intracellular drug delivery. In this regard, NPs derived from polydimethylsiloxane (PDMS), an FDA approved polymer can be a suitable alternative to conventional soft NPs due to their intrinsic organelle targeting ability. However, the available synthesis methods of PDMS NPs are complicated or require inorganic fillers, forming composite NPs and compromising their native softness. Herein, for the first time, we present a simple, robust and scalable strategy for preparation of virgin sub-50 nm PDMS NPs at room temperature. The NPs are soft in nature, hydrophobic and about 30 nm in size. They are stable in physiological medium for two months and biocompatible. The NPs have been successful in delivering anticancer drug doxorubicin to mitochondria and nucleus of cervical and breast cancer cells with more than four-fold decrease in IC50 value of doxorubicin as compared to its free form. Furthermore, evaluation of cytotoxicity in reactive oxygen species detection, DNA fragmentation, apoptosis-associated gene expression and tumor spheroid growth inhibition demonstrate the PDMS NPs to be an excellent candidate for delivery of anticancer drugs in mitochondria and nucleus of cancer cells.
Collapse
Affiliation(s)
- Auhin Kumar Maparu
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54-B, Hadapsar Industrial Estate, Pune, Maharashtra-411013, India
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh-208016, India
| | - Prerana Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh-208016, India
| | - Beena Rai
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54-B, Hadapsar Industrial Estate, Pune, Maharashtra-411013, India
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh-208016, India
| | - Sri Sivakumar
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh-208016, India
- Material Science Programme, Indian Institute of Technology Kanpur, Uttar Pradesh-208016, India
- Thematic Unit of Excellence on Soft Nanofabrication, Indian Institute of Technology Kanpur, Uttar Pradesh-208016, India
- Centre for Environmental Science & Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh- 208016, India
| |
Collapse
|
6
|
Baipaywad P, Ryu N, Im SS, Lee U, Son HB, Kim WJ, Park H. Facile preparation of poly( N-isopropylacrylamide)/graphene oxide nanocomposites for chemo-photothermal therapy. Des Monomers Polym 2022; 25:245-253. [PMID: 36017475 PMCID: PMC9397426 DOI: 10.1080/15685551.2022.2111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/07/2022] [Indexed: 11/03/2022] Open
Abstract
Carbon-based nanomaterials, such as carbon nanotubes, fullerenes, nanodiamonds, and graphene, have been investigated for various biomedical applications, including biological imaging, photothermal therapy, drug/gene delivery, cancer therapy, biosensors, and electrochemical sensors. Graphene oxide (GO) has unique physicochemical properties and can be used to restore conductivity through oxidation. In this study, we developed poly(N-isopropylacrylamide) (PNIPAM)-based nanogel systems containing GO for controlled in vitro drug delivery. The photothermal effects of the PNIPAM/GO- and PNIPAMAAM/GO-based nanogel systems were enhanced. The release of DOX from the PNIPAM/GO-based nanogel was achieved using the photothermal effect of near-infrared irradiation. Using a Cell Counting Kit-8 assay, the cytotoxicity of all conditions demonstrated that the PNIPAM composite-based nanogels were biocompatible with no significance.
Collapse
Affiliation(s)
- Phornsawat Baipaywad
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand
- Department of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Naeun Ryu
- Department of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Soo-Seok Im
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Ukjae Lee
- Department of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Hyung Bin Son
- Department of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hansoo Park
- Department of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Liu H, Lu T, Cheng X, Zhao S, Zhou C, Zhang C, Cheng X. Preparation and evaluation of organosilica nanocapsules encapsulating DCOIT by using the response surface optimization. J Appl Polym Sci 2022. [DOI: 10.1002/app.53000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huatong Liu
- School of Materials Science and Engineering Shandong University Jinan China
| | - Tao Lu
- School of Materials Science and Engineering Shandong University Jinan China
| | - Xueqing Cheng
- School of Materials Science and Engineering Shandong University Jinan China
| | - Shigui Zhao
- School of Materials Science and Engineering Shandong University Jinan China
- Key Laboratory of Special Functional Aggregated Materials Ministry of Education Jinan China
| | - Chuanjian Zhou
- School of Materials Science and Engineering Shandong University Jinan China
- Key Laboratory of Special Functional Aggregated Materials Ministry of Education Jinan China
| | - Chen Zhang
- School of Materials Science and Engineering Shandong University Jinan China
- Key Laboratory of Special Functional Aggregated Materials Ministry of Education Jinan China
| | - Xiao Cheng
- School of Materials Science and Engineering Shandong University Jinan China
| |
Collapse
|
8
|
Maparu AK, Singh P, Rai B, Sharma A, Sivakumar S. Stable sub-100 nm PDMS nanoparticles as an intracellular drug delivery vehicle. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111577. [DOI: 10.1016/j.msec.2020.111577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
|
9
|
Wang X, Cao Y. Characterizations of absorption, scattering, and transmission of typical nanoparticles and their suspensions. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.10.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Tailoring cubic and dodecagonal quasicrystalline mesophases of mesoporous organosilica nanoparticles and core/shell structure. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:666-674. [PMID: 30813071 DOI: 10.1016/j.msec.2019.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/24/2018] [Accepted: 01/02/2019] [Indexed: 11/20/2022]
Abstract
Herein, the synthesis of mesoporous organosilica nanoparticles with cubic and dodecagonal quasicrystalline mesophases is reported. Mesoporous nanoparticles are synthesized by base-catalyzed hydrolysis and condensation reactions of silane-based monomers in the presence of hexadecyltrimethylammonium bromide (CTAB), which is used as a structure-directing agent to form the mesostructures. Cubic orders in the mesophases are formed using tetraethoxysilane monomers, and the mesophase is tuned to the dodecagonal quasicrystalline order by using binary monomers including tetraethoxysilane and dimethyldiethoxysilane. The size of the quasicrystalline-phase organosilica is tailored by changing the amount of base catalyst used. Additionally, we obtained well-defined core/shell structures with quasicrystalline ordered mesoporous organosilica. Furthermore, we investigate the cytotoxicity of mesoporous organisilica nanoparticles using a CCK-8 assay to demonstrate that our NPs have a potential for the utilization as biomedical applications. These novel findings could guide the formation of mesophase structures with quasicrystalline order in silica-based mesoporous nanoparticles.
Collapse
|
11
|
Zhang Y, Zhou M, Dou C, Ma G, Wang Y, Feng N, Wang W, Fang L. Synthesis and biocompatibility assessment of polyaniline nanomaterials. J BIOACT COMPAT POL 2018. [DOI: 10.1177/0883911518809110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yumei Zhang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Miaomiao Zhou
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Chengfu Dou
- The First People’s Hospital of Yinchuan, Yinchuan, China
| | - Guodong Ma
- School of Public Health & Management, Ningxia Medical University, Yinchuan, China
| | - Yin Wang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Ningchuan Feng
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Wenping Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Lanyun Fang
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| |
Collapse
|
12
|
Chen Y, Dan N, Dan W, Liu X, Cong L. A novel antibacterial acellular porcine dermal matrix cross-linked with oxidized chitosan oligosaccharide and modified by in situ synthesis of silver nanoparticles for wound healing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:1020-1036. [PMID: 30423683 DOI: 10.1016/j.msec.2018.10.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 09/27/2018] [Accepted: 10/08/2018] [Indexed: 11/18/2022]
Abstract
Not only are the physicochemical properties and biocompatibility of biomaterials important considerations, but also their antibacterial properties. In this study, a novel chemically-cross-linked antibacterial porcine acellular dermal matrix (pADM) scaffold was fabricated according to a two-step method. A naturally-derived oxidized chitosan oligosaccharide (OCOS) was used to cross-linked pADM (termed OCOS-pADM) to improve its physicochemical properties. Residual aldehyde groups within the OCOS-pADM were used in a redox reaction with Ag ions to produce Ag nanoparticles (AgNPs) in situ. As the AgNPs were tightly adhered onto the scaffold fibrils (termed OCOS-AgNPs-pADM), this effectively functionalized scaffold with antibacterial properties. The generated AgNPs were characterized by UV-Vis diffuse reflectance spectroscopy, XPS and SEM. The results of DSC, TG and enzymatic degradation demonstrated that OCOS-AgNPs-pADM possessed improved thermal stability and resistance to enzymatic degradation compared with pADM scaffolds. The kinetic experiment of the release of silver showed that silver was released in a controllable way. After introducing AgNPs into scaffolds, the OCOS-AgNPs-pADM possessed wide-spectrum antibacterial activity against Escherichia coli and Staphylococcus aureus. Furthermore, MTT assay and CLSM showed that the scaffolds had good biocompatibility. Pieces of OCOS-AgNPs-pADM were implanted into Sprague-Dawley rats to characterize their ability to repair full-thickness skin wounds. And results showed that the OCOS-AgNPs-pADM could accelerate the wound healing process. Overall, this work contributes new insight into the chemical cross-linking and functionalization of pADM scaffolds. In addition, as novel antibacterial scaffolds, OCOS-AgNPs-pADMs have the potential for development as wound dressing materials.
Collapse
Affiliation(s)
- Yining Chen
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Nianhua Dan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Weihua Dan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xinhua Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xian 710021, China
| | - Liangliang Cong
- Jiangyin Benshine Biological Technology Co., Ltd., Jiangyin 214400, China
| |
Collapse
|
13
|
Magdy A, Fouad Y, Abdel-Aziz M, Konsowa A. Synthesis and characterization of Fe 3 O 4 /kaolin magnetic nanocomposite and its application in wastewater treatment. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.07.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|