1
|
Zhang Z, Wang J, Hou L, Zhu D, Xiao HJ, Wang K. Graphene/carbohydrate polymer composites as emerging hybrid materials in tumor therapy and diagnosis. Int J Biol Macromol 2024; 287:138621. [PMID: 39667456 DOI: 10.1016/j.ijbiomac.2024.138621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Despite the introduction of various types of treatments for cancer control, cancer therapy faces several challenges such as aggressive behavior, heterogeneous characteristics, and the development of resistance. In contrast, the methods have depended on the creation and formulation of nanoparticles to impede tumor growth. Carbon nanoparticles have attracted considerable attention for cancer therapy, with graphene nanoparticles emerging as promising vehicles for delivering drugs and genes. Moreover, graphene composites can enhance immunotherapy, phototherapy, and combination therapies. Nonetheless, the biocompatibility and toxicity of graphene composites present difficulties. Consequently, this manuscript assesses the alteration of graphene nanocomposites using carbohydrate polymers. Altering graphene composites with carbohydrate polymers such as chitosan, hyaluronic acid, cellulose, and starch can enhance their efficacy in cancer treatment. Furthermore, graphene composites functionalized with carbohydrate polymers for tumor ablation induced by phototherapy. Graphene oxide and graphene quantum dots have been modified with carbohydrate polymers to enhance their therapeutic and diagnostic uses. These nanoparticles can transport gene therapy techniques like siRNA in the treatment of cancer. Despite the breakdown of these nanoparticles within the body, they maintain excellent biosafety and biocompatibility.
Collapse
Affiliation(s)
- Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei Province, China
| | - Jinxiang Wang
- Scientific Research Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Lingmi Hou
- Department of Breast Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei Province, China.
| | - Hai-Juan Xiao
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China.
| | - Kaili Wang
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Uzokboev S, Akhmadbekov K, Nuritdinova R, Tawfik SM, Lee YI. Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1077-1104. [PMID: 39188756 PMCID: PMC11346306 DOI: 10.3762/bjnano.15.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Sensors are applied to many fields nowadays because of their high sensitivity, low cost, time-saving, user-friendly, and excellent selectivity. Current biomedical and pharmaceutical science has one focus on developing nanoparticle-based sensors, especially biopolymeric nanoparticles. Alginate is a widely used biopolymer in a variety of applications. The hydrogel-forming characteristic, the chemical structure with hydroxy and carboxylate moieties, biocompatibility, biodegradability, and water solubility of alginate have expanded opportunities in material and biomedical sciences. Recently, research on alginate-based nanoparticles and their applications has begun. These materials are gaining popularity because of their wide usage potential in the biomedical and pharmaceutical fields. Many review papers describe applications of alginate in the drug delivery field. The current study covers the structural and physicochemical properties of alginate-based nanoparticles. The prospective applications of alginate-based nanomaterials in various domains are discussed, including drug delivery and environmental sensing applications for humidity, heavy metals, and hydrogen peroxide. Moreover, biomedical sensing applications of alginate-based nanoparticles regarding various analytes such as glucose, cancer cells, pharmaceutical drugs, and human motion will also be reviewed in this paper. Future research scopes highlight existing challenges and solutions.
Collapse
Affiliation(s)
- Shakhzodjon Uzokboev
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Khojimukhammad Akhmadbekov
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Ra’no Nuritdinova
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Salah M Tawfik
- Department of Petrochemicals, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Yong-Ill Lee
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea
| |
Collapse
|
3
|
Li HH, Wang YK, Liao LS. Near-Infrared Luminescent Materials Incorporating Rare Earth/Transition Metal Ions: From Materials to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403076. [PMID: 38733295 DOI: 10.1002/adma.202403076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Indexed: 05/13/2024]
Abstract
The spotlight has shifted to near-infrared (NIR) luminescent materials emitting beyond 1000 nm, with growing interest due to their unique characteristics. The ability of NIR-II emission (1000-1700 nm) to penetrate deeply and transmit independently positions these NIR luminescent materials for applications in optical-communication devices, bioimaging, and photodetectors. The combination of rare earth metals/transition metals with a variety of matrix materials provides a new platform for creating new chemical and physical properties for materials science and device applications. In this review, the recent advancements in NIR emission activated by rare earth and transition metal ions are summarized and their role in applications spanning bioimaging, sensing, and optoelectronics is illustrated. It started with various synthesis techniques and explored how rare earths/transition metals can be skillfully incorporated into various matrixes, thereby endowing them with unique characteristics. The discussion to strategies of enhancing excitation absorption and emission efficiency, spotlighting innovations like dye sensitization and surface plasmon resonance effects is then extended. Subsequently, a significant focus is placed on functionalization strategies and their applications. Finally, a comprehensive analysis of the challenges and proposed strategies for rare earth/transition metal ion-doped near-infrared luminescent materials, summarizing the insights of each section is provided.
Collapse
Affiliation(s)
- Hua-Hui Li
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau SAR, Taipa, 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Ya-Kun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Liang-Sheng Liao
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau SAR, Taipa, 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
4
|
Bishay ES, Elged AH, Farag AA, Zahran MK, Tawfik SM. Alginate-modified surfactants functionalized metal-organic framework-based fluorescent film sensors for detection and adsorption of volatile aldehydes in water. Int J Biol Macromol 2024; 259:129080. [PMID: 38161018 DOI: 10.1016/j.ijbiomac.2023.129080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Volatile aldehydes have an adverse impact on both human health and the environment, therefore, a fast, straightforward, highly accurate detection technique for the simultaneous detection and removal of several aldehydes is eagerly anticipated. Herein, novel APGF@ZIF-8 and APOF@ZIF-8 sensing materials were developed by coating fluorescent alginate-modified surfactants (APGF and APOF) into the ZIF-8 MOFs to produce quite porous fluorescent sensors (SBET up to 1519 m2/g). The detection capacity of the prepared sensors for benzaldehyde, glyoxal, formaldehyde, and acetaldehyde has been examined. The detection mechanism was suggested as hydrogen bonding formation between the sensors and volatile aldehydes as confirmed by Gaussian calculations. All the fluorescence spectra of aldehydes display remarkable linear detection relationships in the range of 0.05-200 μM with the limits of detection (LOD) values in the range of 0.001-0.18 μM (0.106-10.44 ppb). These sensors were utilized successfully to detect multiple volatile aldehydes in river water samples with satisfactory recoveries of 96-107 %. Interestingly, fluorescent APGF@ZIF-8/CS and APOF@ZIF-8/CS films as portable disposable removal techniques for benzaldehyde, glyoxal, formaldehyde, and acetaldehyde from water were fabricated. APOF@ZIF-8/CS exhibited an excellent formaldehyde adsorption capacity of 58.30 mg/g and an adsorption removal efficiency of 93.5 %. The adsorption process of biosorbent on various aldehydes was fitted by Freundlich adsorption isotherm. The adsorption kinetics followed Pseudo-second-order kinetic model.
Collapse
Affiliation(s)
- Emad S Bishay
- Department of Technical Affairs of Petroleum Materials, Wataniya Petroleum Company, Cairo 11765, Egypt
| | - Ahmed H Elged
- Department of Petrochemicals, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | - Ahmed A Farag
- Petroleum Applications Department, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | - Magdy K Zahran
- Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt.
| | - Salah M Tawfik
- Department of Petrochemicals, Egyptian Petroleum Research Institute, Cairo 11727, Egypt.
| |
Collapse
|
5
|
Ibrahim IAA, Alzahrani AR, Alanazi IM, Shahzad N, Shahid I, Falemban AH, Azlina MFN, Arulselvan P. Carbohydrate polymers-based surface modified nano delivery systems for enhanced target delivery to colon cancer - A review. Int J Biol Macromol 2023; 253:126581. [PMID: 37652322 DOI: 10.1016/j.ijbiomac.2023.126581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Carbohydrate polymers-based surface-modified nano-delivery systems have gained significant attention in recent years for enhancing targeted delivery to colon cancer. These systems leverage carbohydrate polymers' unique properties, such as biocompatibility, biodegradability, and controlled release. These properties make them suitable candidates for drug delivery applications. Nano-delivery systems loaded with bioactive compounds are well-studied for targeted colorectal cancer delivery. However, those drugs' target reach is still limited in various nano-delivery systems. To overcome this limitation, surface modification of nanoparticles with carbohydrate polymers like chitosan, pectin, alginate, and guar gum showed enhanced target-reaching capacity along with enhanced anticancer efficacy. Recently, a chitosan-decorated PLGA nanoparticle was constructed with tannic acid and vitamin E and showed long-term release of specific targets along with higher anticancer efficacy. Similarly, Chitosan-conjugated glucuronic acid-coated silica nanoparticles loaded with capecitabine were studied against colon cancer and found to be the pH-responsive controlled release of capecitabine with higher anticancer efficacy. Surface-modified carbohydrate polymers have promising potential for improving colon cancer target delivery. By leveraging the unique properties of these polymers, such as surface modification, pH responsiveness, mucoadhesion, controlled drug release, and combination therapy, researchers are working toward developing more effective and targeted treatment strategies for colon cancer.
Collapse
Affiliation(s)
- Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim M Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohd Fahami Nur Azlina
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Malaysia
| | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India
| |
Collapse
|
6
|
Chatterjee S, Mahmood S, Hilles AR, Thomas S, Roy S, Provaznik V, Romero EL, Ghosal K. Cationic starch: A functionalized polysaccharide based polymer for advancement of drug delivery and health care system - A review. Int J Biol Macromol 2023; 248:125757. [PMID: 37429342 DOI: 10.1016/j.ijbiomac.2023.125757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Research and development in health care industry is in persistence progression. To make it more patient-friendly or to get maximum benefits from it, special attention to different advanced drug delivery system (ADDS) is employed that delivers the drug at the target site and will be able to sustain/control release of drugs. ADDS should be non-toxic, biodegradable, biocompatible along with desirable showing physicochemical and functional properties. These drug delivery systems can be totally based on polymers, either with natural or synthetic polymers. The molecular weight of polymer can be tuned and different groups of polymers can be modified or substituted with other functional groups. Degree of substitution is also tailored. Cationic starch in recent years is exploited in drug delivery, tissue engineering and biomedicine. Due to their abundant availability, low cost, easy chemical modification, low toxicity, biodegradability and biocompatibility, extensive research is now being carried out. Our present discussion will shed light on the usage of cationic starch in health care system.
Collapse
Affiliation(s)
- Shreya Chatterjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ayah Rebhi Hilles
- INHART, International Islamic University Malaysia, Jalan Gombak, 53100, Selangor, Malaysia
| | - Sabu Thomas
- IIUCNN, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Sudeep Roy
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology Technická 12, 61200 Brno, Czech Republic
| | - Valentine Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology Technická 12, 61200 Brno, Czech Republic
| | - Eder Lilia Romero
- Department of Science and Technology, Nanomedicines Research and Development Center, Quilmes National University, Buenos Aires, Argentina
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
7
|
Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman MU, Jaber F, Dera AA, Awwad NS, Ibrahium HA. Recent developments in natural biopolymer based drug delivery systems. RSC Adv 2023; 13:23087-23121. [PMID: 37529365 PMCID: PMC10388836 DOI: 10.1039/d3ra03369d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Targeted delivery of drug molecules to diseased sites is a great challenge in pharmaceutical and biomedical sciences. Fabrication of drug delivery systems (DDS) to target and/or diagnose sick cells is an effective means to achieve good therapeutic results along with a minimal toxicological impact on healthy cells. Biopolymers are becoming an important class of materials owing to their biodegradability, good compatibility, non-toxicity, non-immunogenicity, and long blood circulation time and high drug loading ratio for both macros as well as micro-sized drug molecules. This review summarizes the recent trends in biopolymer-based DDS, forecasting their broad future clinical applications. Cellulose chitosan, starch, silk fibroins, collagen, albumin, gelatin, alginate, agar, proteins and peptides have shown potential applications in DDS. A range of synthetic techniques have been reported to design the DDS and are discussed in the current study which is being successfully employed in ocular, dental, transdermal and intranasal delivery systems. Different formulations of DDS are also overviewed in this review article along with synthesis techniques employed for designing the DDS. The possibility of these biopolymer applications points to a new route for creating unique DDS with enhanced therapeutic qualities for scaling up creative formulations up to the clinical level.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology Pakistan
| | - Mazloom Shah
- Department of Chemistry, Faculty of Science, Grand Asian University Sialkot Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mujaddad-Ur Rehman
- Department of Microbiology, Abbottabad University of Science & Technology Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University Ajman UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University Ajman UAE
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
8
|
Raghav N, Vashisth C, Mor N, Arya P, Sharma MR, Kaur R, Bhatti SP, Kennedy JF. Recent advances in cellulose, pectin, carrageenan and alginate-based oral drug delivery systems. Int J Biol Macromol 2023:125357. [PMID: 37327920 DOI: 10.1016/j.ijbiomac.2023.125357] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
Polymers-based drug delivery systems constitute one of the highly explored thrust areas in the field of the medicinal and pharmaceutical industries. In the past years, the properties of polymers have been modified in context to their solubility, release kinetics, targeted action site, absorption, and therapeutic efficacy. Despite the availability of diverse synthetic polymers for the bioavailability enhancement of drugs, the use of natural polymers is still highly recommended due to their easy availability, accessibility, and non-toxicity. The aim of the review is to provide the available literature of the last five years on oral drug delivery systems based on four natural polymers i.e., cellulose, pectin, carrageenan, and alginate in a concise and tabulated manner. In this review, most of the information is in tabulated form to provide easy accessibility to the reader. The data related to active pharmaceutical ingredients and supported components in different formulations of the mentioned polymers have been made available.
Collapse
Affiliation(s)
- Neera Raghav
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| | - Chanchal Vashisth
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Nitika Mor
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Priyanka Arya
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Manishita R Sharma
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Ravinder Kaur
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | | | - John F Kennedy
- Chembiotech laboratories Ltd, Tenbury Wells, WR15 8FF, United Kingdom.
| |
Collapse
|
9
|
Farshidfar N, Iravani S, Varma RS. Alginate-Based Biomaterials in Tissue Engineering and Regenerative Medicine. Mar Drugs 2023; 21:189. [PMID: 36976238 PMCID: PMC10056402 DOI: 10.3390/md21030189] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Today, with the salient advancements of modern and smart technologies related to tissue engineering and regenerative medicine (TE-RM), the use of sustainable and biodegradable materials with biocompatibility and cost-effective advantages have been investigated more than before. Alginate as a naturally occurring anionic polymer can be obtained from brown seaweed to develop a wide variety of composites for TE, drug delivery, wound healing, and cancer therapy. This sustainable and renewable biomaterial displays several fascinating properties such as high biocompatibility, low toxicity, cost-effectiveness, and mild gelation by inserting divalent cations (e.g., Ca2+). In this context, challenges still exist in relation to the low solubility and high viscosity of high-molecular weight alginate, high density of intra- and inter-molecular hydrogen bonding, polyelectrolyte nature of the aqueous solution, and a lack of suitable organic solvents. Herein, TE-RM applications of alginate-based materials are deliberated, focusing on current trends, important challenges, and future prospects.
Collapse
Affiliation(s)
- Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Rajender S. Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), 1402/2, 461 17 Liberec, Czech Republic
| |
Collapse
|
10
|
Akhtar N, Chen CL, Chattopadhyay S. PDT-active upconversion nanoheaters for targeted imaging guided combinatorial cancer phototherapies with low-power single NIR excitation. BIOMATERIALS ADVANCES 2022; 141:213117. [PMID: 36155246 DOI: 10.1016/j.bioadv.2022.213117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 01/05/2023]
Abstract
A versatile nanoformulation is designed by anchoring human transferrin protein (Tf) on fluoromagnetic upconverting nanoheaters, NaGdF4:Yb,Er (UCNP), loaded with Rose Bengal (RB), for multimodal imaging guided synergistic photothermal (PTT) and photodynamic therapy (PDT) at the targeted tumor site. The NIR excitation of the UCNP-RB Forster Resonance Energy Transfer (FRET) pair results in the reactive oxygen species (ROS) generation for PDT, whereas the non-radiative transitions in Er result in the heat required for PTT. The intravenously injected theranostic agent (UCNP@Tf-RB) enabled; (1) combinatorial PTT and PDT of 4T1 tumors with minimal systemic toxicity, (2) dual targeted (passive and active) tumor accumulation, (3) dual-modal imaging (MRI/photothermal), and, (4) excellent stability and biocompatibility. The in vitro therapy data corroborates the MRI findings that Tf conjugation resulted in actively targeted tumor accumulation via over-expressed transferrin receptors (TfR) on 4T1 cells. Real-time photothermal imaging enabled visualization of the tumor while receiving the therapy. The UCNP@Tf-RB, for synergistic PTT-PDT, and UCNP@Tf, for PTT only, caused rapid suppression of tumor with a tumor-growth inhibition index (TGII) of ~0.91, and 0.79, respectively. Histopathological examination demonstrated minimal damage to non-targeted tissues and caused significant damage to the tumor. This theranostic methodology enhances anti-cancer therapeutic efficiency, and announces the potential for pre-clinical cancer therapy.
Collapse
Affiliation(s)
- Najim Akhtar
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chuan Lin Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Surojit Chattopadhyay
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
11
|
Iravani S, Varma RS. Alginate-Based Micro- and Nanosystems for Targeted Cancer Therapy. Mar Drugs 2022; 20:598. [PMID: 36286422 PMCID: PMC9604960 DOI: 10.3390/md20100598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023] Open
Abstract
Alginates have been widely explored due to their salient advantages of hydrophilicity, biocompatibility, mucoadhesive features, bioavailability, environmentally-benign properties, and cost-effectiveness. They are applied for designing micro- and nanosystems for controlled and targeted drug delivery and cancer therapy as alginate biopolymers find usage in encapsulating anticancer drugs to improve their bioavailability, sustained release, pharmacokinetics, and bio-clearance. Notably, these nanomaterials can be applied for photothermal, photodynamic, and chemodynamic therapy of cancers/tumors. Future explorations ought to be conducted to find novel alginate-based (nano)systems for targeted cancer therapy using advanced drug delivery techniques with benefits of non-invasiveness, patient compliance, and convenience of drug administration. Thus, some critical parameters such as mucosal permeability, stability in the gastrointestinal tract environment, and drug solubility ought to be considered. In addition, the comprehensive clinical translational studies along with the optimization of synthesis techniques still need to be addressed. Herein, we present an overview of the current state of knowledge and recent developments pertaining to the applications of alginate-based micro- and nanosystems for targeted cancer therapy based on controlled drug delivery, photothermal therapy, and chemodynamic/photodynamic therapy approaches, focusing on important challenges and future directions.
Collapse
|
12
|
Han J, Jang EK, Ki MR, Son RG, Kim S, Choe Y, Pack SP, Chung S. pH-responsive phototherapeutic poly(acrylic acid)-calcium phosphate passivated TiO2 nanoparticle-based drug delivery system for cancer treatment applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Liang J, Yang B, Zhou X, Han Q, Zou J, Cheng L. Stimuli-responsive drug delivery systems for head and neck cancer therapy. Drug Deliv 2021; 28:272-284. [PMID: 33501883 PMCID: PMC7850355 DOI: 10.1080/10717544.2021.1876182] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Head and neck cancer (HNC) is among the most common malignancy that has a profound impact on human health and life quality. The treatment for HNC, especially for the advanced cancer is stage-dependent and in need of combined therapies. Various forms of adjuvant treatments such as chemotherapy, phototherapy, hyperthermia, gene therapy have been included in the HNC therapy. However, there are still restrictions with traditional administration such as limited in situ therapeutic effect, systemic toxicity, drug resistance, etc. In recent years, stimuli-responsive drug delivery systems (DDSs) have attracted the great attention in HNC therapy. These intelligent DDSs could respond to unique tumor microenvironment, external triggers or dual/multi stimulus with more specific drug delivery and release, leading to enhanced treatment efficiency and less reduced side effects. In this article, recent studies on stimuli-responsive DDSs for HNC therapy were summarized, which could respond to endogenous and exogenous triggers including pH, matrix metalloproteinases (MMPs), reactive oxygen species (ROS), redox condition, light, magnetic field and multi stimuli. Their therapeutic remarks, current limits and future prospect for these intelligent DDSs were discussed. Furthermore, multifunctional stimuli-responsive DDSs have also been reviewed. With the modification of drug carriers or co-loading with therapeutic agents. Those intelligent DDSs showed more biofunctions such as combined therapeutic effects or integration of diagnosis and treatment for HNC. It is believed that stimuli-responsive drug delivery systems showed great potential for future clinic translation and application for the treatment of HNC.
Collapse
Affiliation(s)
- Jingou Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Bina Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qi Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Ultrasensitive detection and removal of carbamazepine in wastewater using UCNPs functionalized with thin-shell MIPs. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Mdlovu NV, Lin KS, Weng MT, Hsieh CC, Lin YS, Carrera Espinoza MJ. In vitro intracellular studies of pH and thermo-triggered doxorubicin conjugated magnetic SBA-15 mesoporous nanocarriers for anticancer activity against hepatocellular carcinoma. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
|
17
|
Development of Polymer-Assisted Nanoparticles and Nanogels for Cancer Therapy: An Update. Gels 2021; 7:gels7020060. [PMID: 34067587 PMCID: PMC8162331 DOI: 10.3390/gels7020060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
With cancer remaining as one of the main causes of deaths worldwide, many studies are undergoing the effort to look for a novel and potent anticancer drug. Nanoparticles (NPs) are one of the rising fields in research for anticancer drug development. One of the key advantages of using NPs for cancer therapy is its high flexibility for modification, hence additional properties can be added to the NPs in order to improve its anticancer action. Polymer has attracted considerable attention to be used as a material to enhance the bioactivity of the NPs. Nanogels, which are NPs cross-linked with hydrophilic polymer network have also exhibited benefits in anticancer application. The characteristics of these nanomaterials include non-toxic, environment-friendly, and variable physiochemical properties. Some other unique properties of polymers are also attributed by diverse methods of polymer synthesis. This then contributes to the unique properties of the nanodrugs. This review article provides an in-depth update on the development of polymer-assisted NPs and nanogels for cancer therapy. Topics such as the synthesis, usage, and properties of the nanomaterials are discussed along with their mechanisms and functions in anticancer application. The advantages and limitations are also discussed in this article.
Collapse
|
18
|
Ha Lee S, Tawfik SM, Thangadurai DT, Lee YI. Highly sensitive and selective detection of Alprenolol using upconversion nanoparticles functionalized with amphiphilic conjugated polythiophene. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Tawfik SM, Azizov S, Elmasry MR, Sharipov M, Lee YI. Recent Advances in Nanomicelles Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E70. [PMID: 33396938 PMCID: PMC7823398 DOI: 10.3390/nano11010070] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
The efficient and selective delivery of therapeutic drugs to the target site remains the main obstacle in the development of new drugs and therapeutic interventions. Up until today, nanomicelles have shown their prospective as nanocarriers for drug delivery owing to their small size, good biocompatibility, and capacity to effectively entrap lipophilic drugs in their core. Nanomicelles are formed via self-assembly in aqueous media of amphiphilic molecules into well-organized supramolecular structures. Molecular weights and structure of the core and corona forming blocks are important properties that will determine the size of nanomicelles and their shape. Selective delivery is achieved via novel design of various stimuli-responsive nanomicelles that release drugs based on endogenous or exogenous stimulations such as pH, temperature, ultrasound, light, redox potential, and others. This review summarizes the emerging micellar nanocarriers developed with various designs, their outstanding properties, and underlying principles that grant targeted and continuous drug delivery. Finally, future perspectives, and challenges for nanomicelles are discussed based on the current achievements and remaining issues.
Collapse
Affiliation(s)
- Salah M. Tawfik
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
- Surfactant Laboratory, Department of Petrochemicals, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Shavkatjon Azizov
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
- Laboratory of Polysaccharide Chemistry, Institute of Bioorganic Chemistry, Uzbekistan Academy of Science, Tashkent 100125, Uzbekistan
| | - Mohamed R. Elmasry
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
| | - Mirkomil Sharipov
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
| | - Yong-Ill Lee
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
| |
Collapse
|
20
|
Fan Q, Cui X, Guo H, Xu Y, Zhang G, Peng B. Application of rare earth-doped nanoparticles in biological imaging and tumor treatment. J Biomater Appl 2020; 35:237-263. [DOI: 10.1177/0885328220924540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rare earth-doped nanoparticles have been widely used in disease diagnosis, drug delivery, tumor therapy, and bioimaging. Among various bioimaging methods, the fluorescence imaging technology based on the rare earth-doped nanoparticles can visually display the cell activity and lesion evolution in living animals, which is a powerful tool in biological technology and has being widely applied in medical and biological fields. Especially in the band of near infrared (700–1700 nm), the emissions show the characteristics of deep penetration due to low absorption, low photon scattering, and low autofluorescence interference. Furthermore, the rare earth-doped nanoparticles can be endowed with the water solubility, biocompatibility, drug-loading ability, and the targeting ability for different tumors by surface functionalization. This confirms its potential in the cancer diagnosis and treatment. In this review, we summarized the recent progress in the application of rare earth-doped nanoparticles in the field of bioimaging and tumor treatment. The luminescent mechanism, properties, and structure design were also discussed.
Collapse
Affiliation(s)
- Qi Fan
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing, PR China
| | - Xiaoxia Cui
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Haitao Guo
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yantao Xu
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Guangwei Zhang
- Zhejiang Fountain Aptitude Technology Inc., Hangzhou, Zhejiang, PR China
| | - Bo Peng
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
21
|
A study of anionic, cationic, and nonionic surfactants modified starch nanoparticles for hydrophobic drug loading and release. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Hong E, Liu L, Bai L, Xia C, Gao L, Zhang L, Wang B. Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110097. [DOI: 10.1016/j.msec.2019.110097] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 07/14/2019] [Accepted: 08/15/2019] [Indexed: 01/26/2023]
|
23
|
Zhang H, Pei M, Liu P. Keratin-based drug-protein conjugate with acid-labile and reduction-cleavable linkages in series for tumor intracellular DOX delivery. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Recent advances of upconversion nanoparticles in theranostics and bioimaging applications. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115646] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Jafari M, Rezvanpour A. Upconversion nano-particles from synthesis to cancer treatment: A review. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Phospholipase A2-Responsive Phosphate Micelle-Loaded UCNPs for Bioimaging of Prostate Cancer Cells. Sci Rep 2017; 7:16073. [PMID: 29167526 PMCID: PMC5700164 DOI: 10.1038/s41598-017-16136-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/03/2017] [Indexed: 01/12/2023] Open
Abstract
We report the effective synthesis of biocompatible upconversion nanoparticles (UCNP)-loaded phosphate micelles and successful delivery of UCNPs to prostate cancer cells via secreted phospholipase A2 (sPLA-2) enzyme cleavage of the loaded micelles for the first time. The activity of the (sPLA-2) enzyme toward the synthesized micelles was investigated and confirmed by LC-MS. TEM results showed that the micelles have a size distribution of 80 to 150 nm, whereas UCNP-loaded micelles range from 200 to 350 nm, indicating the successful loading of UCNPs. The selective release of UCNPs to prostate cancer cells rather than other cells, specifically cervical cancer cells, was observed and confirmed by a range of bioimaging studies. Moreover, cytotoxicity assays confirmed the biocompatibility of the UCNP-loaded micelles.
Collapse
|